labs.watchtowr.com [it-is-bad-exploitation-of-fortra-goanywhere-mft-cve-2025-10035-part-2/

It Is Bad (Exploitation of Fortra GoAnywhere MFT CVE-2025-
10035) - Part 2

Ryan Dewhurst : : 9/25/2025

By — Ryan Dewhurst — Sonny — Sep 25, 2025

17

https://labs.watchtowr.com/it-is-bad-exploitation-of-fortra-goanywhere-mft-cve-2025-10035-part-2/
https://undefined/author/ryan/
https://undefined/author/sonny/

LIt Is Bad (Exploitation of Fortra GoAnywhere MFT CVE-2025-10035) - Part 2

2/7

We’'re back, just over 24 hours later, to share our evolving understanding of CVE-2025-10035.

Thanks to everyone who reached out after Part 1, and especially to the individual who shared credible intel
that informed this update.

In Part 1 we laid out an odd and worrying picture:

e Avendor advisory that included an “Am | Impacted?” section with what looked like a stack trace from
attempted exploitation,

¢ A vendor that has publicly signed the Secure By Design pledge, committing to transparency around in-
the-wild exploitation, and,

¢ A carefully worded statement suggesting the issue was found during an internal “security check” on
September 11, 2025.

It'd be understandable if you interpreted all of this as “we discovered this vulnerability internally ourselves.”

CYBERSCOOP Topics v Special Reports Events Podcasts Videos

Fortra told CyberScoop it discovered the vulnerability during a security check Sept.
11. “We identified that GoAnywhere customers with an admin console accessible
over the internet could be vulnerable to unauthorized third-party exposure,”
Jessica Ryan, public relations manager at Fortra, said in an email.

“We immediately developed a patch and offered customers mitigation guidance to
help resolve the issue,” she added.

You’d also seemingly be wrong, and welcome to Part 2.

3/7

https://labs.watchtowr.com/is-this-bad-this-feels-bad-goanywhere-cve-2025-10035/

Since Part 1...

Since Part 1, we have been given credible evidence of in-the-wild exploitation of Fortra GoAnywhere CVE-
2025-10035 dating back to September 10, 2025. That is eight days before Fortra’s public advisory, published
September 18, 2025. This explains why Fortra later decided to publish limited IOCs, and we're now urging
defenders to immediately change how they think about timelines and risk.

An individual sent us evidence of exploitation activity that aligns with the stack traces shown in Fortra's

HEY SONNY, WHAT ARE DM'S

i > A
AND HOW DO | SLIDEINTO:THEM?
naflip.con g ——

The stack trace related to exploitation, and the creation of a backdoor account, are both present in the data
we reviewed. We cannot publish everything, but the core signals are clear.

a7

goanywhere. log:9/10/25 ERROR Unauthorized bundle from invalid session: aaa

goanywhere. Log-4/14/25 ERRUR Error parsing lLicense response

goanywhere. log-java. lang.RuntimeException: InvocationTargetException: java.lang.reflect.InvocationTargetException

at org.apache.commons.beanutils.BeanComparator.compare(BeanComparator.java:171)

java.base/java.util.PriorityQueue.siftDownUsingComparator(Unknown Source)
java.base/java.util.PriorityQueue.heapify(Unknown Source)
java.base/java.util.PriorityQueue.readObject(Unknown Source)
java.base/jdk. internal. reflect.NativeMethodAccessorImpl. invoke@(Native Method)
java.base/jdk. internal. reflect.NativeMethodAccessorImpl. invoke(Unknown Source)
java.base/jdk. internal. reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

goanywhere. log— java.base/java.lang.reflect.Method. invoke(Unknown Source)

goanywhere. log— java.base/java.io.0ObjectStreamClass. invokeReadObject (Unknown Source)

goanywhere. log— java.base/java.io.ObjectInputStream. readSerialData(Unknown Source)

goanywhere. log- java.base/java.io.ObjectInputStream. readOrdinaryObject(Unknown Source)

goanywhere. log— java.base/java.io.0bjectInputStream. readObject@(Unknown Source)

goanywhere. log- java.base/java.io.0bjectInputStream. readObject(Unknown Source)
java.base/java.io.0ObjectInputStream. readObject(Unknown Source)
java.base/java.security.SignedObject.getObject (Unknown Source)
com. linoma. license.gen2.BundleWorker.verify(BundleWorker. java:319)
com. linoma. license.gen2.BundleWorker.unbundle(BundleWorker. java:122)
com. linoma. license.gen2.LicenseController.getResponse(LicenseController.java:441)
com. linoma. license.gen2.LicenseAPI.getResponse(LicenseAPI. java:304)
com. linoma.ga.ui.admin.servlet.LicenseResponseServlet.doPost(LicenseResponseServlet. java:64)
javax.servlet.http.HttpServlet.service(HttpServlet.java:555)
javax.servlet.http.HttpServlet.service(HttpServlet.java:623)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:199)
org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:51)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
com. linoma.dpa.security.SecurityFilter.doFilter(SecurityFilter.java:208)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
com. linoma.dpa.security.SecurityHeaderFilter.doFilter(SecurityHeaderFilter.java:104)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache. catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
com. linoma.ga.ui.core.filter.IFrameEmbeddingFilter.doFilter(IFrameEmbeddingFilter.java:89)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
com. linoma.ga.ui.core.filter.NoCacheFilter.doFilter(NoCacheFilter.java:46)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)

goanywhere. log— com, linoma.ga.ui.core.filter.IECompatibilityModeFilter.doFilter(IECompatibilityModeFilter.java:61)

goanywhere. log- org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)

goanywhere. log- org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
com. linoma.dpa. j2ee.AdminRedirectFilter.doFilter(AdminRedirectFilter.java:50)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
com. linoma.ga.ui.core. filter.XForwardedForFilter.doFilter(XForwardedForFilter.java:55)
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:168)
org.apache. catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:144)
org.apache.catalina.core.StandardWrapperValve. invoke(StandardWrapperValve. java:168)
org.apache.catalina.core.StandardContextValve. invoke(StandardContextValve. java:90)
org.apache.catalina.authenticator.AuthenticatorBase. invoke(AuthenticatorBase. java:482)
org.apache. catalina.core.StandardHostValve. invoke(StandardHostValve. java:130)
org.apache.catalina.valves.ErrorReportValve. invoke(ErrorReportValve.java:93)
org.apache.catalina.core.StandardEngineValve. invoke(StandardEnginevalve. java:74)

goanywhere. log- org.apache. catalina.connector.CoyoteAdapter.service(CoyoteAdapter. java:346)

goanywhere. log- org.apache. coyote.httpll.HttpllProcessor.service(HttpllProcessor.java:396)

goanywhere. log— org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:63)
org.apache. coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:937)
org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1791)
org.apache.tomcat.util.net.SocketProcessorBase. run(SocketProcessorBase. java:52)
org.apache.tomcat.util.threads.ThreadPoolExecutor. runWorker(ThreadPoolExecutor. java:1190)
org.apache.tomcat.util.threads.ThreadPoolExecutor$Worker. run{ThreadPoolExecutor.java:659)
org.apache.tomcat.util.threads.TaskThread$WrappingRunnable. run(TaskThread. java:63)
java.base/java.lana.Thread. run(Unknown Source)

goanywhere. log-9/10/25 PM INFO Admin user 'admin-go' updated admin user 'admin-go'

goanywhere. log-9/10/25 PM INFO Job 1000W¥WVYB25Y started tor project ‘/utilities/Project Running/Run Project'

goanywhere. log-9/10/25 PM ERROR Job 1000000098259 completed with an error

goanywhere. log-com. linoma.ga.projects. runtime.JobFailedException: [8899 - Call Module - Run Project] An unexpected error occurred.

goanywhere. log-Variable not found: Active

Observed Exploitation and Post-Exploitation Activities

Below, we have summarised the sequence of exploitation and follow-on activity observed in-the-wild.

1. The threat actor triggers the pre-auth deserialization vulnerability in GoAnywhere MFT, achieving

Remote Code Execution (RCE).

2. With the RCE, they create an GoAnywhere user, a backdoor admin account named admin-go.

3. Using the admin-go account, they create a web user. Now they have "legitimate” access to the

solution itself.

4. Via that new web user, the threat actor uploads and executes multiple secondary payloads.

Indicators of Compromise (or as Fortra probably calls them, “Indicators of Impact”)

Unfortunately, the picture now painted allows for evidence-based confidence in the concern that Fortra’s “Am

| Impacted?” section probably was not Fortra attempting to be overly helpful, but a thinly veiled way of

sharing “Indicators of Compromise”.

We can all stop lying to ourselves - please.

Below, we are sharing the 10Cs shared within the evidence we received for in-the-wild exploitation of CVE-

2025-10035.
Type Value
File C:\Windows\zato _be.exe
SHA-256 68c4abcb024c65388db584122eff409fb8459e0ca930c717f2217b90e6f2f5bc
File C:\Windows\jwunst.exe
SHA-256 a72fa3b5bdd299579a03b94944e2b0b18f1bf564d4ff08a19305577a27575cc8
Local admin-go
account 9
IPv4
address 155[.]2[.]190[.]1197

Command whoami /groups

File C:\Windowsl\test.txt

Sigh

Description
Likely
second
stage
implant
Hash of
zato_be.exe
SimpleHelp
binary
observed in
activity
Hash of
jwunst.exe
Created
backdoor
user

Observed
actor IP
address

Command
run by actor
File
containing

output of
whoami
/groups

6/7

This is an increasingly disappointing situation: Fortra had the chance to honour the Secure By Design
pledge and be transparent about in-the-wild exploitation, but instead, they decided otherwise...

The reality is simple: this leaves security teams scrambling to assess risk and decide whether to assume
continued exposure or to treat this as a prompt for a full incident response and forensic review.

Please, just be transparent - what an unnecessary saga.

The research published by watchTowr Labs is just a glimpse into what powers the watchTowr Platform —
delivering automated, continuous testing against real attacker behaviour.

By combining Proactive Threat Intelligence and External Attack Surface Management into a single
Preemptive Exposure Management capability, the watchTowr Platform helps organisations rapidly react to
emerging threats — and gives them what matters most: time to respond.

Gain early access to our research, and understand your exposure, with the watchTowr
Platform

REQUEST ADEMO

7/7

https://www.watchtowr.com/?ref=labs.watchtowr.com
https://www.watchtowr.com/?ref=labs.watchtowr.com
https://www.watchtowr.com/?ref=labs.watchtowr.com
https://watchtowr.com/demo/

