CHAMELEON#NET: A Deep Dive into Multi-Stage .NET
Malware Leveraging Reflective Loading and Custom
Decryption for Stealthy Operations

>{ securonix.com/blog/chameleonnet-a-deep-dive-into-multi-stage-net-malware-leveraging-reflective-loading-and-custom-
decryption-for-stealthy-operations

November 4, 2025

Threat Research

Threat Research

Securonix Threat Research Security Advisory
By Securonix Threat Research: Shikha Sangwan

October 08, 2025

tidr:

The Securonix Threat Research team has analyzed a sophisticated malspam campaign distributing
RAT through DarkTortilla malware.

1/22

https://www.securonix.com/blog/chameleonnet-a-deep-dive-into-multi-stage-net-malware-leveraging-reflective-loading-and-custom-decryption-for-stealthy-operations/

oo

-

This campaign begins with a phishing email that tricks users into downloading a .BZ2 archive,

initiating a multi-stage infection chain. The initial payload is a heavily obfuscated JavaScript file that

acts as a dropper, leading to the execution of a complex VB.NET loader. This loader uses
advanced reflection and a custom conditional XOR cipher to decrypt and execute its final payload,
the FormBook RAT, entirely in memory. The campaign showcases layered evasion, from script
obfuscation to fileless execution, ultimately aiming to establish long-term persistence and control
over the compromised system.

Introduction

We've been tracking a malspam campaign delivering DarkTortilla, a highly modular and evasive
.NET malware that has been active since 2015. Known for its ability to deploy a wide range of
commodity malware such as AgentTesla, AsyncRAT, and various information stealers, DarkTortilla
remains a persistent threat.

This particular campaign starts with a targeted phishing email, luring victims in the National Social
Security Sector into downloading what appears to be a benign archive. However, this action kicks
off a complex, multi-stage infection process designed to meticulously unpack and execute its final
payload while evading detection. The attack chain leverages obfuscated JavaScript droppers,
which in turn deploys a sophisticated VB.NET executable. This executable is the core loader,
responsible for decrypting an embedded DLL using a unique, index-based XOR cipher and then
reflectively loading it into memory.

2/22

The final payload, identified as the FormBook RAT, establishes persistence through registry run
keys and startup folder modifications, disables security measures, and grants the attacker full
remote access to the victim’s machine. This analysis will break down each stage of the attack, from
the initial JavaScript dropper to the final in-memory execution of the FormBook RAT.

Key Findings

Initial Access via Malspam: The campaign begins with phishing emails that lead to the
automatic download of a .BZ2 archive containing the initial dropper.

Multi-Stage JavaScript Droppers: The initial POP2.js script is heavily obfuscated and acts
as a dropper for two subsequent JavaScript files, adobe.js and svchost.js.

Complex .NET Loader: The second-stage svchost.js script drops a 32-bit VB.NET
executable (QNaZg.exe), which serves as the main loader for the final payload. This loader is
packed and exhibits high entropy.

Custom Decryption Routine: The loader uses a specific decryption algorithm to unpack its
embedded payload. The routine involves reversing a byte array and applying a conditional
XOR operation (XORing with 0xC1) only on bytes at even indices.

Fileless Execution via Reflection: The loader makes extensive use of .NET reflection and
late-binding to load the decrypted payload (a DLL) directly into memory using
AppDomain.Load(byte[]), avoiding dropping the final payload to disk.

Modular FormBook RAT: The final in-memory payload is the FormBook RAT. It decrypts its
own AES-encrypted configuration from its resources to guide its behavior.

Stealthy Persistence: The malware achieves persistence by copying itself to
AppData\Roaming\word\word.exe and creating a registry Run key (HKCU\...\Run) disguised
as svchost.exe.

Defense Evasion: The attack chain uses multiple evasion techniques, including script
obfuscation, anti-analysis checks, and time-delay tactics using the ping command.

3/22

The Infection Chain

Initial Access: The Malspam Lure

@,

—

Phishing Email JavaScript Dropper

(POP2.js) adobe.js —=PHat.jar
\ LE)

SORC

svchost.js =QNaZg.exe Reverse XOR .NET Loader
Decryption Reflective Load

& —

FormBook RAT

C2 & Exfiltration Registry Run Key Persistence File Pe
svhost.exe

The attack chain begins with a carefully crafted malspam email. These emails direct victims to a
fraudulent webmail portal that mimics a legitimate service, prompting them to enter their Social
Security (SSA or SSI) institutional credentials. This serves the dual purpose of credential
harvesting and acting as a gatekeeper for the payload.

4/22

ebrmnay

Email Address
e e

Password

Figure 1 Fake webmail portal used for credential harvesting and payload delivery

Once the user submits their credentials, they trigger the download of a compressed archive of
81__POP1.BZ2. When the archive is downloaded, the user is already in a task-completion
mindset, expecting to see a document (like a PDF or Word file) related to the grant. The file inside
the archive, POP2.js, almost certainly continues the deception looking like a text file. The Victim,
believing they are simply opening the grant information they were promised, is thus enticed to
double-click the file, initiating the infection chain.

This is not just random spam; this is a message that appears to be critical and time sensitive. Once
the victim is invested enough to visit the fake portal and enter their credentials, they have been
psychologically primed to believe the process is legitimate.

5/22

Figure 2 Extracted JavaScript Dropper

Stage 1: The Multi-Stage JavaScript Dropper

When executed, POP2.js acts as a multi-stage dropper. Its code is made nearly unreadable by
several obfuscation layers designed to bypass static AV signatures. The script has a lot of noise,
variables initialized but never used and meaningless string assignments. It uses
String.fromCharCode and arithmetic operations for character generation, which is a classic sign of
runtime decoding. Critical strings, like ActiveXObject names, are built character-by-character at
runtime. The next-stage payloads are embedded inside the script as large, encoded Base64
strings.

6/22

Figure 3 Heavily obfuscated dropper code

After deobfuscation, the script’s functionality becomes clear. It uses a series of ActiveXObjects to
decode and launch the next stage:

1. Scripting.FileSystemObject: Used to get the path to the user’s temporary directory
(%TEMP%).

2. Microsoft. XMLDOM: Used to decode the embedded Base64 strings. It creates an XML
element, sets its dataType to “bin.base64”, and assigns the Base64 string to
its text property. The decoded binary data is then retrieved from
the nodeTypedValue property of this XML element. This is a common technique for Base64
decoding in older WSH environments.

7/22

Gkdr = "M ;
xgWURrZF sTuyOp yRHTPvtzpoGkdr) ;

element =

element.da

Figure 4 Payload decoding
1. ADODB.Stream: This object is used to write the decoded binary data to files on disk.

The JavaScript file functions as a multi-stage dropper. Its primary purpose is to decode two distinct,
larger payloads embedded within its own code as Base64 strings. These decoded payloads are
then written to the % TEMP% directory as adobe.js and svchost.js, respectively.

Finally, the script leverages WScript.Shell to execute both dropped JavaScript files, initiating the
next stage of the infection chain.

8/22

7 Administrator: Command Pro

Figure 5 Second-stage Javascript files dropped into the % TEMP% directory.

Stage 2: Dropping the .NET Loader

The second-stage scripts, adobe.js and svchost.js, function similarly to the first. They each contain
another Base64-encoded payload.

svchost.js drops the core component of the next stage: a .NET executable named
QNaZg.exe, which is the Darktortilla strain. It firstly checks the Temp folder path using
FileSystemObject and then decodes the embedded payload using MSXML DOM techniques.
The decoded binary data is extracted via the “nodeTypedValue” property. Once the binary
payload is accessible in memory, the script uses an ADODB.Stream object to write this data
out to disk. The stream is initialized, configured for binary operations, and the decoded
content is written directly to the stream. Before saving, the stream’s position is reset to
ensure the full binary is written from the beginning of the file. The file is then saved to the
temporary directory, with the overwrite option enabled to prevent errors if a file with the same
name already exists. Finally, the stream is closed to release resources. Then it runs the
dropped binary file using WScript.Shell object.

adobe.js drops a file named PHat jar, which our analysis revealed to be an MSI installer
package. It behaves similarly as svchost.js.

9/22

C:\Users\researcher\AppData\, X

Figure 6 QNaZg.exe and PHat.jar dropped by the secondary scripts

Stage 3: The .NET Loader — Decryption and Reflective Loading

DarkTortilla (QNaZg.exe) is a 32-bit VB.NET executable that serves as the main loader for the final
payload. Its high entropy suggests it is either packed or heavily obfuscated. It turns out to be
heavily obfuscated (all classes and method names).

10/22

Figure 7 PE analysis of the .NET loader

This loader’s primary responsibility is to decrypt and execute an embedded DLL stored within its
own resources. This is accomplished through a multi-step process designed to evade analysis. The
loader contains a large, hardcoded byte array, which is the encrypted final payload.

To decrypt it, the malware employs a custom, multi-step algorithm:

1. Reverse: The entire byte array is reversed using a ‘LINQ .Reverse<byte>()" operation.

2. Conditional XOR: A custom function is applied to each byte of the reversed array. This
function performs a conditional XOR operation: if the byte’s index in the new, reversed array
is even, it is XORed with the key 193 (0xC1). If the index is odd, the byte is left unchanged

11/22

NNNNNNNN NNNNNNNNITI
N] N NI
A N NI

pmTHRArS

(pa7iRdr9 % 2 L (Ky6fx

Figure 8 The simple, index-based conditional XOR decryption routine

This straightforward routine effectively decrypts the byte array, revealing a valid PE file in memor

identifiable by the “MZ” header.

(ob3j2 (IEnumerable)NewlLateBinding.LateGet(NewLateBinding. LateGet (NewLateBinding.LateGet(obj, null, “"Load™, new object[]
{ 4fkFDo9pwBYnx.3tsAy1Pbdg2E().Reverse<byte>().ToArray<byte>()
.Select((4soPaSb87mRk. 7DtqBb_1n8X.mBt3Q%gogo == null) ? (4soPaSb87mRk.70tqBb_1nBX.mBt3Q9gogo = new Func<{byte, int, byte
(4soPaSb87mRk. 7Dt qBb_1n8X.1ir5C8b.5Rapfib)) : 4soPaSb8TmRk.7DtqBb_1n8X.mBt3(9gogo)
.Todrray<byte>() }, null, null, null), null, "GetTypes™, new object[] { 24 }, null, null, mull), null, "GetMethods", new object(0],
null, null, null)fl

object objectValue = RuntimeHelpers.GetObjectValue(obj2);

((MethedInfo)objectValue).Invoke(null, new object[@]);

Value

Figure 9 Decoded DLL

Reflective Loading and Late-Binding

With the final payload assembly now fully decrypted in memory, the DARKTORTILLA loader
orchestrates its execution in a manner designed for maximum stealth: reflective loading. This is a
technique that completely bypasses the traditional Windows Portable Executable (PE) loader.
Instead of writing the payload to disk as a physical file, the malware leverages the
System.AppDomain.Load(byte[]) method. This instructs the .NET Common Language Runtime
(CLR) to load the assembly directly from its byte array representation in the process’s virtual
memory.

Think of an AppDomain as a lightweight container or sandbox within a single operating system
process. A single OS process can host multiple AppDomains. Each AppDomain provides a level of
isolation for code executed within it. When you launch a .NET application, it typically runs in a
default AppDomain. All assemblies (like your EXE and its referenced DLLs) are loaded into this
domain. Malware like DARKTORTILLA leverages AppDomain.Load(byte[]) because it allows them
to load a malicious assembly (their final payload DLL) directly from a byte array (which they’'ve
decrypted in memory). It's loaded purely from the process’s memory space. This is a classic
“fileless” technique that helps evade signature-based antivirus solutions that primarily scan files on
disk.

~
)
4
&~
o~
©
]
o
P4
~
~
©

13/22

Figure 10 Reflectively loading the decrypted PE from memory

Once the payload is mapped into the application domain, the loader employs late binding and
extensive .NET reflection to activate it. Rather than hardcoding direct calls to the payload’s
methods at compile time, the loader specifically utilizes the
Microsoft.VisualBasic.CompilerServices.NewLateBinding.LateGet() method. As seen in Figure 11,
NewLateBinding.LateGet() is invoked by passing the reflectively loaded payload as an argument,
allowing the loader to dynamically retrieve and execute the payload’s designated entry point
(Segwenservice.Class1_PreStart.Method0()), which is the loaded module of the final payload. This
late-binding mechanism is a sophisticated defence evasion tactic; it effectively obfuscates the true
control flow and capabilities of the malware. By resolving and invoking method calls dynamically at
runtime, it forces analysts into dynamic execution environments, adding layers of complexity to
detection and reverse engineering efforts. This combination of reflective loading and dynamic
invocation ensures the FormBook RAT achieves its malicious objectives with minimal footprint and
maximum stealth.

ance, Type, MemberName, Arguments, ArgumentNames, CopyBack);

Instance

der, MemberName, Arguments, ArgumentNames, CopyBack);

e, Type, MemberName, Arguments, ArgumentNames, TypeArguments, CopyBack);

Figure 11 Using reflection to invoke the entry point of the in-memory payload

Stage 4: The Final Payload — FormBook RAT

The in-memory assembly, Segwenservice.dll, is the final payload, which we identified as a variant
of the FormBook RAT. It is highly modular, with different classes responsible for specific tasks
such as installation (Class11_lInstall), persistence (Class12_Startup, Class16_Persist), anti-VM

14/22

checks (Class8_AntiVMs), and decryption (Class5_Decrypter). The malware behavior is dictated
by a configuration file stored as an encrypted resource. This resource is decrypted at runtime using
AES, making it difficult to extract its configuration without dynamic analysis.

Its first action is to decrypt its own configuration, which is the encrypted resource.

Figure 12 Decrypting configuration data containing persistence and behavior flag

The encryption routine that processes the encoded resource is a standard AES implementation. It
decrypts via memory stream with derived key IV. The decrypted AES byte array creates a binary
reader over a memory stream from data, using UTF-8 encoding, and creates a list as a container.
The list turned out to be a config which contains objects/key-value pairs.

This configuration dictionary dictates the malware behavior, including persistence, installation
paths, and anti-analysis features, which we will discuss in a moment.

Persistence and Evasion

Based on its configuration, the RAT establishes persistence:

15/22

1. File Placement: A command is constructed to copy the loader (QNaZg.exe) to a new
location: $APPDATA\Roaming\word\word.exe, which is the startup folder, masquerading as a
Microsoft Word component. It first checks for hidden startup/startup folder. It's a common
technique for persistence. By this, malware ensures it will run again on reboot/login. Names
like “word.exe” in a “word” folder in AppData are easily overlooked by users and many basic
security controls.

Figure 13 Malware drops itself into the startup folder

1. Registry Run Key: It also manages persistence through the Windows Registry. It opens the
registry run key under HKCU (HKCU\Software\Microsoft\Windows\CurrentVersion\Run) and
checks if a value with the name “svchost.exe” exists. Checks for the “word.exe” in
“‘AppData\Roaming\word”. Adds itself under Run, ensuring the dropped malware “word.exe”
is launched at user login. Registry value name mimics “svchost.exe “, which is a legit
Windows system process.

16/22

agd = (flag 7 1 : @) == Convert.ToInt32(-158746.5 - -52915.5) + Convert.Tolnt32(71693.346243691281 - Math.Sqrt(35852.0)) / <Module>.IsUserDefinedSubTypeValid(int.Parse("1%)) + Convert.Tolnt32{17863.5
<Modules . TsUserDefinedSubTypeValid(int.Parsa("4")) + Type. EmptyTypes.Length o Type.EmptyTypes.Length]

Figure 14 Persistence using registry run key

Anti-Analysis: Bypassing Automated Sandboxes

The malware anticipates being run in automated analysis environments and employs a classic
technique to defeat them. It constructs and executes a cmd.exe command that includes two ping
127.0.0.1 -n 39 > nul commands.

cmd” /c ping 127.0.0.1 —n 39 > nul && copy
“C:\Users\RESEARCH~1\AppData\Local\Temp\QNaZg.exe”
“C:\Users\researcher\AppData\Roaming\word\word.exe” && ping 127.0.0.1 —n 39 > nul &&
“C:\Users\researcher\AppData\Roaming\word\word.exe”

Each ping command introduces a delay of approximately 38 seconds. Many automated sandboxes
have a limited execution timeout; they terminate analysis if a sample appears to be inactive for too
long. By introducing these significant delays, the malware can out-wait the sandbox, preventing its
full behavior from being observed and analyzed.

Our analysis observed the RAT attempting to modify registry keys associated with Windows
Defender to disable its real-time monitoring. This reduces the likelihood of detection by built-in
endpoint protection.

17/22

ile Edit View Favorites Help
ompute\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Defender\Real-Time Protection

Sync Framework Name Type Data

Sysprep) "(Default] REG_SZ (value not set)
SystemCertificates ——)

ws| DisableRealtimeMonitoring REG_DWORD Ox 00000001 (1)

SystemSett
ystemoctiings 7% DpaDisabled REG_DWORD 0x 00000000 (0)

TableTextService
TabletTip
TaskFlowDataEngine

Tepip

Figure 15 Windows defender disablement

Keylogging Functionality and Data Exfiltration

A primary function of the FormBook RAT in this campaign is pervasive keylogging. The malware
implements a low-level keyboard hook, likely using Windows API, to intercept keystrokes across all
applications. This allows it to capture every single key pressed by the user, regardless of the active
window.

The captured keystrokes are not immediately exfiltrated but are buffered and written to local files
for later transmission. During our analysis, we observed the RAT creating files with names
matching the pattern KB_*.dat (e.g., KB_2025-10-07.dat) within its persistence directory
(%APPDATA%\Roaming\). This batching approach minimizes network traffic, making detection
harder, and ensures data is not lost if C2 connectivity is temporarily unavailable.

A typical keylogger log file from FormBook follows a structured format, enabling easy parsing by
the attacker. Special keys (like Shift, Ctrl, Alt, Enter, Backspace) are often logged with specific tags
or bracketed descriptions to distinguish them from standard character input.

18/22

@ L KB_729660953.dat

51.79.62.89ip\$(ShellExperiencedost] Quick settings[Wireshark] sEthernet®

51.79.62.89

It actually starts from VBS fight which uses double scripting to execute and then it drops a QMA, ZC, EXE in the temp directory. Then it uses ping and then word which is
injecting into install util.exe and which is ultimately performing all the actions.

51.79.62.89%5

51.79.62.89Y Ah:In the attached images, I have provided the process tree.

51.79.62.89+I have given the registry that it creates.

51.79.62.89The folders that it creates.

51.79.62.89Commands of all the processes

51.79.62.89 An[Wireshark] =Ethernet®?It also connects to a (2 server probably, which is 51.79.62.89 4The C2 server domains is actually a.dns.org domain. NIt also
communicates a file which is a VBS file, proof of payment ene.dot VBS r"Ah}Hostly the behavier analysis of this I'll be giving some static information and advanced static
analysis as well. Moving on. =Help me write down @ deep tactical analysis of this malware. #You are a lead security researcher.Using images for reference fand write
descriptions nicely and technically. o

AKET am analyzing this malware and attaching all the photos from some of the analyses.

It actually starts from VBS file which uses ws scripting to execute and then it drops a QNaZg.exe in the temp directory. Them it uses ping.exe and then word.exe which is
injecting into installutil.exe and which is ultimately performing all the actions.

In the attached images, I have provided the process tree. I have given the registry that it creates. The folders that it creates. Commands of all the processes

It also connects te a €2 server probably, which is 51.79.62.89. The €2 server domain is actually a duckdns.org domain, It also communicates a file which is a V85 file,
proofofaaymentlvbs .

this is Mestly the behayior analysis of this I'11 be giving some static information and advanced static analysis as well. Moving on.

You are a lead security researcher, Help me write down a deep tactical analysis of this malware. Using images for reference and write descriptions nicely and technically.

.Ahalnotepade+] C:\Users\researcher\Docusents\ScreenConnect\Files\POPZ.j5 - Notepad++ [Administrator]AEwgxkEnUESKrihwitnirmUkAVYNLriXaLHY =
'

2595y fXZuuj qSnVSHPVHT QEQV1OBzZY ZROXVFHTKaBOCRPD2p L tK2 inM105p2ZqppHOCAP D 1t qTVRIKUXCVGVz j ckj dPPLALbAKABMACPZGrSryFHUCKUTUI f2CfFoviqluzz jTKETrvErds
1¥HvjdqSsCVb] ¥ 22MRBHXN FARXG Vo 2usS LURipBUAK L IKj y JgGBHIWM: 1BWLZnuivkt2U2gKRVEY
var

ddP FVETwykgHFatgHOAAOXLONBNGpodgLuT LapUT zkKtguuGKCBUE oSy rMDGOTVNVL fuRa fgPNAXGOHH gKAOV L SVHT JRRTHSXOTE L LqwOs | 1BHSOHVZLNTVORGHED ixbISdBOPhgka D
NMUVMVKVUVESS FmfepV fvIXi JRKs0S

"

2ZvRBF Mo FYBHMNKI ycCCUTEIDp LLUKRHCU fXbDhtRAPGTCKUYLPLggFq IxPAAUVGUe rinhvu)kuEypAeRa LyCvmoagSFSSRGT FLASTxRJNIWEY. cQTnkyqeMeC) ihtgCZoz Ih)DxXvb fPeeNbr Ly Qucly
ELzOXeMALSPgvGPONDPxwAXWOPHEE It IF 5y T¥wTPyvLxuweXHE rNXCDNCHWWSVZY s t | BWrEfSeqgEMyMsdWweGC I0gBEWAGZAUWRF BRAAGXL Y s vyaDvo twySV] cEzRvEosdMiatLhzVig) riX1Dds FBGEVEQVY Fe iUtXCP 10ATkHY
var

aRJeNETwnCynMZrd) XmblsMPUKT CmdiVumdDy LzUs duRuj gprnrmy f ZnFtKLVOIKTds Zvn 1Y YRpm ruVkUSKymeWPNpxBan YV Yk rQuEESNgpmwlXar cGLYWHOMF pgxks TNHWESDYGUT | qZatmdAvvPNLaINECOXVEnWYoOThok

Figure 16 Log file created by RAT

C2 Infrastructure

The FormBook RAT, once established, initiates communication with its command and control (C2)
infrastructure to receive commands and exfiltrate collected data. During our analysis, we observed
the RAT attempting to connect to a duckdns.org dynamic DNS domain. Dynamic DNS services are
a common tactic for malware operators as they allow the C2 IP address to change frequently while
the domain name remains constant, making it harder for security teams to block.

Specifically, network captures revealed outgoing TCP connections to 51.79.62.89, which resolves
to the duckdns.org domain specified in the malware’s configuration. Specifically, we observe
multiple attempts to establish a connection on destination port 57652.

Wrapping up...

The DARKTORTILLA campaign demonstrates a sophisticated, multi-layered approach to malware
delivery. The threat actors combine social engineering, heavy script obfuscation, and advanced
.NET evasion techniques to successfully compromise targets. The use of a custom decryption
routine followed by reflective loading allows the final payload to be executed in a fileless manner,
significantly complicating detection and forensic analysis. By masquerading its files and registry
keys with legitimate-sounding names, the malware attempts to blend in with normal system activity
to maintain long-term persistence.

19/22

Victimology and Attribution

This campaign appears to primarily target organizations in the National Social Security Sector.
The social engineering lures are tailored to this specific vertical. Currently, there is not enough
information to definitively attribute this campaign to a specific country or threat group.

Securonix Recommendations

Maintain vigilance against social engineering attacks and educate users to never download
or execute files from untrusted web portals or emails.

Always verify that software downloads come from legitimate and official websites.
Endpoint Security: Deploy a strong defensive solution capable of monitoring for suspicious
script execution, reflective loading of .NET assemblies, and unusual parent-child process
relationships (e.g., word.exe spawning InstallUtil.exe).

Script Execution Policies: Enforce strict script execution policies, such as blocking .js and
.vbs files from the internet via email gateway rules or application control.

Enhanced Logging: Enable enhanced command-line and PowerShell logging to capture
obfuscated commands and fileless attack stages for investigation. Implement keyboard event
logging and monitor file creation in %APPDATA% for suspicious KB_*.dat patterns.
Securonix customers can scan endpoints using the Securonix hunting queries below.

MITRE ATT&CK Matrix
Tactics Techniques
Initial Access T1566.002: Spearphishing Link
Execution T1059.007: JavaScript

T1059.003: Windows Command Shell

Persistence T1547.001: Registry Run Keys / Startup Folder
Defense Evasion T1021.007: Remote Services: Cloud Services
Execution T1027: Obfuscated Files or Information

T1140: Deobfuscate/Decode Files or Information

T1620: Reflective Code Loading

T1036.005: Match Legitimate Name or Location
T1562.001: Disable or Modify Tools (Windows Defender)

T1497.003: Time Based Evasion (Ping Delay)

Credential Access T1056.001: Input Capture: Keylogging

20/22

Command and Control T1571: Non-Standard Port

T1568.002: Dynamic Resolution: DGA (duckdns.org)

Relevant Securonix Detections

Suspicious Javascript Execution From Temp Location Analytic
Startup Run Registry Key Created to Suspicious Directory Analytic
Potential Windows Defender Modification Registry Analytic

Relevant hunting Queries

(remove square brackets “[]” for IP addresses or URLSs)

index = activity AND rg_functionality = “Next Generation Firewall” AND destinationaddress =
“51.79.62[.189”

index = activity AND rg_functionality = “Endpoint Management Systems” AND deviceaction =
“File created” AND filename IN (“QNaZg.exe”, “adobe.js”, “svchost.js”, “word.exe”)

index = activity AND rg_functionality = “Endpoint Management Systems” AND deviceaction =
“Process Create” AND ChildProcessCommandLine CONTAINS “ping 127.0.0.1 -n 37 > nul
&&”

index = activity AND rg_functionality = “Endpoint Management Systems” AND deviceaction
CONTAINS “Registry value set” AND eventtype = “SetValue” AND targetobject CONTAINS
“‘SOFTWARE\\Microsoft\Windows\\CurrentVersion\\Run\\svchost.exe”

index = activity AND rg_functionality = “Endpoint Management Systems” AND
SourceProcessName IN (“wscript.exe”, “cscript.exe”) AND deviceaction = “Process Create”
AND childprocesscommandline CONTAINS “AppData\\Local\\" AND
childprocesscommandline CONTAINS “.exe”

index = activity AND rg_functionality = “Endpoint Management Systems” AND image

CONTAINS “InstallUtil.exe” AND parentimage CONTAINS “word.exe”

C2 and Infrastructure

C2 Address

51.79.62[.]89
Associated duckdns[.]Jorg domain

Analyzed files/hashes

File Name SHA256/MD5

part1 eba24c92b51d8fb24697952135a7d7bdf4a7511ab94be850fda1fc512675f6ad

21/22

81__POP1.BZ2 67c00ede3964cb78c64575b65b301f808958311b99779b7159716282b1a4e9f2

PROOF OF 4ebef5d23ce0fe6c2940ba7a2f6bfc512b1ec5f01458284d2cele71ee8787b81
PAYMENT1.vbs

POP2.js d4c097412ab05630e6cb97b544dc7c0ale238a4bdf5c79da679c7545face2dad
svchost.js aab2b9cd5a946739bbb41ae2234adaf34ba9761445315c2b5ba270a7b931a2e2
adobe.js 56d627adc6e6e8967ade649f707134a501cfeab5ec66322514536ee8ace3053fb
PHat.jar 7¢9128d197301fcd89d6fd1b0077d2a35f2a98c6219386900d7e8c89e4799a86
QNaZg.exe a428d2602ad3bad2d590ed68b17a308cff8ab7ff61da2a51acb83fd202b5358d

Segwenservice.dll 8bcfc6dd44413f577f026d465d826194db45cd205b24f77b9080debba96e3b7b
[embedded
payload]

22/22

