
www.huntress.com /blog/purerat-threat-actor-evolution

From Custom Scripts to Commodity RATs: A Threat Actor’s

Evolution to PureRAT

Published:

September 25, 2025

By:

James Northey

Contributors:

Special thanks to our Contributors:

Anna Pham

1/30

https://www.huntress.com/blog/purerat-threat-actor-evolution
https://undefined/
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/james-northey
https://undefined/authors/anna-pham


Background 

An investigation into what appeared at first glance to be a “standard” Python-based infostealer campaign

took an interesting turn when it was discovered to culminate in the deployment of a full-featured,

commercially available remote access trojan (RAT) known as PureRAT. This article analyses the threat

actor’s combination of bespoke self-developed tooling with off-the-shelf malware.

This campaign demonstrates a clear and deliberate progression, starting with a simple phishing lure and

escalating through layers of in-memory loaders, defense evasion, and credential theft. The final payload,

PureRAT, represents the culmination of this effort: a modular, professionally developed backdoor that gives

the attacker complete control over a compromised host. We’ll dissect the entire attack chain, from the initial

sideloaded DLL to the final encrypted command-and-control (C2) channel, providing the context and

indicators you need to defend your networks. 

Note: Since beginning this analysis, SentinelLABS and Beazley Security have published an excellent report

covering Stage 1 and 2. It’s well worth a read for additional context, though the material from Stage 3

(PureRAT) remains unique to this write-up, so stick around for that.

In-depth analysis

2/30

https://www.sentinelone.com/labs/ghost-in-the-zip-new-pxa-stealer-and-its-telegram-powered-ecosystem/


Figure 1: Overview of the attack chain

This intrusion is a great example of layered obfuscation and tactical evolution. The threat actor chained

together ten distinct payloads/stages, progressively increasing in complexity to hide their ultimate objective.

Stage 1: The initial lure and Python loaders

The attack begins with a conventional phishing email containing a ZIP archive disguised as a copyright

infringement notice. The archive contains a legitimate, signed PDF reader executable and a malicious

version.dll. This is a classic DLL sideloading technique, forcing a trusted executable to inadvertently load

the malicious DLL from the same directory.

3/30



Figure 2: Malicious archive sent in phishing email

The malicious DLL uses a series of Windows binaries and files within the hidden folder “_” to execute the

next payload. It uses certutil.exe to decode a Base64-encoded blob hidden inside a file named

Document.pdf, which results in a ZIP archive. It then uses a bundled, renamed copy of WinRAR

(images.png) to extract the contents. 

From this secondary archive, the files are extracted to C:\Users\public\windows\ and include a renamed

Python interpreter (svchost.exe) and an obfuscated Python script (images.png), which are then executed. 

This phase of the attack, as described above, is captured by Sysmon event:

Type: Process Create

Image: C:\Windows\SysWOW64\cmd.exe

ParentImage:

C:\Users\Malware\Desktop\sample\Detailed_report_document_on_actions_involving_copyrighted_material.exe

CommandLine: cmd /c cd _ && start Document.pdf && certutil -decode

Document.pdf Invoice.pdf && images.png x -ibck -y Invoice.pdf

C:\Users\Public && start C:\Users\Public\Windows\svchost.exe

C:\Users\Public\Windows\Lib\images.png ADN_UZJomrp3vPMujoH4bot

Payload 2

The Python script images.png (not images.png, the WinRAR binary) is a loader that contains a large,

Base85-encoded string. The payload is executed entirely in memory using exec() after being decoded and

decompressed, kicking off payload 3.

4/30



Figure 3: Archives payload - a Python bytecode loader

Payload 3

Running payload 3 through dis, a built-in module for turning bytecode to human-readable interpretation,

reveals this to be another loader, this time a custom cryptographic one. It uses a hybrid encryption scheme

involving RSA, AES, RC4, and XOR to decrypt the payload 4 payload. 

5/30



Figure 4: Summary of the output of Python dis

Payload 4

Rebuilding this functionality in our own Python script allows us to run this payload through dis again. 

6/30



Note: From here on, I have converted the dis output to source code to more easily explain the following

sections.

For an in-memory attack like this, the threat actor must ensure their malware can survive a system reboot.

The payload 4 script uses Python's built-in winreg library to modify the system registry keys, adding a run key

designed to look like a legitimate Windows component: Windows Update Service.

Figure 5: Recreation of payload 4’s infection check and persistence creation

The data stored in this value is a command that re-executes the first stage of the malware, ensuring the

entire infection chain is re-initiated every time the compromised user logs in.

7/30



cmd /c start C:\Users\Public\Windows\svchost.exe C:\Users\Public\Windows\Lib\images.png <sys.argv[1]>

Payload 4 then continues the loader pattern, this time using Telegram bot descriptions and URL shorteners

(is[.]gd) to dynamically fetch and execute the next payload, providing the threat actor with a flexible

mechanism for updating their attack chain.

Figure 6: Recreation of the loader for stage 2

Note the use of sys.argv[1] here; in our case, this is the argument ADN_UZJomrp3vPMujoH4bot from when

stage 1 extracted payload 2 and ran the first Python script.

Stage 2: The first weaponized payload—A Python infostealer

Pulling down the next stage from is[.]gd, we arrive at the first weaponized payload: a Python-based

information stealer. Analysis of the decrypted bytecode reveals functionality for harvesting a wide range of

sensitive data, including credentials, cookies, credit cards, and autofill data from Chrome and Firefox-based

browsers.

8/30



Figure 7: Recreation of new victim notification

All stolen data is archived into a ZIP file and exfiltrated via the Telegram Bot API. The ZIP file's metadata

contains a clue to who might be behind this attack. A contact field pointing to the Telegram handle

@LoneNone. This handle has been publicly associated with the PXA Stealer malware family, giving us a

strong attribution link.

Figure 8: Recreation of the archive creation of collected information with a clue “@LoneNone”

The telegram API is then used to send the resulting ZIP and message (above) to various Telegram chats,

depending on the following logic:

9/30



Table 1: Telegram Message Logic

Stage 3: The pivot to .NET

Just when the campaign's objective seemed clear, the threat actor pivots. Stage 3 marks a significant shift

from interpreted Python scripts to compiled .NET executables. 

Figure 9: Recreation of the stage 3 loader

The new stage is retrieved from 0x0[.]st, a ”No-bullshit file hosting and URL shortening service”, this stage is

much larger than the previous Python script (40KB -> ~3 MB), as it contains two more embedded payloads.

The first binary is a .NET assembly that is decrypted using base64 and an RC4 hardcoded key. The threat

actor then uses process hollowing by launching a legitimate .NET utility, RegAsm.exe, in a suspended state.

It unmaps the original executable code from the process's memory, allocates a new region of memory, and

writes the malicious .NET payload into it (payload 7). The main thread's context is then updated to point to

the new entry point, and the thread is resumed, executing the malicious code under the guise of a legitimate

Microsoft binary.

10/30

https://attack.mitre.org/techniques/T1055/012/


Figure 10: Recreation of the Python script used for process hollowing and loading an encrypted .NET

assembly

The second is a shellcode loader, but I won’t be diving into this payload here, partly because this write-up is

already dense enough, but mostly because I ran into issues trying to emulate it.

Payload 7

11/30



This is our first PE payload, and it appears debugging strings were left by the author, which confirms that it

performs two key defense evasion techniques:

Figure 11: FLOSS output of the .NET assembly 

1. AMSI Patching: It patches the AmsiScanBuffer function in amsi.dll to prevent the Antimalware Scan

Interface from inspecting dynamically loaded code.

2. ETW Unhooking: It patches EtwEventWrite in ntdll.dll to blind Event Tracing for Windows, a common

source of telemetry for EDR products.

This assembly contains yet another embedded payload (payload 8), which it decodes using a simple Base64

and XOR combo. 

Once the payload is decrypted, it’s passed to the built-in .NET method Assembly.Load, which loads the

executable directly into memory, the flow continues through getEntryPoint, which retrieves the entry point of

the loaded assembly, and finally, invokeCSharpMethod executes the method via reflection.

12/30



Figure 12: dnSpy disassembly of the loader for the next payload

Extracting this payload using CyberChef (Base64 → XOR with key):

Figure 13: CyberChef recipe to extract the next payload 

Payload 8

This payload uses AES-256 and GZip decompression to unpack the ninth and final stage: a DLL named

Mhgljosy.dll. Instead of relying on traditional exports, the loader uses .NET reflection (Assembly.Load(),

GetType(), GetMethod()) to load the DLL entirely in memory and invoke a specific, obfuscated method to kick

off its execution.

13/30



Figure 14: The loader for payload 9, post-decryption

With a breakpoint on GetMethod() and a little bit of debugging, we find out this method is

Mhgljosy.Formatting.TransferableFormatter.SelectFormatter()

Payload 9: The final part—PureRAT

After eight payloads/stages of loaders, stealers, and obfuscation, we finally arrive at the last payload,

Mhgljosy.dll. But the DLL is protected with .NET Reactor, a commercial obfuscator used to frustrate reverse

engineering.

14/30



Figure 15: DiE showing the assembly has been obfuscated by .NET Reactor

Static analysis is a dead end, so we turn to deobfuscation. Using an open-source tool called

NETReactorSlayer (thanks, Anna Pham, for the suggestion), we were able to strip away enough of the

control flow redirection and string encryption to produce a more legible assembly.

With a cleaner binary, we can analyze the entry point identified in the previous payload:

Following the deobfuscated control from, we first hit ReceiveAttachedSubscriber. Just above this method, we

see a Base64 blob. 

15/30



Figure 16: First method of interest in PureRAT

The decoding logic is:

1. Base64 Decode: The initial string is decoded.

2. GZip Decompress: The base64 decoded output reveals a GZip header.

3. Protobuf Deserialize: The decompressed data is deserialized using a Protocol Buffers (protobuf)

schema. 

This reveals the malware's configuration.

16/30



Figure 17: Decoding PureRATs configuration

The final, deserialized config contains the C2 infrastructure: an IP address (157.66.26[.]209), a list of ports

(56001, 56002, 56003), and another base64 blob that decodes to an X.509 certificate. The malware uses this

certificate for TLS pinning, ensuring its C2 communications are encrypted and resilient to man-in-the-middle

inspection.

Figure 18: Socket setup with TLS Pinning

17/30



Of note, this C2 server is located in Vietnam, which adds further evidence that this is PXA and the people

behind it are likely Vietnamese.

Figure 19: Validin page for the attackers' C2 server

Once connected to the C2, the RAT sends back to the operator in an initial "hello" packet. Made up from this

logic in the middle of the function, which is hard to understand due to the obfuscation of the method names.

Figure 20: Obfuscated system enumeration

18/30



Once deobfuscated, we find that this consists of an exhaustive fingerprinting of the host machine, collecting a

wealth of information before sending it back to the C2 server.

Figure 21: Deobfuscated system enumeration

The following are breakdowns of all the functions used in this fingerprinting routine:

Figure 22: Antivirus products: Queries WMI (root\SecurityCenter) for the displayName of all installed

antivirus products.

19/30



Figure 23: The PlaySubscriber() function used to create a unique host identifier 

Unique Host ID: As seen in Figure 23, this is generated by an MD5 hash based on the processor ID, disk

drive serial number, physical memory serial number, and the user's domain name. This creates a stable,

unique identifier for the victim machine.

Figure 24: Webcam presence: Queries WMI for PnP devices with the class Image or Camera

20/30



Figure 25: User and Domain: Collects the current username and domain (username [DOMAIN])

Figure 26: Privilege level: Checks the current process's Windows Identity against built-in roles

(Administrator, User, Guest, etc.) to determine its privilege level

21/30



Figure 27: Operating system: Gathers the OS version and architecture (e.g., "Windows 10 64Bit")

Figure 28: The RemoveSelector() function used to find and list any preset cryptowallets

Cryptocurrency wallets: This one searches for dozens of browser-based and desktop cryptocurrency

22/30



wallets by checking for Chrome extension IDs, file system paths (%APPDATA%), and registry keys

Note: this function does not collect any data, just returns a string of what is present on the system.

Figure 29: System idle time: Uses the GetLastInputInfo API to determine how long the user has been idle,

allowing the operator to operate when the user is away

Figure 30: Implant path: Reports its own file path on disk

Once the initial host fingerprinting is complete and the handshake with the C2 is established, the RAT

transitions into its primary function: a persistent tasking loop designed to receive and execute commands.

23/30



Figure 31: Task loop awaiting further payloads

The task loop is fairly straightforward once unpacked:

1. (Red) Read the first 4 bytes to determine the payload length.

2. (Blue) Read that many bytes into a buffer — this is the actual payload.

3. (Green) Deserialize the buffer with the protobuf routine we saw earlier.

4. (Green) Spawn a new thread and call DecideFlexibleController()on the message to execute the task.

This architecture effectively turns this RAT into a dynamic loader. The implant lies dormant, waiting for the

operator to push down modules on demand, dynamically extending its capabilities far beyond the initial

reconnaissance. These plugins could add functionality for anything from microphone/webcam access to real-

time keylogging and hidden desktop access.

24/30



Fortunately for the victim, the Huntress SOC was able to isolate and remediate the infected host before the

threat actor could deploy any of these additional weaponized plugins, stopping the attack before it could

achieve its final objectives. Unfortunately for us, that means we don’t have any further modules to

investigate.

One final clue reveals PureRAT

The .NET namespaces give us another clue with mentions of PureHVNC, strong evidence that this sample is

tied to Pure Hidden VNC, a piece of commodity malware previously sold by someone going by the alias

“PureCoder”.

Figure 32: PureHVNC modules in the assembly

While PureHVNC is pretty much legacy at this point, many of its modules live on in PureCoder’s newer

malware families, each designed to serve a specific purpose:

PureCrypter – a crypter used to inject malware into legitimate processes, evade detection, and

frustrate analysis with anti-VM and anti-debug checks.

BlueLoader – a loader that deploys additional payloads on infected systems, giving attackers an easy

way to stage and update malware campaigns.

PureMiner – a silent cryptojacker that hijacks the victim’s CPU and GPU resources to mine

cryptocurrency for the attacker without consent.

25/30



PureLogs Stealer – an information stealer that exfiltrates browser data, saved credentials, and

session tokens, often delivering them directly to the attacker’s Telegram.

PureRAT – a modular backdoor that establishes an encrypted C2 channel, and allows operators to

load additional modules 

PureClipper – monitors the system clipboard for cryptocurrency addresses and replaces them with

attacker-controlled addresses during copy-paste operations, redirecting crypto transactions to steal

funds.

This architecture and feature set we have observed here align perfectly with PureRAT, the developer openly

advertised this tool as a custom-coded .NET remote “administration tool,” with a lightweight, TLS/SSL-

encrypted client and multilingual GUI, offering extensive surveillance and control features such as hidden

desktop access (HVNC/HRDP), webcam and microphone spying, real-time and offline keylogging, remote

CMD, and application monitoring (e.g., browsers, Outlook, Telegram, Steam). It includes management tools

like file, process, registry, network, and startup managers, plus capabilities for DDoS attacks, reverse

proxying, .NET code injection, streaming bot management, and execution of files in memory or disk. Though

it notably "excludes password/cookie recovery" (Stealer Functionality), as that is sold separately.

Figure 33: PureRAT C2 interface from PureCoder’s advertising

26/30



Conclusion

The recurring Telegram infrastructure, metadata linking to @LoneNone, and C2 servers traced to Vietnam

strongly suggest this was carried out by the people behind PXA Stealer. Their progression from amateurish

obfuscation of their Python payloads to abusing commodity malware like PureRAT shows not just

persistence, but also hallmarks of a serious and maturing operator. The threat actor demonstrated proficiency

in multiple languages and techniques, from Python bytecode loaders and WMI enumeration to .NET process

hollowing and reflective DLL loading.

From a wider point of view, the pivot from a custom-coded stealer to a commercial RAT like PureRAT is

significant. It lowers the barrier to entry for the attacker, giving them access to a stable, feature-rich, and

“professionally” maintained toolkit without requiring extensive development effort. The impact is a more

resilient, modular, and dangerous threat capable of extensive data theft, surveillance, follow-on attacks, and

long-term persistence. 

This campaign underscores the importance of defense-in-depth. The initial access relied on user execution,

the loaders exploited trusted and system binaries, and the final stage used defense evasion to remain

hidden. No single control could have stopped this entire chain. By understanding the full lifecycle of the

attack and monitoring for the specific behaviors outlined here, from certutil abuse to WMI queries and

encrypted C2 traffic, organizations can build a more resilient security posture.

MITRE ATT&CK Mapping

Tactic Technique
Technique 

Name

Description of 

Observed Behavior

Initial Access T1566.001
Spearphishing

Attachment

The campaign begins with a phishing

email containing a malicious ZIP

archive.

Execution T1204.002
User Execution:

Malicious File

The user is tricked into executing an

.exe file disguised as a document.

Execution T1059.006 Python
Stages 1 and 2 are executed via a

renamed Python interpreter.

Persistence T1547.001
Registry Run Keys /

Startup Folder

payload 4 establishes persistence by

creating a "Windows Update Service"

Run key.

Defense

Evasion
T1574.001 DLL Side-Loading

A legitimate PDF reader executable is

used to load a malicious version.dll.

Defense

Evasion
T1027

Obfuscated Files or

Information

Multiple stages use Base85, Base64,

RC4, AES, and XOR to hide payloads.

Defense

Evasion
T1055.012 Process Hollowing

The payload 7 .NET loader is injected

into a suspended RegAsm.exe

process.

Defense

Evasion
T1562.001

Impair Defenses:

Disable or Modify Tools

The payload 7 loader patches AMSI to

bypass runtime scanning.

Defense

Evasion
T1562.006

Impair Defenses:

Indicator Blocking

The payload 7 loader unhooks ETW to

block EDR telemetry.

27/30



Discovery T1082
System Information

Discovery

PureRAT fingerprints the OS version,

architecture, and user privileges.

Discovery T1518.001
Security Software

Discovery

The malware uses WMI to enumerate

installed antivirus products.

Collection T1560.001
Archive Collected Data:

Archive via Utility

Stolen data is compressed into a ZIP

archive before exfiltration.

Command

and Control
T1071.001 Web Protocols

The stage 2 stealer exfiltrates data via

HTTP POST requests to the Telegram

API.

Command

and Control
T1573.002

Encrypted Channel:

Asymmetric

Cryptography

PureRAT uses TLS with a pinned

X.509 certificate for C2

communications.

IOCs

Disk and Memory Artifacts

Value Description

SHA256:

e0e724c40dd350c67f9840d29fdb54282f1b24471c5d6abb1dca3584d8bacaa

Payload 9 Payload

(PureRAT)

SHA256:

06fc70aa08756a752546198ceb9770068a2776c5b898e5ff24af9ed4a823fd9d
Payload 8 Loader

SHA256:

f5e9e24886ec4c60f45690a0e34bae71d8a38d1c35eb04d02148cdb650dd2601
Payload 7 Loader

File Path: C:\Users\Public\Windows\svchost.exe

Renamed Python

interpreter used in

early stages.

File Path: C:\Users\Public\Windows\Lib\images.png

SHA256:

f6ed084aaa8ecf1b1e20dfa859e8f34c4c18b7ad7ac14dc189bc1fc4be1bd709

Obfuscated Python

script (payload 2).

Registry Key:

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Windows Update

Service

Persistence registry

key created in

payload 4.

Network / Infrastructure

Type Value Description

IP Address 157.66.26.209 PureRAT C2 Server

Port 56001 PureRAT C2 Port (Default)

28/30



Port 56002 PureRAT C2 Port

Port 56003 PureRAT C2 Port

URL https://0x0[.]st/8WBr.py Stage 3 payload hosting URL.

URL

https://is[.]gd/s5xknuj2

https://paste[.]rs/fVmzS

Stage 2 payload hosting URL.

Telegram

Handle
@LoneNone

threat actor handle associated with stage

2 (PXA Stealer).

Acknowledgments

I'd like to thank Anna Pham for her help dumping and deobfuscating the final stage. 

Sign Up for Huntress Updates

Get insider access to Huntress tradecraft, killer events, and the freshest blog updates.

Privacy • Terms

By submitting this form, you accept our Terms of Service & Privacy Policy

Thank you! Your submission has been received!

Oops! Something went wrong while submitting the form.

29/30

https://www.huntress.com/authors/anna-pham
https://www.cloudflare.com/privacypolicy/
https://www.cloudflare.com/website-terms/
https://undefined/terms-of-use
https://undefined/privacy-policy


30/30


