Unknown Title

: 10/8/2025

Cyber Threats

RondoDox: From Targeting Pwn2Own Vulnerabilities to Shotgunning Exploits

Trend™ Research and ZDI Threat Hunters have identified a large-scale RondoDox botnet campaign exploiting over 50 vulnerabilities across more than 30 vendors, including flaws first seen in Pwn2Own contests.

By: Deep Patel, Ashish Verma, Simon Dulude, Peter Girnus October 09, 2025 Read time: 9 min (2515 words)

Key takeaways

• The campaign exposes organizations to the risks of data exfiltration, persistent network compromise, and operational disruption for organizations with exposed infrastructure.

- Organizations operating internet-facing network devices are at heightened risk. Active exploitation has been observed globally since mid-2025, with several CVEs now included in CISA's Known Exploited Vulnerabilities (KEV) catalog.
- Prioritize patching of all listed vulnerabilities, especially those in the KEV catalog. Conduct regular
 vulnerability assessments, segment networks to limit lateral movement, and continuously monitor
 devices for anomalous activities. Trend Micro solutions already provide protection against
 vulnerabilities and flaws exploited in this campaign, helping organizations mitigate exposure while
 patching efforts are underway.

The Trend Zero Day Initiative™ (ZDI) Threat Hunting and Trend™ Research teams have identified a significant RondoDox botnet campaign that targets a wide range of internet-exposed infrastructure. This campaign consists of over 50 exploits, including unpatched router flaws across over 30 vendors, targeting vulnerabilities found in routers, digital video recorders (DVRs), network video recorders (NVRs), CCTV systems, web servers, and various other network devices. While the exploits specifically exploit vulnerabilities in routers, DVRs, NVRs, CCTV systems, web servers, and networking equipment, the latest RondoDox campaign uses an "exploit shotgun", using multiple exploits and seeing what hits.

From Pwn2Own to active in-the-wild exploitation

Our first RondoDox intrusion attempt began on June 15, 2025, when we identified a familiar vulnerability from our Pwn2Own Toronto event. This vulnerability, tracked as CVE-2023-1389, targets the WAN interface of the TP-Link Archer AX21 Wi-Fi router.

We previously reported on a Mirai campaign that exploited CVE-2023-1389 back in 2023, shortly after the Pwn2Own event. Vulnerabilities presented at our Pwn2Own consumer event continue to be popular with botnet operators.

Figure 1. Pwn2Own Ireland target list in the SOHO Smashup event including multiple networking devices

download

Trend customers can be reassured that they have been protected against vulnerabilities like CVE-2023-1389 since it was disclosed at Pwn2Own.

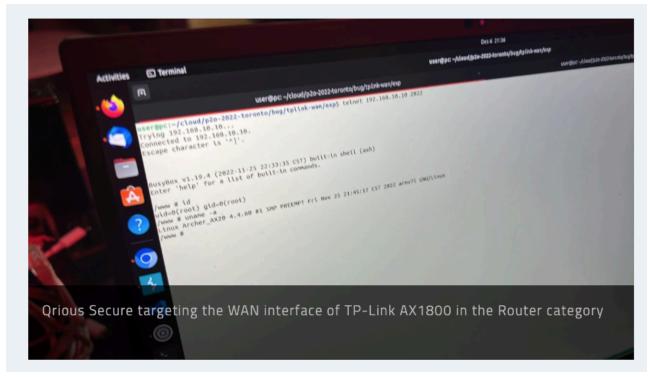


Figure 2. Tri Dang and Bien Pham (@bienpnn) from Qrious Secure were able to exploit two bugs (authentication bypass and command injection) at Pwn2Own Toronto 2022 download

RondoDox background: a new botnet emerges

RondoDox first surfaced publicly in mid-2025 as a stealthy botnet campaign that weaponizes longstanding command-injection flaws in internet-facing routers, DVRs, NVRs, CCTV systems, and other networking equipment to gain shell access and, ultimately, to drop multiarchitecture payloads. The initial RondoDox analysis authored by FortiGuard Labs highlighted an initial campaign, which focused on TBK DVRs and Four-Faith routers, through the exploitation of CVE-2024-3721 and CVE-2024-12856.

More recently, RondoDox broadened its distribution by using a "loader-as-a-service" infrastructure that copackages RondoDox with Mirai/Morte payloads — making detection and remediation more urgent.

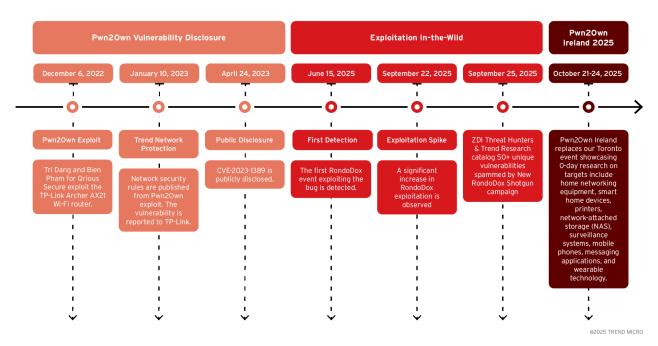


Figure 3. A timeline of the RondoDox vulnerability, from initial disclosure and first detection in 2025 to eventual widespread exploitation in large-scale campaigns download

Below is the timeline showing key events in the RondoDox vulnerability, from discovery to exploitation:

- December 6, 2022: Tri Dang and Bien Pham (@bienpnn) from Qrious Secure exploit the WAN interface of TP-Link AX1800 at Pwn2Own Toronto 2022.
- January 10, 2023: Trend Network Security publishes rule 42150: HTTP: TP-Link AX1800 locale controller Command Injection Vulnerability (ZDI-23-451).
- January 15, 2023: Pwn2Own vulnerability is reported to TP-Link. Coordinated public disclosure of CVE-2023-1389 with vendor.
- **June 15, 2025:** First RondoDox event detected inside Trend Telemetry utilizing Pwn2Own Toronto 2022 bug, CVE-2023-1389.
- September 22, 2025: Trend Threat Research triages a RondoDox exploitation spike inside Trend telemetry.

 September 25, 2025: CloudSEK publishes a follow-up showing rapid growth via a loader-as-a-service model that distributes RondoDox alongside Mirai/Morte, with evidence of large-scale, rotated infrastructure.

Exploit shotgun: RondoDox's expanded arsenal

Building on CVE-2023-1389 and other vulnerabilities, such as CVE-2024-3721 and CVE-2024-12856, RondoDox's expanded arsenal now includes several additional CVEs and exploitation patterns observed in the wild. It's a clear signal that the campaign is evolving beyond single-device opportunism into a multivector loader operation.

Notably, researchers tied the active exploitation of CVE-2024-3721 (TBK DVR) and CVE-2024-12856 (Four-Faith routers) to RondoDox activity, and a subset of the newly observed vulnerabilities was added to CISA's Known Exploited Vulnerabilities (KEV) catalog, elevating them to immediate, high-priority patching targets for defenders.

Below we list the fresh CVEs researchers have seen in RondoDox campaigns, summarizing how each is being weaponized:

RondoDox targeted vulnerabilities

Total Vulnerabilities: 56No CVE Assigned: 18CVE Assigned: 38

• Command Injection (CWE-78): 50

Path Traversal (CWE-22): 2Buffer Overflow (CWE-120): 1

• Authentication Bypass (CWE-287): 1

• Memory Corruption (CWE-119): 1

Vendor	Product	CVE ID	CWE	Туре
D-Link	DNS-343 ShareCenter /	N/A	CWE-78	No CVE
	goAhead Web Server			
TVT	NVMS-9000 Digital Video	N/A	CWE-78	No CVE
	Recorder (DVR)			
LILIN	DVR (Variant A)	N/A	CWE-78	No CVE
LILIN	DVR (Variant B)	N/A	CWE-78	No CVE
Fiberhome	Router SR1041F RP0105	N/A	CWE-78	No CVE
Linksys	Router apply.cgi (Variant A)	N/A	CWE-78	No CVE
Linksys	Router apply.cgi (Variant B)	N/A	CWE-78	No CVE
BYTEVALUE	Intelligent Flow Router	N/A	CWE-78	No CVE
D-Link	DIR-645 & DIR-815	N/A	CWE-78	No CVE
Unknown	wlan_operate endpoint	N/A	CWE-78	No CVE
Unknown	resize_ext2 endpoint	N/A	CWE-78	No CVE
ASMAX	804 Router	N/A	CWE-78	No CVE

D-Link	DIR-X4860	N/A	CWE-78	No CVE
Unknown	File Upload (upgrade form)	N/A	CWE-78	No CVE
Brickcom	IP Camera	N/A	CWE-78	No CVE
IQrouter	Qrouter 3.3.1	N/A	CWE-78	No CVE
Ricon	Industrial Cellular Router S9922XL	N/A	CWE-78	No CVE
Unknown	Shell endpoint	N/A	CWE-78	No CVE
Nexxt	Router Firmware	CVE-2022-44149	CWE-78	N-Day
D-Link	DIR-645 Wired/Wireless Router	CVE-2015-2051	CWE-78	N-Day
Netgear	R7000 / R6400 Router	CVE-2016-6277	CWE-78	N-Day
Netgear	Multiple Routers (mini_httpd)	CVE-2020-27867	CWE-78	N-Day
Apache	HTTP Server	CVE-2021-41773	CWE-22	N-Day
Apache	HTTP Server	CVE-2021-42013	CWE-22	N-Day
TBK	Multiple DVRs	CVE-2024-3721	CWE-78	N-Day
TOTOLINK	Router (setMtknatCfg)	CVE-2025-1829	CWE-78	N-Day
Meteobridge	Web Interface	CVE-2025-4008	CWE-78	N-Day
D-Link	DNS-320	CVE-2020-25506	CWE-78	N-Day
Digiever	DS-2105 Pro	CVE-2023-52163	CWE-78	N-Day
Netgear	DGN1000	CVE-2024-12847	CWE-78	N-Day
D-Link	Multiple Products	CVE-2024-10914	CWE-78	N-Day
Edimax	RE11S Router	CVE-2025-22905	CWE-78	N-Day
QNAP	VioStor NVR	CVE-2023-47565	CWE-78	N-Day
D-Link	DIR-816	CVE-2022-37129	CWE-78	N-Day
GNU	Bash (ShellShock)	CVE-2014-6271	CWE-78	N-Day
Dasan	GPON Home Router	CVE-2018-10561	CWE-287	N-Day
Four-Faith	Industrial Routers	CVE-2024-12856	CWE-78	N-Day
TP-Link	Archer AX21	CVE-2023-1389	CWE-78	N-Day
D-Link	Multiple Products	CVE-2019-16920	CWE-78	N-Day
Tenda	Router (fromNetToolGet)	CVE-2025-7414	CWE-78	N-Day
Tenda	Router (deviceName)	CVE-2020-10987	CWE-78	N-Day
LB-LINK	Multiple Routers	CVE-2023-26801	CWE-78	N-Day
Linksys	E-Series Multiple Routers	CVE-2025-34037	CWE-78	N-Day
AVTECH	CCTV	CVE-2024-7029	CWE-78	N-Day
TOTOLINK	X2000R	CVE-2025-5504	CWE-78	N-Day
ZyXEL	P660HN-T1A	CVE-2017-18368	CWE-78	N-Day
Hytec Inter	HWL-2511-SS	CVE-2022-36553	CWE-78	N-Day
Belkin	Play N750	CVE-2014-1635	CWE-120	N-Day
TRENDnet	TEW-411BRPplus	CVE-2023-51833	CWE-78	N-Day
TP-Link	TL-WR840N	CVE-2018-11714	CWE-78	N-Day
D-Link	DIR820LA1_FW105B03	CVE-2023-25280	CWE-78	N-Day
Billion	5200W-T Router	CVE-2017-18369	CWE-78	N-Day
Cisco	Multiple Products	CVE-2019-1663	CWE-119	N-Day
TOTOLINK	Router (setWizardCfg)	CVE-2024-1781	CWE-78	N-Day

Table 1. CVEs seen in RondoDox campaigns

Proactive strategies for effective vulnerability management

The latest RondoDox botnet campaign represents a significant evolution in automated network exploitation, demonstrating how threat actors continue to weaponize both publicly disclosed vulnerabilities and zero-day exploits discovered at security competitions like Pwn2Own.

The campaign's shotgun approach of targeting more than 50 vulnerabilities across over 30 vendors underscores the persistent risks facing organizations that maintain internet-exposed network infrastructure without adequate security controls.

The timeline presented in this analysis reveals an uncomfortable truth about the vulnerability lifecycle. Even when security researchers responsibly disclose flaws and vendors issue patches, the window between public disclosure and widespread exploitation continues to shrink, while the lifecycle of n-day exploits remain a perennial challenge to devices and their vendors. Organizations that delay patching or fail to maintain comprehensive asset inventories of their network edge devices create opportunities for campaigns like RondoDox to establish persistent footholds within their infrastructure.

Moving forward, defenders must adopt a proactive security posture that includes regular vulnerability assessments, network segmentation to limit lateral movement, restrict internet exposure, and continuous monitoring for signs of compromise.

We look forward to seeing great research at Pwn2Own Ireland 2025!

Proactive security with Trend Vision One™

Trend Vision One[™] is the only Al-powered enterprise cybersecurity platform that centralizes cyber risk exposure management, security operations, and robust layered protection. This holistic approach helps enterprises predict and prevent threats, accelerating proactive security outcomes across their respective digital estate. Eliminate security blind spots, focus on what matters most, and elevate security into a strategic partner for innovation, especially in the cases of novel malware threats as in the one discussed in this blog entry.

Trend Vision One™ Threat Intelligence

To stay ahead of evolving threats, Trend customers can access Trend Vision One™ Threat Insights which provides the latest insights from Trend™ Research on emerging threats and threat actors.

Trend Vision One Threat Insights

• Emerging Threats: RondoDox: From Targeting Multiple Vulnerabilities to Shotgunning Exploits

Trend Vision One Intelligence Reports (IOC Sweeping)

RondoDox: From Targeting Multiple Vulnerabilities to Shotgunning Exploits

Hunting Queries

Trend Vision One Search App

Trend Vision One customers can use the Search App to match or hunt the malicious indicators mentioned in this blog post with data in their environment.

RondoDox Infection Payloads (Post Exploitation)

eventSubId:2 AND (processCmd:"#!/bin/sh" AND processCmd:"chmod 777" AND processCmd:"service apparmor stop" AND processCmd:rondo.)

Threat Hunting Queries & Detection Logic

Generic splunk query example:

• index="<index name>" | spath <ison field> | search <ison field>="*rondo.*"

Generic Network Detection

index=proxy OR index=web OR index=firewall | search user_agent="*bang2012@protonmail.com*" OR User-Agent="*bang2012@protonmail.com*" | table _time src_ip dest_ip url user_agent | sort -_time

RondoDox Email

Common Proton email address found in numerous exploitation samples.

```
rule ZTH_Malware_RondoDox_Email{
meta:

description = "Detects patterns associated with rondo malware"
date = "2025-09-29"
author = "Peter Girnus (@gothburz)"
strings:
$s0 = "bang2012@protonmail.com" ascii
$s1 = "makenoise@tutanota.de" ascii

condition:
any
}
```

RondoDox Loader

Detects attempts to fetch infection payloads. This happens POST exploitation of the above mentioned vulnerabilities.

```
rule ZTH_Malware_RondoDox_Loader_A {
meta:
description = "Detects patterns associated with the RondoDox post exploitation."
date = "2025-09-29"
author = "Peter Girnus (@gothburz) with Trend Zero Day Initiative."
strings:
$s0 = "#!/bin/sh" ascii
$s1 = "chmod 777" ascii
$s2 = "service apparmor stop" ascii
$r1 = \brondo\./ nocase
condition:
all of them
}
```

Trend Solutions

Trend Micro customers have been protected from threats mentioned in the blog entry via the following rules and filters:

Trend Micro Cloud One - Network Security & TippingPoint Filters

- 1125 HTTP: ../.. Directory Traversal
- 16797 HTTP: GNU Bash URI Parameter Remote Code Execution Vulnerability
- 16798 HTTP: GNU Bash HTTP Header Remote Code Execution Vulnerability
- 16800 TCP: Non-Standard Function Declaration
- 16801 HTTP: GNU Bash URI Remote Code Execution Vulnerability
- 16806 UDP: Non-Standard Function Declaration
- 16811 DHCP: GNU Bash Remote Code Execution Vulnerability
- 17463 TCP: Linux/ShellshockCampaign.DDOSBot Random Byte Flood CnC Server Message
- 17466 TCP: Linux/ShellshockCampaign.DDOSBot HOLD TCP Flood CnC Server Message
- 19677 HTTP: Belkin Play N750 login.cgi Buffer Overflow Vulnerability
- 20005 HTTP: D-Link Multiple Devices HNAP Command Injection Vulnerability
- 21687 TCP: Linux/ShellshockCampaign.DDOSBot Scanner CnC Server Message
- 22228 TCP: Linux/ShellshockCampaign.DDOSBot Terminate Process CnC Server Message
- 26943 IPP: CUPS Code Injection Vulnerability
- 27492 HTTP: NetGear Multiple Routers Command Injection Vulnerability
- 31938 HTTP: Dasan GPON Home Router Authentication Bypass Vulnerability
- 32909 SMTP: GNU Bash SMTP Header Remote Code Execution Vulnerability
- 33111 TCP: Worm, Linux, Hakai, B Runtime Detection

- 35135 HTTP: Cisco RV110W/RV130W/RV215W Routers Management Interface Command Execution Vulnerability
- 35725 HTTP: Worm.Linux.Vampdemokre.A Runtime Detection
- 35803 HTTP: Worm.Linux.Nekonebot.A Runtime Detection
- 36007 HTTP: Worm.Linux.Asherposy.A Runtime Detection
- 36452 HTTP: Worm.Linux.Ankitegg.A Runtime Detection
- 36707 HTTP: Worm.Linux.Krasplint.A Runtime Detection
- 36923 TCP: Worm.Linux.Momentumbotnet.A Runtime Detection
- 37015 TCP: Trojan.Linux.Muhstik.A Runtime Detection
- 37073 HTTP: Worm.Linux.Ayewoabot.A Runtime Detection
- 37314 HTTP: Trojan.Linux.Kaguyabot.A Runtime Detection
- 37462 HTTP: Trojan.Linux.Gangmirbot.A Runtime Detection
- 37508 HTTP: Worm.Linux.Noelobot.A Runtime Detection
- 37624 HTTP: TrueOnline Billion 5200W-T Router Command Injection Vulnerability
- 37926 HTTP: Worm.Linux.Sorafetbot.A Runtime Detection
- 38067 HTTP: NETGEAR Multiple Routers mini_httpd Command Injection Vulnerability (ZDI-20-1423)
- 38405 HTTP: Worm.Linux.Katana.A Runtime Detection
- 39550 HTTP: Worm.Linux.Busybobot.A Runtime Detection
- 40008 HTTP: Worm.Linux.Loudscream.A Runtime Detection
- 40064 HTTP: D-Link Various Routers Remote Code Execution Vulnerability
- 40086 HTTP: Worm.Linux.Frostymirbot.A Runtime Detection
- 40538 TCP: Worm.Linux.BotenaGo.A Runtime Detection
- 40828 HTTP: Worm.Linux.Tropimesbot.A Runtime Detection
- 41396 HTTP: Worm.Linux.Enemybot.A Runtime Detection
- 41396 HTTP: Worm.Linux.Enemybot.A Runtime Detection
- 41654 HTTP: Worm.Linux.Aquamirbot.A Runtime Detection
- 42120 HTTP: Worm.Linux.Zerobot.A Runtime Detection
- 42150 HTTP: TP-Link AX1800 locale controller Command Injection Vulnerability (ZDI-23-451)
- 42389 HTTP: Worm.Linux.Bratomirbot.A Runtime Detection
- 42823 HTTP: Worm.Linux.Mirai.EV Runtime Detection (Zyxel Infection)
- 42824 HTTP: Worm.Linux.Mirai.EV Runtime Detection (LB-Link Infection)
- 42825 HTTP: Worm.Linux.Mirai.EV Runtime Detection (Tenda Infection)
- 42826 HTTP: Worm.Linux.Mirai.EV Runtime Detection (Netlog Infection)
- 42836 HTTP: LB-Link Multiple Products Command Injection Vulnerability
- 42880 HTTP: Worm.Linux.Unhanaawbot.A Runtime Detection
- 43190 HTTP: D-Link DIR820LA1_FW105B03 Command Injection Vulnerability
- 43357 HTTP: Worm.Linux.Mirai.IZ1H9 Runtime Detection
- 43829 HTTP: TP-Link Authentication Bypass Vulnerability
- 44282 TCP: Trojan.Linux.Goldoon.A Runtime Detection
- 44287 HTTP: Trojan-Downloader.Shell.Goldoonps.A Runtime Detection

- 44585 HTTP: Worm.Linux.Aresmirbot.A Runtime Detection
- 45104 TCP: Trojan.Linux.Mirai.AGIO Runtime Detection
- 45234 HTTP: D-Link NAS OS Command Injection Vulnerability
- 45254 IRC: Trojan.Linux.Capsaicin.A Runtime Detection
- 45270 HTTP: Worm.Linux.XorBot.A Runtime Detection
- 45300 HTTP: Four-Faith Industrial Router Command Injection Vulnerability
- 45615 HTTP: Worm.Linux.BallistaBot.A Runtime Detection
- 46070 HTTP: TBK DVR Command Injection Vulnerability

Trend Vision One Network Sensor and Trend Micro Deep Discovery Inspector (DDI) Rules

- 1618 CVE-2014-6271 Shellshock HTTP Request
- 1646 CVE-2014-6271 SHELLSHOCK VolP SIP Exploit
- 1647 CVE-2014-6271 SHELLSHOCK DNS Exploit
- 1650 CVE-2014-6271 Shellshock SMTP Exploit
- 1651 CVE-2014-6271 Shellshock POP3 Exploit
- 1656 CVE-2014-6271 Shellshock DHCP Exploit
- 2941 Possible CVE-2019-1663 CISCO RV Routers Buffer Overflow Exploit HTTP (Request)
- 4251 CVE-2019-16920 D-Link RCE Exploit HTTP (Request)
- 4633 CVE-2021-41773 APACHE TRAVERSAL RCE EXPLOIT HTTP(REQUEST)
- 4839 CVE-2023-1389 TPLink Firmware Command Injection Exploit HTTP (Request)
- 5441 CVE-2024-3721 TBK DVR RCE HTTP (Request)
- 5522: CVE-2025-1829_HTTP_TOTOLINK_CMD_INJECTION_EXPLOIT_REQUEST
- 5523: CVE-2025-4008_HTTP_METEOBRIDGE_INJECTION_EXPLOIT_REQUEST

Trend Vision One Endpoint Security, Trend Cloud One - Workload and Endpoint Security, Deep Security and Vulnerability Protection IPS Rules

- 1006256 GNU Bash Remote Code Execution Vulnerability
- 1006258 GNU Bash Remote Code Execution Vulnerability Over DHCP
- 1006259 GNU Bash Remote Code Execution Vulnerability Over SMTP
- 1006260 GNU Bash Remote Code Execution Vulnerability Over SIP
- 1006261 Identified Suspicious Bash ShellShock Attack
- 1011171 Apache HTTP Server Directory Traversal Vulnerability (CVE-2021-41773 and CVE-2021-42013)

Trend Micro Endpoint & Server Malware Pattern (VSAPI) Detection

- CVE-2015-2051 VSAPI-Backdoor.Linux.XorBot.A (Backdoor.Linux.XorBot.A)
- CVE-2015-2051 VSAPI-Trojan.Linux.Capsaicin.A (Trojan.Linux.Capsaicin.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.Aresmirbot.A (Backdoor.Linux.Aresmirbot.A)
- CVE-2015-2051 VSAPI-Trojan-Downloader.Shell.Goldoonps.A (Trojan-Downloader.Shell.Goldoonps.A)

- CVE-2015-2051 VSAPI-Trojan.Linux.Goldoon.A (Trojan.Linux.Goldoon.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.Unhanaawbot.A (Backdoor.Linux.Unhanaawbot.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.Bratomirbot.A (Backdoor.Linux.Bratomirbot.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.Enemybot.A (Backdoor.Linux.Enemybot.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.Tropimesbot.A (Backdoor.Linux.Tropimesbot.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.BotenaGo.A (Backdoor.Linux.BotenaGo.A)
- CVE-2015-2051 VSAPI-Backdoor.Linux.Hakai.B (Backdoor.Linux.Hakai.B)
- CVE-2020-25506 VSAPI-Backdoor.Linux.Zerobot.A (Backdoor.Linux.Zerobot.A)
- CVE-2014-6271 VSAPI-Backdoor.Linux.Kaguyabot.A (Backdoor.Linux.Kaguyabot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Aguamirbot.A (Backdoor.Linux.Aguamirbot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Frostymirbot.A (Backdoor.Linux.Frostymirbot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Loudscream.A (Backdoor.Linux.Loudscream.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Busybobot.A (Backdoor.Linux.Busybobot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Katana.A (Backdoor.Linux.Katana.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Noelobot.A (Backdoor.Linux.Noelobot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Gangmirbot.A (Backdoor.Linux.Gangmirbot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Ayewoabot.A (Backdoor.Linux.Ayewoabot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Muhstik.A (Backdoor.Linux.Muhstik.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Momentumbotnet.A (Backdoor.Linux.Momentumbotnet.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Krasplint.A (Backdoor.Linux.Krasplint.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Ankitegg.A (Backdoor.Linux.Ankitegg.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Asherposy.A (Backdoor.Linux.Asherposy.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Nekonebot.A (Backdoor.Linux.Nekonebot.A)
- CVE-2018-10561 VSAPI-Backdoor.Linux.Vampdemokre.A (Backdoor.Linux.Vampdemokre.A)
- CVE-2023-1389 VSAPI-Backdoor.Linux.MIRAi.PUSELVIT (Backdoor.Linux.MIRAi.PUSELVIT)

Acknowledgements

The authors would like to acknowledge the following team members for their contributions to this project.

- William Gamazo Sanchez
- Alfredo Oliveira
- Trend Response
- Writing Team & Trend Marketing

Indicators of compromise

Indicators of compromise can be found here.

Tags

Latest News | Research | Articles, News, Reports | Cyber Threats