www.forcepoint.com /blog/x-labs/xworm-rat-shellcode-multi-stage-analysis

XWorm RAT Delivered via Shellcode: Multi-Stage Attack
Analysis

i 9/26/2025

September 26, 2025 |

11 min read

Learn more about Forcepoint Email Security
%

117

https://www.forcepoint.com/blog/x-labs/xworm-rat-shellcode-multi-stage-analysis
https://undefined/product/email-security-software
https://undefined/product/email-security-software
https://undefined/product/email-security-software
https://undefined/product/email-security-software

L. . .
l=.xworm-malware-delivered-via-shelllcode

Remote Access Trojans (RATs) often remain quiet in the wild employing increasingly stealthy methods to
exfiltrate sensitive data. Latest trends show attackers follow either fileless or in-memory techniques (via

shellcode or script loaders) to deliver and execute malware.

This blog post drills into the trend of how attackers are using shellcode as an enabling technology for
modern RAT campaigns. This example injects the XWorm RAT.

b 010 e . 'E| (g
— g — e I— |y —:- _,. —

Prncess
Shellcode Embedded URL Exnc utable
Email Office file OleObject.bin Injection

Fig. 1 - Attack chain

Malicious email sample:

217

Facturas pendientes de pago

@ Brezo Sancher MEG—88—
o ———

H-. Facturas pendientes de pagasdam P

o B23KB

Buenos dias.

Encuentro facturas adjuntas pendientes de pago.

Ignorar si se ha realizado el pago.

saludos

). ALTIUS

Brezo Sanchez
Project Manager

“Grupo Davilo, creciendg juntos desde 19177

Fig. 2 - Malicious email

Office file and its content:

From the email, we see it has .xlam file attached to it. Given that the .xlam are archive files, we can just

unzip and statically analyze it to view file contents.

On unzipping the file, we see the oleObject1.bin file in the embeddings folder of Excel file. We can also use
the oledump Python tool to view the suspicious embedded file.

3/17

FF FF FF FF EFF FF FF FF FEF FF FE FF FF FF EF FF YYVYVYVVYYVYYYVYY
0o R.0.0.%C. ..E.D.TC.

00 |, B e

00 OO0 OO

00 « o s s WUVUUTUV.. ..

00 4 RS A F

00 00 00 00 00 AD ©A 51 7I . 70z

0l 00) 1 pee et P e AT

00 0 .:0.1.e.1.0.n.A.

00 00 00 | B TR f e

00 00 00 00 00 QO Q0 Q0O 00 00 00 00 00 00 00 OC

00 00 00 0O OO 00 00 00 OO0 0O OO0 0O 00 0O 00 OC sssssasEaEaaE s

Fig. 3 - Ole10Native stream

On using oledump, we are successfully able to fetch the suspicious file “oleObject1.bin”. Further, we can see
oleObject1.bin has a stream called Ole10nATive.

Ole10nATive streams are commonly used by attackers to hide malicious encrypted codes.
We can further extract this stream by using oledump to select object A1 and create a dump of it.
Shellcode analysis:

After creating a dump of the file, we see an encrypted file likely to be shellcode. A shellcode can be identified
by a series of indicators such as call followed by jmp/pop instructions or API hashing.

We can use tools like XORSearch to find the offset from where shellcode will be executed.

Fig. 4 - Getting offset of shellcode

Here we observed “GetEIP” method at 0x000001D7, 0x000001D8, 0x0000026F offset which can be used to
execute shellcode successfully. “GetEIP” method is used to run shellcode correctly as it needs to identify
where it is being executed in memory.

417

As we have offsets now, we can emulate it using scdbg (a tool used for shellcode analysis and debugging).

Checking at any of the offsets gives us the same results:

Fig. 5 - Shellcode emulation

In Fig. 4, we find two windows API “GetProcAddress” and “ExpandEnvironmentStringsW” getting called
which indicates this to be an expected shellcode. We also observed “unhooked call” instruction which refers
to technique used by malware to bypass security products.

The “Facturas.bin” file has a few more API calls which are used to download, save and execute malware.

74 FF FF FF 90 AA 85 02 00 E9 38 FF FF FF ci{¥yV..%....e8¢V{
EB D1 EB F1 OF 82 16 FF FF FF 81 EC 2C 00 eNefi., . vvv.1,...
ESB oo D0 &8 00 &5 00 7 00 &E QO = QO .vcck.e.zT.n.e.l
il 0 32 00 Q0 EB FYF 01 00 g4 EH [. T e W
il 00 C &F £4 89 &2 72 1 72 719 57 « « s LOAdLibraryW.
23 EB DE 1 00 g9 C7 EB F 00 DD 47 &5 7 SéPb...%Ce....Get
580 72 BF 3 41 &4 69 T2 B8 T3 T3 53 EB C2 1 ProcAddress.Séi.
00 B9 & EB 1A 00 Qg S T3 7l 6l 6E 64 45 . RE&,ExpandE
6E 76 69 72 6F 6E 6D €5 6E 74 53 74 T2 ¢ 6E €7 nvironmentString
T3 Q0 3 FF D& &8 4 01 0 00 BD 54 24 0B 52 =sW. S'G“.....TS.R
E8 24 00 0 00 00 41 0QQ E Q0 o0 44 00 41 e&...%.A.P.P.D.A
00 54 00 41 00 25 00 5C 00 51 00 51 00 55 00 2E .T.A.%.\.0Q.0Q.0U..
DO €5 00 00 €5 00 00 FF DO ES OE 00 e.x.e...0Pd....
55 72 6C 4D &F GE 00 FF I u.-._...w.:...rx
ES 00 00 55 52 4C 44 6F 77 6E 6C &F 61 €4 &....URLDownload
54 6F 46 69 6C &5 57 50 FF D6 6A 00 6A 00 8D ToFileW.Py0j.j..
o4 24 O0U 52 EB 40 00 20 3 Q0 T4 00 7 Qoo ; TS.Ré@...h.t.t.k
00 3A 00 2F 00 2F 00 €1 00 &C 00 70 00 &% 00 v Bl ad vl Pl
00 72 00 &5 00 &% 00 3 00 1 00 &E 00 1 00 ZE .2 l.8.8a.0.1..
DO €3 00 6F 00 €D 00 2F 00 55 00 58 00 4F 00 2E .c.o.m./.U.X.O0..
D0 &5 00 T8 00 5 00 J 00 &6A Q00 FF DD E& 14 B X. &, ... VD&, .,

5/17

Fig. 6 - API calls and URL after cleaning up shellcode

From above figure, we see the API calls and URL:

e UrlMon

¢ UrlIDownloadToFile

e LoadLibraryW

e hxxp://alpinreisan1[.Jcom/UXO[.]lexe

UrlMon API has key functionalities for downloading files from URL using UrIDownloadToFile. The file is
downloaded from the mentioned URL and saved to %APPDATA%. Then LoadLibraryW is used to execute
the file in memory from address space.

First stage executable analysis (UXO.exe)

On statically analysing downloaded file “UXO.exe” is found to be .NET compiled executable.

E__n?[;oﬁ: File Mame ChUsers\Research-FP\ Downloads KO exe
(5] Mt Headers File Type Portable Executable 32 .MET Assembly
ﬁ i File Info Microsoft Visual Studio JMET
(&5 Data Directories [x] File Size 1.81 MB (1892372 bytes)
[é&“’b‘“[' ““*w' bl PE Size 1.79 ME (1879040 bytes)
— gm Dwectary Created Wednesday 10 September 2025, 06.04.58
o E“"'“”"" Directory Modified Wednesday 10 September 2025, 06.05.02
I3 NET Directory Accessed lSunday 21 September 20235, 19.41.35
_E ﬁ :*ﬁ' MH*H* MD5 079207C335F700DAF643BD36ABEOB365
aData 5
& g SHA-1 (4B93BEFESCCADTBFRACAESCAEERTIHABTSOCCA
E] Tables Header = |
| !]““: Td:;“ Property Value
—] =S Comments Comprehensive hospital information system
— & &GuID CompanyName HealthTech Syst
L @ pany Systems
p— ‘ﬁ,hﬂuﬂ Converter FileDescription MedFlow HIS
e i;:-w Walker FileVersion 12.5.7.4826
— 1, Hex Editor
- w.i: Identifier InternalName KQuT.exe
— % mport Adder LegalCopyright Copyright © HealthTech Systems 2025
— 9% Quick Disassembler e
| %ww CriginalFilename KQuT.exe
~—), Resource Editor ProductMame MedFlow
ProductVersion 12.5.7.4826

6/17

Fig. 7 - Executable file summary

On statically analysing the file, we see the original filename is “KQuT.exe”. While analysing the .NET
compiled binaries, it is good to focus on the classes/methods that use ‘Drawing’. The reason for this is that a
lot of NET malware will load a bitmap or object from its resource section and reflectively load the next stage
into memory.

Fig. 8 - Steganography image in .exe file

On further analyzing the executable file in dnSpy, we saw the class “HashtaneProjeENSONhali” uses
“System.Drawing”. Moving ahead and debugging the file, as soon as the malware hits entry point, the
malware gathers a byte array from another class (Form_SecretaryDetail) within the file and loads it into
memory.

717

Lagi “ys)) InvckeHester | conponmtAenoorc rManaper Gt riag(Tel "), Binddlagfle

Creates .dll file and
$ leads further into
FErmory

.
I EEEEEE .

Fig. 9 - File creation

Fig. 10 - Created file (Creative Al) loaded in memory

Second Stage DLL file analysis (CreativeAl.dll):

We were successfully able to dump the DLL file from memory and let us now look at the analysis of the file.

Using tools like PEStudio and Detect-It Easy (DIE) for static analysis, we can confirm the file type and its
original name. Also, we can have a thorough look at the imports and strings that have been flagged.

8/17

property walue

hile =

ke > fiegt 32 bavtes (hes) 40 54 90 00 03 00 00 00 04 O 00 00 FF FF 00 00 88 00 00 00 00 & & (0 40 00 00 00 00 00 00 00
file > first 32 brybes (e} ML e

{ile = infg sane: THEOO bytes, enbropy: 7428

file = type dymamic-fink-library, 32-bit, conscle

e > vEr A et]

film > i n Muﬁ:uﬂm

porire point > firg 52 bvies [head FF 25 00y 200000 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 90 00 00 00 00 00 00 00 00 00
onirg-point > locgbepn el JO5E

il » figrtur Bhicredctt Linker 480 | Micnsdoft Vo C2 5 Bat NET | Microieft NET

gamp > compiles Ths Sep 0 01-53:40 2025 UTC)

il 3 parm cisersresearch-fipl desitop\dmmpp.dil
verman = anginal-file-ngne Creatroeil dll

I* le > n Creatreedl. dll

Fig. 11 - DLL file summary from memory using PeStudio

The above figure shows it is a DLL .NET compiled file having filename as CreativeAl.dll which we saw in Fig.
12 below:

= BT chusenneseanch-ip) deskiopi dmmpg.dil imports (J53) namepice fag(ll type ordinal beary
& indicatert (einmbotal = pcong) [TiReFE 5 1]
o8 fmarprias fpi > 280 Memeriream u - "1':5'5"7‘:'-“-
B] veuitotal {pcere = 237 " bpmallF
- c GetProcaddress ' gl
-] ehusersiresearch-fphdesktopidmmpp.dil enceding (2] size (bytes) alfset flag (4) walue (1589)
i m (virustotal > score) 1 . (D000 58 X MemaonySream
gff Soctprints (ype > shadSil) 5 5 000000080 x CreateEncryptor
b1 vi Wi S DdEREDrosE E hemarySiream
B dos-hesder (size » B4 bytes)
] - Ol EEEDIDNED ® Createbncryplar
B dos-stub (sive » 64 bytes) .
b hch-baadir fala 4 CD0000000 B8

Fig. 12 - Suspicious strings and imports from PeStudio

From static analysis, we can figure out the suspicious strings and imports such as:

¢ MemoryStream
e CreateEncryptor

Viewing the DLL file in Detect-It Easy gives us some more insights into what sort of protection the DLL uses
to hinder analysis:

917

File name

:= | C:\Users\Research-FP\Desktop\dmmpp.dll

File type File size
PE32 - T5.00 KiB
Scan Endianness Mode Architecture Type
Automatic - LE 32-bit 1386 DLL
* PE32
Operation system: Windows(95 32-bit. DLI 5
Linker; Microsoft Linker 5 ?
Language: M5IL/C# - 7
Library: JMET Framework(Legacy, CLR v2.0.50727) 5 i
Protector: .MET Reactor(6.X)[Control Flow + Anti-ILDASKM)] 5 ?
(Heur)Cryptor: Encrypted or packed data[Assembly invoke + RSACryptoServiceProvider] 5 ?
(Heur)Protection: Obfuscation[CLR constructer + Virtualization + Calls encrypt + Anti-ILDA... 5 }

Fig. 13 - DIE tool analysis

The DLL file uses several encryption techniques for analysis to be difficult such as RSACryptor,
Virtualization, Fake. cctor, and many more.

Since the DLL file is loaded in memory as a byte array, we won’t be able to debug the file standalone. So, we
need to debug the module while it is running in the memory of our original file, UXO.exe.

On performing further analysis, we observed “CreativeAl.dIlI” runs another DIl in the memory named as
“DriverFixPro.dll” using Reflective DLL injection.

Fig. 14 - DriverFixPro DLL loaded in memory

10/17

R v Ll DL 3 LR [ae) o

Reflective DLL
Injection

AL LEEAE S

Fig. 15 - Reflective .DLL injection

Third Stage DLL Analysis (DriverFix Pro.dll)

Let us dump and extract this new DLL and check its content statically and dynamically. For statically
analysing the file we will using DIE (Detect It Easy) and PeStudio to look for interesting artifacts.

When we loaded the file in PeStudio, we found more interesting strings and imports as seen in the figure

below:
5 chusersireseanhefp\deskiop driverfio pro.dil encoding [2) size (bytes) cdfres flag [8) wahue (11735
i inide: gbors (imports = flagd :‘ o
l;l:' Toatpratd (type » hal5E) = e Rm il Text
¥l
= LN - OD002ASS] DewnloadFile

B dos-header (size * E4 bytes) ; g .

B des-stul (size > &4 bytes) < : o
file-header {dll > 32-hit) = .
opticnal-hesder (subnstem » console] 3

By dinecborsts (oount = 3) QUG . D1y mEhen
sprhines [count > 11 il Ly ESIE

| aiadgid inearch- g deikbe dereeifn pre.d) imports (378 FAMEACE flag (3 Type ording kbrany

u ndidon mports = I'!J.;l NriteAllTes &

F . iy Wimberdl Texk

¥ footprints (hype = shal56) -
I;I,, P i 5 DeorvrnicadFile L
b e T] P
B ei-header (12 = B4 bpbet] o "'.-"' e
B ds-stub (ioe = 54 Byt LS'#;LJ_{:

setProciiddress i

Fig. 16 — Suspicious strings and imports

11/17

Upon viewing the file in DnSpy, the file is found to be having a lot of obfuscated codes which hinders the
analysis. For analysis, the only option we have is to set breakpoints and step through each class looking for
any human readable code.

Fig. 17 - Heavily obfuscated .DLL code

Further debugging is out of scope from the perspective of this blog. Hence, when the file is loaded in
memory it already performed the injection to its own process (UXO.exe) and we were able to dump the
memory strings of the file. The strings from the memory dump show an interesting name “UD_XWormClient
6.5” which gives us indication of the malware belonging to the XWorm family.

Final Stage C2 connection

12/17

v r explorer.exe 784 009 2165MB DESKTOP...\Research-FP Windows Explorer

¥ SnippingTool.exe 11636 0.37 173 MB DESKTOR..\Research-FP Snipping Tool
w O dnipy.exe 7552 Qun2 33309 MB DESKTOR..\Recearch-FP dnSpy
¥ — U0 exe 12160 461 ME DESKTOP..\Research-FPF MedFlow HIS
— UK exe 926 916 ME DESKTOR..\Research-FP MedFlow HIS
& chrome.exe FRE Trer : L e T
I notesac+ s B | Results - UKO.exe (9264) — O ~
1% ProcessHacker.exe
& dnSpy.exe _er ot :
Ed pestudio.exe Address Length Result | fsment | ...
‘ die e D000 -t IThis program cannot be runinDOS ...
O d 1420 10 s A
415521 10 1f~RI[E I
(4 15680 10 v4.0.30319
Ox418712 22 Sy ERatRE|
Ox4i87a2 50 Gy HSEE L YoM Vel S0 TP OUYR TS .
x4 15809 2 UD_xWormChent &, 5.exe
O 41880 18 UD_XWormChent 6.5
Ox413833 21 Micrasoft. VisualBasic
x4 15879 i7 System.Management
x4 13900 14 System. Drawing
0%418918 m System, Windaves. Forms

Fig. 18 - Memory strings showing presence of “UD_XWormClient”

After successful injection, the file tries to connect to IP: 158.94.209[.]180 where malware exfiltrates its data.
When we tried to look up relations for 158.94.209[.]180 on Virus Total, we found it to be hosting a domain
“berlin101[.]Jcom:6000”. This domain is recognized as a C2 for XWorm malware.

[Systern (4] DESKTOP-1TENADD 138 uoe
— UChexe (9., DESKTOR-1TKNADD 51732 138.54.209.180 6000 TCP S¥M sent
[0 Waiting £o... DESKTOP-1TKNMDD 51680 dns.google &3 TCP Timne wait

amioEom e s s s mon ARE A waa L .. xaon -

Fig. 19 - UXQO[.Jexe network connection

Conclusion

The campaign is delivered by phishing email, using a fake invoice as a lure. The email has an Office file
(.xlam) attachment, which, on downloading and opening, shows a blank or corrupted Office file. This
malicious document has an embedded oleObject1.bin file, which hides embedded shellcode. The shellcode,
when executed it, initiates connection to retrieve and deploy secondary payload.

The second payload, which was an executable was found to be .NET binary that reflectively loaded into the
memory. The file which was loaded in memory is found to be a .dll file which was also .NET compiled.

The second stage .DLL file from memory uses heavily obfuscated packing and encryption techniques. This
second stage .DLL file loaded another .DLL file in memory again using reflective DLL injection which was
further responsible for final execution of malware.

13/17

The next and final step performs a process injection in its own main executable file, maintaining persistence
and exfiltrating data to its Command & Control servers. The C2s where data was exfiltrated was found to be
related to XWorm family.

Protection Statement

o Stage2 (Lure) - Phishing email associated with this attack was identified and blocked by email
security analytics.

o Stage 5 (Dropper File) — The dropper files are added to Forcepoint malicious database and are
blocked.

o Stage 6 (Call Home) - C2 servers are categorized under the security category and blocked.

I0OCs

[indicators Type
78a6e7ff6a7f584481d99919458b990a6945falc xlam
0e2e77ed3a826f1926de588a9827479fe0d8c494 |oleObj.bin
ec8ac36d43b18781ba991d3f96243671fd19ee0d [Shellcode
hxxp://alpinreisan1[.Jcom/UXO[.]Jexe

hxxp://alpinreisan1[.Jcom/HGR[.]exe |URLs

hxxp://alpinreisan1[.Jcom/HGX[.]exe
04b93bef69ccad7bf8ac4e5c4ee87191ab750cca [Executable
d97ed60de226af9876769ac2e94185cf1b25d676 |DLL files

eed853525f94896aeab67eea5c6897329107a07e6
berlin101[.Jcom:6000

IC2
158.94.209[.]180:6000

Prashant Kumar

Prashant serves as a Security Researcher for the X-Labs Threat Research Content. He spends his
time researching web and email-based cyberattacks with a particular focus on URL research, email
security and analyzing malware campaigns.

Read more articles by Prashant Kumar—

In the Article

14/17

https://undefined/company/biographies/prashant-kumar
https://undefined/company/biographies/prashant-kumar
https://undefined/company/biographies/prashant-kumar

e Future Insights 2025

° o iy A \N§‘ &
Future Insights 2025Read the Series
_)
rorcepoint
X-Labs

Get insight, analysis & news straight to your inbox

By submitting this form, you agree to our terms and to receiving communications from Forcepoint, you
acknowledge our privacy policy and you consent to the processing of your data. You can unsubscribe at any
time.

15/17

https://www.forcepoint.com/blog/tags/future-insights-2025
https://www.forcepoint.com/blog/tags/future-insights-2025
https://www.forcepoint.com/blog/tags/future-insights-2025
https://www.forcepoint.com/blog/tags/future-insights-2025
https://www.forcepoint.com/legal/website-terms-and-conditions
https://www.forcepoint.com/company/privacy-policy
https://www.forcepoint.com/email-communication-preference-center

To the Point

Cybersecurity

A Podcast covering latest trends and topics in the world of cybersecurity

Listen Now

17/17

https://undefined/resources/podcasts

