
1/13

labs.k7computing.com /index.php/from-lnk-to-rat-deep-dive-into-the-lnk-malware-infection-chain/

Unknown Title
By Priyadharshini ⋮ ⋮ 9/24/2025

Attackers keep availing the use of Windows shortcut (.LNK) files to deliver malware. These LNK files normally used
as shortcuts to programs or documents, are being abused to silently execute malicious payloads on target systems.

In the case under discussion, we discovered a new Windows shortcut (.LNK) malware distributed via Discord, drops
a ZIP file containing a malicious DLL, which is executed using the Windows command-line tool odbcconf.exe. This
clever use of Living-off-the-Land Binaries (LOLBins) helps bypass security tools and makes detection significantly
harder. This malware was first seen in Israel and was mentioned in a tweet, highlighting its emergence in the threat
landscape.

The Dropped DLL is a multi-functional Remote Access Trojan (RAT) designed to execute commands from a
Command and Control (C2) server and collect system information from the infected machine. It employs several
techniques, including collecting antivirus product information, bypassing Anti-Malware Scan Interface (AMSI), and
patchingEtwEventWrite to disable Windows Event Tracing (ETW), making it harder for security solutions to detect its
malicious activities.

Infection Chain Overview

https://labs.k7computing.com/index.php/from-lnk-to-rat-deep-dive-into-the-lnk-malware-infection-chain/
https://learn.microsoft.com/en-us/sql/odbc/odbcconf-exe?view=sql-server-ver17
https://x.com/byrne_emmy12099/status/1958138007502131546
https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite

2/13

Fig 1: Infection chain flow

Infection Flow Steps

Execution of the LNK file

Fig 2.1: Cyber Security.lnk

When the user clicks the .LNK file named “cyber security.lnk” downloaded from discord,it opens a fake job offer
decoy PDF titled “Cyber Security.pdf” and silently executes a PowerShell command that performs several tasks in the
background which has been detailed in this blog.

Fig 2.2: Cyber Security.Pdf

PowerShell Command

Fig 2.3 shows the entire PowerShell command that the .LNK file targets to do. Let us now understand how this code
works.

3/13

Fig 2.3: PowerShell Command

Initial command execution

Fig 2.4: Initial command execution

As can be seen, it starts a conhost.exe in headless (without console window)mode so that the user can’t see any
command prompt window when the link is clicked. It then dynamically resolves the path where the PowerShell is
located and executes the PowerShell in a hidden mode.

Preparing File names and Paths

Fig 2.5: Preparing File names and paths

It then prepares a working directory and file names to infect the victims’ device

4/13

$zf=’Moq.zip’ → Name of the malicious ZIP file to extract.
$pd=’Cyber security.pdf’ → Name of the PDF file.
$ufg=’Cyber security.lnk’ → The malicious shortcut file itself.
$E=$ENV:Temp → Uses the system’s Temp folder.
$F=$env:PUBLIC+’\Nuget’ → Creates a NuGet folder in the Public directory to hide malicious files.

Extracting embedded Pdf file

Fig 2.6: Extracting Pdf content

Reads the raw LNK file content into a byte array $b.
Defines a function() to find the %PDF header inside the LNK. Scans the byte array for magic header %PDF,
extracts the embedded PDF and writes it in a disk as “Cyber security.pdf “ and opens the pdf to distract
users.

Preparing zip payload

Fig 2.7: Extracting Zip payload

Opens the legitimate-looking pdf for distraction to trick the victim into thinking the LNK is safe.
Finally, it deletes the cyber security.lnk to cover its traces. Creates the folder named Nuget in the Public user
area.
Moves the ZIP payload into a folder named “NuGet” by extracting malicious DLLs from the ZIP and deletes the
ZIP after extraction to stay stealthy. Makes 3 seconds delay before deleting moq.zip to let the Moq.dll
successfully load.

DLL Execution Using ODBCConf.exe (LOLBin)

Fig 2.8: Executing Moq.dll

Finally, the PowerShell script uses odbcconf.exe to execute the malicious Moq.dll using the following command:

5/13

odbcconf.exe /a {regsvr "C:\Users\Public\Nuget\moq.dll"}

Here, the attacker abuses odbcconf.exe (a Windows legitimate binary) to silently register and execute the malicious
DLL without raising any alerts.

Analyzing malicious Moq.dll

Now let’s analyze the interesting behavior of the dropped malicious dll “Moq.dll”.

Fig 3.1: Files dropped under Nuget: Moq.dll and supporting dll’s

Moq.dllis a Com DLL which has a single export function named “DllRegisterServer”. Upon closer inspection, this
turns out to be part of a multi-functional Remote Access Trojan (RAT).

However, Moq.dll doesn’t work alone. When the malicious LNK is executed, it drops additional components like
Dapper.dll, a .NET library , Newtonsoft.dll ,other supporting dependency libraries and a file named Nunit with 645KB
size containing some random strings.

The Nunit file is later decoded and passed as an argument to a function within Dapper.dll which is subsequently
loaded by Moq.dll.

Here, what makes Moq.dll particularly interesting is how it smartly integrates these supporting DLLs. Instead of
carrying all malicious logic within itself, Moq.dll dynamically links Dapper.dll and Newtonsoft.dll to make the reversing
harder.

Let’s now move forward with the dynamic analysis using the API monitoring tool.

Fig 3.2: Monitor Moq.dll Process API’s

Here, we can monitor the regsvr32.exe process by passing the Moq.dll as an argument in the API Monitor.

AMSI Bypass via AmsiScanBuffer () patching:

6/13

Fig 3.3: AMSI Bypassing

During the dynamic analysis, we observed that Moq.dll first loads amsi.dll in memory using the LoadLibraryA function
and then retrieves the address of the AmsiScanBufferfunction using the GetProcAddress function. Once the
address of AmsiScanBuffer is obtained, the malware patches the first 6 bytes of the function with the bytes “B8 57 00
07 80 C3” using WriteProcessMemory() forcing the function AmsiScanBuffer to always quit.

B8 57 00 07 80 mov eax,0x80070057 Forces the function to always fail

C3 ret Immediately returns from the function

ETW Bypass via EtwEventWrite Patching

Fig 3.4: WtwEventWrite Patching

Disables Windows Event Tracing (ETW)logging by targeting the EtwEventWritefunction located in ntdll.dll. It
resolves the address of EtwEventWrite dynamically using GetProcAddress. After retrieving the address, the
malware patches the beginning of the EtwEventWrite function using WriteProcessMemory function and itwrites the
same 6 Byte patch used in Amsi Bypass.

WideCharToMutltiByte

Fig 3.5 :WideCharToMultiByte()

From the API Monitor results, we observed that Moq.dll uses the WideCharToMultiByteAPI to convert Unicode text
into a multibyte string. By examining the parameters passed to this API, we found that the converted content matches
“Nunit” file’s content, as shown in Figure 3.1.

This indicates that “Nunit” is not just contains random strings but is likely an important value related to the malware’s
script execution or configuration.

https://learn.microsoft.com/en-us/windows/win32/api/amsi/nf-amsi-amsiscanbuffer
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://learn.microsoft.com/en-us/windows/win32/api/stringapiset/nf-stringapiset-widechartomultibyte

7/13

Fig 3.6: Breakpoint at widechartToMultibyte

To further investigate this behavior, we analyzed the sample in x64dbg by setting a breakpoint on the
WideCharToMultiByte API call. This allowed us to inspect the source buffer and confirm exactly what data is being
converted during runtime.

Fig 3.7: Conversion of Nunit using WideCharToMultiByte

After conversion, Nunit is decoded and passed as an argument to a function called “NowYouCanSeeME”. So, we
need to identify where this function is implemented and how it is used.

Fig 3.8: CLRCreateInstance API

By going back to Api Monitor we observed that Moq.dll invokes CLRCreateInstanceAPI.

CLRCreateInstance is a Windows API used to create an instance of the Common Language Runtime (CLR) meta
host, allowing unmanaged applications to interact with the .NET environment which means it allows native
applications to call and run .NET code.

So,this behaviour strongly suggests that Moq.dll uses Dapper.dll.

Fig 3.9: Moq.dll loading Dapper.dll

Fig 3.10 :NowYouCanSeeMe()

https://learn.microsoft.com/en-us/windows/win32/api/stringapiset/nf-stringapiset-widechartomultibyte
https://learn.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/clrcreateinstance-function

8/13

We disassembled dapper.dll using Dnspy and located the NowYouCanseeMe() function within the metadata section.
This function accepts a decoded script as an argument and injects the script in PowerShell command. Finally, it
invokes PowerShell to execute the decoded Nunit script dynamically.

Fig 3.11: Obfuscated malicious script

Here is the dumped decode script that is executed by the PowerShell. As we can see it is fully obfuscated as shown
in Fig 3.11.

Fig 3.12: Deobfuscated script

After deobfuscating the dumped PowerShell script, the content seems encrypted using Advanced Encryption
Standard (AES) algorithm. During runtime the script automatically decrypts the payload and stores the decrypted
data in a variable named $decdata .

9/13

Fig 3.13: Encrypted script

The original malicious behavior of the script invokes PowerShell and executes the decrypted data stored in $decdata.
However for safer analysis, we modified the script to avoid executing the payload, the decoded output was redirected
to a file named ”decypted.txt” for further analysis.

Analyzing the final PowerShell payload

After fully decrypting the PowerShell script that contains above mentioned multiple functions to perform several
malicious activities, the malware appears to be a multi functional Remote Access Trojan.

This RAT allows an attacker to remotely control the victim’s system, execute C2 commands, collect sensitive
information and send the collected information to a remote server.

Persistence Mechanism

Fig 4.1: Persistence Mechanism

The script achieves persistence by modifying the registry HKCU\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell.

It appends the PowerShell command line $cline to the existing shell value (explorer.exe) to make sure the script runs
at every user login along with explorer.exe.

Preparing C2 Communication server Address:

10/13

Fig 4.2: Defines Unique Bot Id

Defines a unique Bot Id and reads host address from a file in temp directory, if no address is found it falls back to the
following hard coded default C2 URL.

Fig 4.3: Hardcoded C2 URL

Fig 4.4: Hotchichenfly.info

Fig 4.5: Defines Unique Machine ID

11/13

Checks if the qwer.txt file exists in the predefined “Midpath”. If it exists, it reads a unique machine id from the file to
identify the infected machine.If not, it randomly generates a machine id, saves it in qwer.txt for further identification.

Fig:4.6: Next Fallback Address

The Next Address is a backup server address that the malware uses if the main Command & Control (C2) server
doesn’t respond. If the Next Address is not in the configuration file, the malware generates one using its Bot ID and
the computer’s username.

Encode C2 Commands

Fig 4.7: Save Encoded C2 Commands

The Save () function in Moq.dll helps the malware store C2 commands it needs to run later. It takes the command,
hides it by converting it to base64 and adding extra encoding to make it hard to understand and keep its action
hidden. The encoded command is then saved to the file specified by the variable $Global:sacpath in the temporary
folder and ensures the file isn’t being used by something else.

Remove C2 Commands

Fig:4.8: Removes C2 Commands

The Remove-C function ensures that the file specified by $Global:sacpath exists and isn’t being used by something
else and deletes all the commands from the temp directory.

Capture Screenshots Using Get-MultiPic()

12/13

Fig 4.9: Screen Capturing

The Get-MultiPic () function takes screenshots on a Windows machine. It converts each screenshot to base64
encoded and sends it to a remote server.

It keeps track of how many screenshots were taken and retries failed uploads. Failed captures are saved locally for
later sending. This function essentially allows remote stealing of screen content.

System Info Collection and Command Loop

Fig 4.10: Security Products Info

This part of the script controls the malware’s main operation. On first execution, it collects system information like
AntiVirus software, Operating System, IP address, username, and install path, encrypts it, and sends it to the
attacker. On subsequent runs, it skips the initial data collection and instead checks for any pending commands to
execute. Then, it enters an infinite loop where it periodically contacts the attacker’s server to fetch new commands,
processes them, and executes them.

Fig 4.11: System Info Collection and Command Loop

Steals file via DropBox-Upload

13/13

Fig 4.12: DropBox-upload API

The Dropbox-Upload function sends a file from the infected machine to a Dropbox account using a token. Dropbox is
a cloud storage service that allows users to store. It sets the file name as the destination, prepares the necessary
headers, and uploads the file via the Dropbox API. The response confirms the upload. This allows the attacker to
steal and upload files to the cloud.

Overall, The Windows shortcut (LNK) executes a Moq.dll via odbcconf.exe which acts as a multi- functional Remote
Access Trojan (RAT). It executes commands from the attacker’s Command & Control (C2) server and collects
information from the victim machine such as screenshots, system details, and security software presence. The stolen
data is uploaded to a remote server.

As RAT acts as per the commands from the hacker that the commands could change with time, it is necessary that
the users need to be aware and avail the benefits of installing a reputed security software like K7TotalSecurity and
regularly update the product to stay safe and secure.

IOC’s

 Hash Detection Name
7391C3D895246DBD5D26BF70F1D8CBAD Trojan (0001140e1)
2956ec73ec77757271e612b81ca122c4 Trojan (0001140e1)
5a1d0e023f696d094d6f7b25f459391f Trojan (0001140e1)
92fc7724688108d3ad841f3d2ce19dc7 Trojan (0001140e1)

References

https://learn.microsoft.com/en-us/sql/odbc/odbcconf-exe?view=sql-server-ver17

https://www.virustotal.com/gui/file/d81f26c37f29bf0d53032497ea917b56120b761fd1fcf643b2bd3e82fa1ae847

https://x.com/byrne_emmy12099/status/1958138007502131546

https://medium.com/@cyberjyot/t1218-008-dll-execution-using-odbcconf-exe-803fa9e08dac

https://research.openanalysis.net/asyncrat/amsi/anti-detection/2023/05/28/amsifun.html

https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite

https://learn.microsoft.com/en-us/dotnet/standard/cl

https://learn.microsoft.com/en-us/sql/odbc/odbcconf-exe?view=sql-server-ver17
https://www.virustotal.com/gui/file/d81f26c37f29bf0d53032497ea917b56120b761fd1fcf643b2bd3e82fa1ae847
https://www.virustotal.com/gui/file/d81f26c37f29bf0d53032497ea917b56120b761fd1fcf643b2bd3e82fa1ae847
https://x.com/byrne_emmy12099/status/1958138007502131546?t=JOn6Dcaog-2YYRNAmgk04w&s=03
https://medium.com/@cyberjyot/t1218-008-dll-execution-using-odbcconf-exe-803fa9e08dac
https://research.openanalysis.net/asyncrat/amsi/anti-detection/2023/05/28/amsifun.html
https://learn.microsoft.com/en-us/windows/win32/devnotes/etweventwrite
https://learn.microsoft.com/en-us/dotnet/standard/cl

