
strikeready.com /blog/0day-ics-attack-in-the-wild/

0day .ICS attack in the wild

Sep 30, 2025 by StrikeReady Labs 6 minutes

Earlier in 2025, an apparent sender from 193.29.58.37 spoofed the Libyan Navy’s Office of Protocol to

send a then-zero-day exploit in Zimbra’s Collaboration Suite, CVE-2025-27915, targeting Brazil’s military.

This leveraged a malicious .ICS file, a popular calendar format.

The exploitation of Zimbra, Roundcube, and similar open-source collaboration tools, directly over email, is

rare. Although actors do compromise the servers in broad campaigns, and attackers frequently leverage

these tools as lures, actually exploiting a vulnerability in them with an email attachment is a thread worth

pulling on. We previously blogged about an adjacent, but related attacker, and ESET has authored multiple

authoritative blogs on the topic. Proofpoint has reported in depth about usages of XSS to steal individuals'

mailboxes, and Palo Alto has shown some conceptually similar preview pane vulnerabilities in Outlook. XSS

has often been seen as a “lesser” vuln compared to RCE, but these examples should hammer home that

XSS can be just as effective at accomplishing a goal. There is a very small subset of attackers who are

adept at finding these 0days. A Russian-linked group is especially prolific, responsible for the bulk of the

above references, although recently UNC1151 also used similar TTPs.

1/19

https://strikeready.com/blog/0day-ics-attack-in-the-wild/
https://undefined/blog/
https://nvd.nist.gov/vuln/detail/CVE-2025-27915
https://en.wikipedia.org/wiki/ICalendar
https://strikeready.com/blog/stealing-your-email-with-a-.txt-file/
https://www.welivesecurity.com/en/eset-research/operation-roundpress/
https://www.welivesecurity.com/en/eset-research/winter-vivern-exploits-zero-day-vulnerability-roundcube-webmail-servers/
https://www.welivesecurity.com/en/eset-research/winter-vivern-exploits-zero-day-vulnerability-roundcube-webmail-servers/
https://www.proofpoint.com/us/blog/threat-insight/exploitation-dish-best-served-cold-winter-vivern-uses-known-zimbra-vulnerability
https://unit42.paloaltonetworks.com/russian-apt-fighting-ursa-exploits-cve-2023-233397/
https://cert.pl/en/posts/2025/06/unc1151-campaign-roundcube/

Figure 1: spearphish email

TLDR: we discovered this by watching for ICS files > 10kb that contain javascript. This is a rare enough

occurrence that you can put an eyeball on every one.

2/19

Figure 2: ICS containing obvious javascript

Carving and decoding this base64 gives familiar looking obfuscation to our previous blog. Our first step in

the analysis process is to try tools such as Obfuscator.io Deobfuscator.

Figure 3: First phase of deobfuscation using deobfuscate.io

Considerable manual analysis (renaming variables, function names, and constants) would be required to

fully understand the payload purpose.

3/19

https://obf-io.deobfuscate.io/

However, the payload functionality can also be understood by making an html file which loads the javascript

in the script html header

Figure 4: loading the JS via html

One could then debug it by right-clicking and selecting inspect on the webpage using devtools, then going to

the sources section where the JS is present. Lastly, set a breakpoint as shown below:

Figure 5: setting a breakpoint

The script is a comprehensive data stealer targeting Zimbra Webmail. It does the following:

Exfiltrates data to https://ffrk.net/apache2_config_default_51_2_1

Employs evasion techniques like adding a 60 second delay before code execution, leverages 3 day

execution windows, and also hides UI elements like InvHeaderTable to reduce visual clues

4/19

Steals a wide range of data like credentials, emails, contacts, and shared folders

Monitors user activity. If the user is inactive, it logs them out and steals data

The code is implemented to be executed in asynchronous mode and into different Immediately

Invoked Function Expressions (IIFE)

Below, we describe a few of the more interesting capabilities in the stealer

1) Limited Execution Frequency

Purpose: Only executes if 3+ days have passed since the last execution

Figure 6: function names changed for readability

5/19

Figure 7: checking to see if more than 3 days have passed

2) Data Exfiltration

Purpose: Sends stolen data to the attacker’s server using POST request and mode as “no-cors”

6/19

Figure 8: Sending an HTTP POST with the snarfed data

3) Hiding Elements

Purpose: Hides UI elements to reduce visibility of the attack

Figure 9: Hiding UI Elements

4) Requesting Zimbra Server for Retrieving Information

Purpose: Defines a helper function which sends SOAP requests to Zimbra Server for retrieving information

7/19

Figure 10: helper function

Detailed Breakdown of Each Async IIFE

A. First Async IIFE: Credential Theft & Activity Monitoring

1. Function Name: createHiddenFieldsForUsernameAndPasswordCapturing()

Purpose:

Creates hidden input fields for username and password

These fields are invisible to the user but can capture credentials when the user logs in

8/19

Figure 11: Creating Hidden Fields for Credentials Capturing

2. Function Name: stealUsernameAndPasswordFromLoginForm()

Purpose:

Steals usernames and passwords from login forms

Sends the stolen credentials to the attacker’s server

9/19

Figure 12: Stealing Username and Passwords on login forms

3. Function Name: startActivityMonitoring()

Purpose:

Monitors user activity (mouse movements, clicks, keyboard input)

If the user is inactive for a particular amount of time, it triggers data theft and logs the user out

10/19

Figure 13: Activity Monitoring

B. Second Async IIFE: Email Theft

1. Function Name: isMetadataLoaded() & setMetadataLoaded()

Purpose:

Checks if metadata is already loaded to avoid re-execution

Sets a flag to prevent duplicate execution

11/19

Figure 14: Checking Meta data Loading

2. Function Name: searchForEmailsInFolderAndSendToAttackerServer()

Purpose:

Searches all email folders for emails

Sends the email content to the attacker’s server

Repeats every 4 hours to ensure continuous data theft

12/19

Figure 15: Sending Email Content from Folders

3. Function Name: searchEmailsInFolder(folder)

Purpose:

Uses Zimbra’s SOAP API to search for emails in a specific folder

Retrieves email IDs and sends the email content to the attacker

13/19

Figure 16: Searching for emails in folders

C. Third Async IIFE: Malicious Email Filter Rules

1. Function Name: addMaliciousFilters()

Purpose:

Adds malicious email filter rules to forward emails to spam_to_junk@proton.me

14/19

Figure 17: Adding email filter rules

2. Function Name: addMaliciousEmailFilterRuleAndForwardToProtonMail(isOutgoing)

Purpose:

Creates a new email filter rule named "Correo". Interestingly, Correo is a Spanish word for mail, and in

Brazil, where they speak Portuguese, it would traditionally be spelled Correio.

Forwards all emails to spam_to_junk@proton.me

Figure 18: Forwarding emails to Proton Mail Account

15/19

D. Fourth Async IIFE: Stealing Scratch Codes, Trusted Devices, and App-Specific Passwords

1. Function Name: stealScratchCodeTrustedDevicesGetAppSpecificPasswords()

Purpose:

Steals scratch codes, trusted devices, and app-specific passwords

Sends the stolen data to the attacker’s server

Figure 19: Stealing Data

E. Fifth Async IIFE: Stealing Contacts, Distribution Lists, and Shared Folders

1. Function Name: stealContactsAndDistributionLists()

Purpose:

Steals contacts, distribution lists, and emailed contacts

Sends the stolen data to the attacker’s server

16/19

Figure 20: Stealing Data

2. Function Name: stealSharedFolders()

Purpose:

Steals shared folders

Sends the stolen data to the attacker’s server

17/19

Figure 21: Stealing Data

Type Value

Attacker c2 https://ffrk.net/apache2_config_default_51_2_1

Sender IP 193.29.58.37

Email forwarding spam_to_junk@proton.me

Email attachment hash ea752b1651ad16bc6bf058c34d6ae795d0b4068c2f48fdd7858f3d4f7c516f37

Figure 22: Indicators mentioned in blog

Our github provides a download of the relevant files mentioned in the blog, including the deobfuscated JS.

Vendor Threat Actor name

Proofpoint UNK_HeatSink

Figure 23: Other validated vendor names for this actor

Acknowledgements

Thanks to K. Shahzad, as well as peer vendors, for their analysis and corrections Please get in touch at

research@strikeready.com if you have corrections, would like us to use your group name, or would like to

18/19

https://github.com/StrikeReady-Inc/research/tree/main/2025-09-29%20ics%200day
https://undefined/mailto:research@strikeready.com

collaborate on research.

19/19

