www.microsoft.com /en-us/security/blog/2025/09/24/ai-vs-ai-detecting-an-ai-obfuscated-phishing-campaign/

Al vs. Al: Detecting an Al-obfuscated phishing campaign

By Microsoft Threat Intelligence : : 9/24/2025

Microsoft Threat Intelligence recently detected and blocked a credential phishing campaign that likely used
Al-generated code to obfuscate its payload and evade traditional defenses. Appearing to be aided by a large
language model (LLM), the activity obfuscated its behavior within an SVG file, leveraging business
terminology and a synthetic structure to disguise its malicious intent. In analyzing the malicious file, Microsoft
Security Copilot assessed that the code was “not something a human would typically write from scratch due
to its complexity, verbosity, and lack of practical utility.”

Like many transformative technologies, Al is being adopted by both defenders and cybercriminals. While
defenders use Al to detect, analyze, and respond to threats at scale, attackers are experimenting with Al to
enhance their own operations, such as by crafting more convincing lures, automating obfuscation, and
generating code that mimics legitimate content. Even though the campaign in this case was limited in nature
and primarily aimed at US-based organizations, it exemplifies a broader trend of attackers leveraging Al to
increase the effectiveness and stealth of their operations. This case also underscores the growing need for
defenders to understand and anticipate Al-driven threats.

Despite the sophistication of the obfuscation, the campaign was successfully detected and blocked by
Microsoft Defender for Office 365’s Al-powered protection systems, which analyze signals across
infrastructure, behavior, and message context that remain largely unaffected by an attacker’s use of Al. By

1/11

https://www.microsoft.com/en-us/security/blog/2025/09/24/ai-vs-ai-detecting-an-ai-obfuscated-phishing-campaign/

sharing our analysis, we aim to help the security community recognize similar tactics being used by threat
actors and reinforce that Al-enhanced threats, while evolving, are not undetectable. As we discuss in this
post, an attacker’s use of Al often introduces new artifacts that can be leveraged for detection. By applying
these insights and our recommended best practices, organizations can strengthen their own defenses
against similar emerging, Al-aided phishing campaigns.

Phishing campaign tactics and payload

On August 18, Microsoft Threat Intelligence detected a phishing campaign leveraging a compromised small
business email account to distribute malicious phishing emails intended to steal credentials. The attackers
employed a self-addressed email tactic, where the sender and recipient addresses matched, and actual
targets were hidden in the BCC field, which is done to attempt to bypass basic detection heuristics. The
content of the email was crafted to resemble a file-sharing notification, containing the message:

_has shared a file with you.

File Details: 35.51 MB | 6 pages | PDF format.

Figure 1. Phishing email example

Attached to the email was a file named 23mb — PDF- 6 pages.svg, designed to look like a legitimate PDF
document even though the file extension indicates it is an SVG file. SVG files (Scalable Vector Graphics) are
attractive to attackers because they are text-based and scriptable, allowing them to embed JavaScript and
other dynamic content directly within the file. This makes it possible to deliver interactive phishing payloads
that appear benign to both users and many security tools. Additionally, SVGs support obfuscation-friendly
features such as invisible elements, encoded attributes, and delayed script execution, all of which can be
used to evade static analysis and sandboxing.

When opened, the SVG file redirected the user to a webpage that prompted them to complete a CAPTCHA
for security verification, a common social engineering tactic used to build trust and delay suspicion. Although
our visibility for this incident was limited to the initial landing page due to the activity being detected and
blocked, the campaign would have very likely presented a fake sign in page after the CAPTCHA to harvest
credentials.

2/11

Security verification

* Verifiziere... CLOUDFLARE

Figure 2. Security verification prompt

An analysis of the SVG code found that it used a unique method of obfuscating its content and behavior.
Instead of using cryptographic obfuscation, which is commonly used to obfuscate phishing content, the SVG

code in this campaign used business-related language to disguise its malicious activity. It did this in two
ways:

First, the beginning of the SVG code was structured to look like a legitimate business analytics dashboard. It
contained elements for a supposed Business Performance Dashboard, including chart bars and month
labels. These elements, however, were rendered completely invisible to the user by setting their opacity to
zero and their fill to transparent. This tactic is designed to mislead anyone casually inspecting the file,
making it appear as if the SVG’s sole purpose is to visualize business data. In reality, though, it's a decoy.

3/11

<!-- Background ——>

<l-- Title -—>

=/text>
<!—— Chart bars —>
<rect x="l1lea" y="200"

<rect
=rect
zrect
=rect
=rect

Xx="200" y="180"
Xx="300" y="160"
X="4@e" y="140"
x="500" y="120"
x="600" y="100"

<!—— Labels ——=

<text x="138" y="528"
<text x="23@" y="528"
<text x="338" y="528"
<text x="d3@" y="528"
<text x="53@" y="528"
<text x="638" y="528"

width="68"

<rect width="180%" height="100%" fill="transparent" opacity="@" /=

ry="5"

<text x="U@@" y="4@" text-anchor="middle" font-family="Arial" font-size="24" font-weight="bold"
fill="transparent" opacity="8"=
Business Performance Dashboard

width="68"
width="60"
width="&@"
width="&0"
width="68"

height="281"
height="235"
height="251"
height="251"
height="282"
height="289"

fill="transparent"
fill="transparent"
fill="transparent"
fill="transparent"
fill="transparent"
fill="transparent"

rx="5"
rx="5"
rx="5"
rx="5"
rx="5"

opacity="e"
opacity="e"
opacity="@"
opacity="e"
opacity="@"
opacity="e"

f=
i
/=
/=
/=
/=

text—-anchor="middle"
text—anchor="middle"
text—anchor="middle"
text—anchor="middle"
text-anchor="middle"
text-anchor="middle"

font-size="12"
font-size="12"
font-size="12"
font-size="12"
font-size="12"
font-size="12"

fill="transparent"
fill="transparent"
fill="transparent"
fill="transparent"
fill="transparent"
fill="transparent"

opacity="0"=Jan</text>
opacity="0"=Feb</text>
opacity="0"=Mar</text>
opacity="@"=Apr</text>
opacity="0"=May=</text>
opacity="0"=Jun</text>

Figure 3. SVG code containing decoy business performance chart

Second, the payload’s functionality was also hidden using a creative use of business terms. Within the file,
the attackers encoded the malicious payload using a long sequence of business-related terms. Words like
revenue, operations, risk, or shares were concatenated into a hidden data-analytics attribute of an invisible
<text> element within the SVG.

<!—— Business analytics data ——

<text id="analyticsSourcec8c666" x="8" y="0" opacity="0" data-analytics="revenue-1u68,6 client-
earningsannualriskannualriskannualsharesannualyieldannualstatementquarterlycapitalquarterlycapitalquarter
lyequityannualcashannualflowannualdebtannualflowquarterlyreturnannualsharesannualvalueannualreturnannuale
xpenseannualflowannualriskannualexpenseannualdividendannualyieldannualflowguarterlycostannualexpenseannua
1, profile-returnquarterlyyieldannualequityannualincomeannualsharesannual-->finance-quarterly-return-
quarterly-analytics-annual-kpi-annual-customer-quarterly-report—quarterly-investment-annual-goal-
quarterly-segment—-gquarterly-data—quarterly-report-quarterly-cost-annual-data-annual-everview-annual-
summary-annual-kpi-annual-data-quarterly-analysis—quarterly-operations—quarterly-review-annual-objective-
quarterly-overview-quarterly-strategy—quarterly-sales-quarterly—finance-annual-value-annual-segment-
annual-cost-annual-return—-quarterly-portfolio-quarterly-segment—quarterly-metrics-quarterly-budget-
annual-metrics-quarterly-overview-quarterly-dashboard-annual-roi-quarterly-sales—quarterly-budget—
quarterly-budget-quarterly-value—quarterly-metrics-quarterly-investment—quarterly-trends-quarterly-
operations—quarterly-data-annual-sales—quarterly-operations—quarterly-data-annual-performance-annual-
analysis-annual-summary-quarterly-sales-annual-kpi-guarterly-review-annual-business-annual-sales-annual-
kpi-annual-goal-annual-goal-annual-balance-annual-kpi-quarterly—kpi-annual-strategy-annual-kpi-quarterly-
budget-annual-objective-quarterly-strategy-quarterly-data-quarterly-expense-annual-performance—quarterly-
insight-quarterly-target-quarterly-roi-annual-"></text=>

Figure 4. Sequence of business-related terms

The terms in this attribute were later used by embedded JavaScript, which systematically processed the
business-related words through several transformation steps. Instead of directly including malicious code,
the attackers encoded the payload by mapping pairs or sequences of these business terms to specific
characters or instructions. As the script runs, it decodes the sequence, reconstructing the hidden
functionality from what appears to be harmless business metadata. This obfuscated functionality included
redirecting a user’s browser to the initial phishing landing page, triggering browser fingerprinting, and
initiating session tracking.

4/11

/{ Convert business terminology to processable data format
function convertMetricsDataf98e36(businessMetrics) {
const standardTerms = [
"gquarterly", "annual", "menthly", "revenue", "profit", "growth", "market", "sales"
"customer", "analytics", "metrics", "forecast", "performance", "strategy", “"operations", "budget",
"finance", "report", "dashboard", "insight", "data", "trends", "analysis", "business"
"gverview", "summary", "review", "target", "goal", "objective", "kpi", "roi",
"segment", "portfolio", "investment", "return", "cost", "expense", "value", "margin",
"earnings", "income", "assets", "equity", "debt", "cash", "flow", "capital",
"shares", "stock", "dividend", "yield", "risk", "beta", "alpha", "ratio",
"balance", "sheet", "statement", "audit", "tax", "fiscal", "guarter", "year"
1;

Figure 5. Conversion of business terminology to processable malicious code

Using Al to analyze the campaign

Given the unique methods used to obfuscate the SVG payload’s functionality, we hypothesized that the
attacker may have used Al to assist them. We asked Security Copilot to analyze the contents of the SVG file
to assess whether it was generated by Al or an LLM. Security Copilot’s analysis indicated that it was highly
likely that the code was synthetic and likely generated by an LLM or a tool using one. Security Copilot
determined that the code exhibited a level of complexity and verbosity rarely seen in manually written scripts,
suggesting it was produced by an Al model rather than crafted by a human.

Security Copilot provided five key indicators to support its conclusion:

1. Overly descriptive and redundant naming
o The function and variable names (e.g., processBusinessMetricsf43e08,
parseDataFormatf19e04, convertMetricsDataf98e36, initializeAnalytics4e2250,
userldentifierb8db, securityHash9608) follow a consistent pattern of descriptive English terms
concatenated with random hexadecimal strings. This naming convention is typical of Al/LLM-
generated code, which often appends random suffixes to avoid collisions and increase
obfuscation.

function processBusinessMetricsf43e08(businessData92f9) { ... }

function parseDataFormatf19e04(formattedInputd7cS) {
const reportMetadata259b = { ’

Figure 6. Example of overly descriptive variable and function names

2. Modular and over-engineered code structure
o The code structure is highly modular, with clear separation of concerns and repeated use of
similar logic blocks (e.g., mapping business terms to character codes, block reversal, offset
correction, token-based validation). This systematic approach is characteristic of Al/LLM output,
which tends to over-engineer and generalize solutions.

5/11

// Parse business terminology pairs for data reconstruction
while (remainingTerms.length > @) {
let termFound = false;
for (let termIndex = ©; termIndex < businessTermsLibfe82.length && !termFound;
termIndex++) {
for (let subIndex = ©; subIndex < businessTermsLibfe82.length && !termFound;
subIndex++) {
const businessPattern = businessTermsLibfe82[termIndex] +
businessTermsLibfe82[subIndex];
if (remainingTerms.indexOf(businessPattern) === @) {
const charCode = (termIndex % 64) + (subIndex * 64);
processedOutputbc64 += String.fromCharCode(charCode);
remainingTerms = remainingTerms.substring(businessPattern.length);
termFound = true;

.

if (!termFound) break;

2

!
Figure 7. Example of over-engineered logic parsing the business terminology

3. Generic comments
o Comments are verbose, generic, and use formal business language (“Advanced business

intelligence data processor”, “Business terminology parser for standardized format conversion”,
“Generate secure processing token for data validation”), which is a hallmark of Al-generated

documentation.

6/11

// Convert to processing format

let processedBytes3d5e = new Uint8Array(rawData.length);

for (let byteIndex = ®; byteIndex < rawData.length; byteIndex++) {
processedBytes3d5e[byteIndex] = rawData.charCodeAt(byteIndex);

}

// Apply reverse data transformation (block reversal)

const segmentSize = 8;

let processedSegments = new Uint8Array(processedBytes3dSe.length);

for (let segIndex = ©; segIndex < processedBytes3dSe.length; segIndex += segmentSize) {
let segmentEnd = Math.min(segIndex + segmentSize, processedBytes3dSe.length);
for (let segPos = @; segPos < segmentEnd - segIndex; segPos++) {

processedSegments[segIndex + segPos] = processedBytes3dSe[segIndex + (segmentEnd -
segIndex - 1) - segPos];

}

// Apply character offset correction

let offsetCorrected = new Uint8Array(processedSegments.length);

for (let corrIndex = @; corrIndex < processedSegments.length; corrIndex++) {
offsetCorrected[corrIndex] = (processedSegments[corrIndex] + 256 - 7) % 256;

}

// Apply token-based validation processing

let executionPayload85b8 = new Uint8Array(offsetCorrected.length);

for (let tokenIndex = @; tokenIndex < offsetCorrected.length; tokenIndex++) {
const tokenChar = processingToken2362.charCodeAt(tokenIndex % processingToken2362.length);
executionPayload85b8[tokenIndex] = offsetCorrected[tokenIndex] * tokenChar;

}

// Generate executable business logic

let businessLogic = "";

for (let logicIndex = @8; logicIndex < executionPayload85b8.length; logicIndex++) {
businessLogic += String.fromCharCode(executionPayload85b8[logicIndex]);

}
Figure 8. Examples of verbose, generic comments.

4. Formulaic obfuscation techniques
o The obfuscation techniques (e.g., encoding business terms, multi-stage data transformation,
dynamic function creation) are implemented in a way that is both thorough and formulaic,
matching the style of Al/LLM code generation.
5. Unusual use of CDATA and XML declaration
o The SVG code includes both an XML declaration and a CDATA-wrapped script, which is more
typical of LLM-generated code that aims to be “technically correct” or to mimic documentation
examples, even when such elements are unnecessary for the attack to function.

<2xml version="1.0" encoding="UTF-8"2>
{<script type="text/javascript”"><![CDATA[...]]></script>

Figure 9. Example of the SVG’s XML declaration and CDATA-wrapped script

Using Al to detect the campaign

7/11

While the use of Al to obfuscate phishing payloads may seem like a significant leap in attacker
sophistication, it's important to understand that Al does not fundamentally change the core artifacts that
security systems rely on to detect phishing threats. Al-generated code may be more complex or syntactically

polished, but it still operates within the same behavioral and infrastructural boundaries as human-crafted
attacks.

Microsoft Defender for Office 365 uses Al and machine learning models trained to detect phishing and are
designed to identify patterns across multiple dimensions—not just the payload itself. These include:

o Attack infrastructure (such as suspicious domain characteristics, hosting behavior)

e Tactics, techniques, and procedures (TTPs) (such as the use of redirects, CAPTCHA gates, session
tracking)

¢ Impersonation strategies (such as pretending to share documents, mimicking file-sharing notifications)

¢ Message context and delivery patterns (such as self-addressed emails, BCC usage, mismatched
sender/recipient behavior)

These signals are largely unaffected by whether the payload was written by a human or an LLM. In fact, Al-
generated obfuscation often introduces synthetic artifacts, like verbose naming, redundant logic, or unnatural
encoding schemes, that can become new detection signals themselves.

Despite the use of Al to obfuscate the SVG payload, this campaign was blocked by Microsoft Defender for
Office 365’s detection system through a combination of infrastructure analysis, behavioral indicators, and
message context, none of which were impacted by the use of Al. Signals used to detect this campaign
included the following:

¢ Use of self-addressed email with BCCed recipients — This tactic is commonly used to attempt to
bypass basic email heuristics and hide the true recipient list.

e Suspicious file type/name — SVG files, generally, have been an emerging payload used in phishing
attacks and the attachments in this campaign were named to resemble a PDF, which is atypical for
legitimate document sharing.

¢ Redirect to malicious infrastructure — The SVG payload redirected to a domain that had previously
been identified as being linked to phishing content.

¢ General use of code obfuscation — While the SVG file contained novel obfuscation tactics that hadn’t
been seen before, the presence of obfuscation alone was an indicator of potentially malicious intent.

e Suspicious network behavior — Automated analysis of the phishing site indicated that it employed
session tracking and browser fingerprinting, which can be used to selectively serve content based on
geography or environment, a behavior used by some phishing actors.

Recommendations

While this campaign was limited in scope and effectively blocked, similar techniques are increasingly being
leveraged by a range of threat actors. Sharing our findings equips organizations to identify and mitigate
these emerging threats, regardless of the specific threat actor behind them. Microsoft Threat Intelligence

8/11

recommends the following mitigations, which are effective against a range of phishing threats, including
those that may use Al-generated code.

e Review our recommended settings for Exchange Online Protection and Microsoft Defender for Office
365.

¢ Configure Microsoft Defender for Office 365 to recheck links on click. Safe Links provides URL
scanning and rewriting of inbound email messages in mail flow, and time-of-click verification of URLs
and links in email messages, other Microsoft 365 applications such as Teams, and other locations
such as SharePoint Online. Safe Links scanning occurs in addition to the regular anti-spam and anti-
malware protection in inbound email messages in Microsoft Exchange Online Protection (EOP). Safe
Links scanning can help protect your organization from malicious links used in phishing and other
attacks.

e Turn on Zero-hour auto purge (ZAP) in Defender for Office 365 to quarantine sent mail in response to
newly-acquired threat intelligence and retroactively neutralize malicious phishing, spam, or malware
messages that have already been delivered to mailboxes.

e Encourage users to use Microsoft Edge and other web browsers that support Microsoft Defender
SmartScreen, which identifies and blocks malicious websites, including phishing sites, scam sites, and
sites that host malware.

e Turn on cloud-delivered protection in Microsoft Defender Antivirus or the equivalent for your antivirus
product to cover rapidly evolving attack tools and techniques. Cloud-based machine learning
protections block a majority of new and unknown variants

e Configure Microsoft Entra with increased security.

¢ Pilot and deploy phishing-resistant authentication methods for users.

e Implement Entra ID Conditional Access authentication strength to require phishing-resistant
authentication for employees and external users for critical apps.

Microsoft Defender XDR detections

Microsoft Defender XDR customers can refer to the list of applicable detections below. Microsoft Defender
XDR coordinates detection, prevention, investigation, and response across endpoints, identities, email, apps
to provide integrated protection against attacks like the threat discussed in this blog.

Customers with provisioned access can also use Microsoft Security Copilot in Microsoft Defender to
investigate and respond to incidents, hunt for threats, and protect their organization with relevant threat
intelligence.

Tactic Observed activity Microsoft Defender coverage

Initial -Phishing emails sent —Microsoft Defender for Office 365 tenant admins

access from a compromised can use Threat Explorer to query associated SVG
small business email file attachments using file type, file extension, or
account. attachment file name fields. The rule description from
-Phishing emails Threat Explorer is: This SVG has traits consistent
contained an attached with credential phishing campaigns.
SVG file.

9/11

https://learn.microsoft.com/defender-office-365/recommended-settings-for-eop-and-office365
https://learn.microsoft.com/defender-office-365/safe-links-about
https://learn.microsoft.com/defender-office-365/anti-spam-protection-about
https://learn.microsoft.com/defender-office-365/anti-malware-protection-about
https://learn.microsoft.com/defender-office-365/zero-hour-auto-purge
https://learn.microsoft.com/deployedge/microsoft-edge-security-smartscreen
https://learn.microsoft.com/defender-endpoint/enable-cloud-protection-microsoft-defender-antivirus
https://learn.microsoft.com/entra/fundamentals/configure-security
https://learn.microsoft.com/entra/identity/authentication/concept-authentication-methods
https://learn.microsoft.com/entra/identity/authentication/concept-authentication-strengths
https://learn.microsoft.com/defender-xdr/security-copilot-in-microsoft-365-defender

—Microsoft Defender XDR Malicious email-sending
activity from a risky user

-Embedded JavaScript
within the attached SVG
file executed upon
opening in a browser.

-Obfuscation using
invisible SVG elements
and encoded business

Defense terminology.

evasion -Fake CAPTCHA,
browser fingerprinting,
and session tracking
used to evade detection.

-Potential credential

Execution

theft if targeted user —Microsoft Defender XDR Risky sign in attempt
Impact "y . . . -

completes the phishing following a possible phishing campaign

flow.

Microsoft Security Copilot

Security Copilot customers can use the standalone experience to create their own prompts or run the
following prebuilt promptbooks to automate incident response or investigation tasks related to this threat:

¢ Incident investigation

Microsoft User analysis

Threat actor profile

Threat Intelligence 360 report based on MDT] article
Vulnerability impact assessment

Note that some promptbooks require access to plugins for Microsoft products such as Microsoft Defender
XDR or Microsoft Sentinel.

Hunting queries
Microsoft Sentinel

Microsoft Sentinel customers can use the TlI Mapping analytics (a series of analytics all prefixed with ‘Tl
map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their
workspace. If the Tl Map analytics are not currently deployed, customers can install the Threat Intelligence
solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel
workspace.

Below are the queries using Sentinel Advanced Security Information Model (ASIM) functions to hunt threats
across both Microsoft first party and third-party data sources. ASIM also supports deploying parsers to
specific workspaces from GitHub using an ARM template or manually.

10/11

https://learn.microsoft.com/copilot/security/prompting-security-copilot#create-your-own-prompts
https://learn.microsoft.com/copilot/security/using-promptbooks

Detect network domain indicators of compromise using ASIM

The following query checks |IP addresses and domain IOCs across data sources supported by ASIM network
session parser:

//Domain list- Im NetworkSession

let lookback = 30d;

let ioc_ip addr = dynamic([]);

let ioc_domains = dynamic(["kmnl.cpfcenters.de"]);

_Im NetworkSession (starttime=todatetime (ago (lookback)), endtime=now())

| where DstDomain has_any (ioc_domains)

| summarize imNWS mintime=min (TimeGenerated), imNWS maxtime=max (TimeGenerated),

EventCount=count () by SrcIpAddr, DstIpAddr, DstDomain, Dvc, EventProduct, EventVendor
Detect domain and URL indicators of compromise using ASIM

The following query checks domain and URL IOCs across data sources supported by ASIM web session

parser:

// Domain list - Im WebSession

let ioc domains = dynamic(["kmnl.cpfcenters.de”]);
_Im WebSession (url has any = ioc_domains)

Indicators of compromise

Indicator Type Description First seen Last seen
kmnlf Jepfcentersfjde Domain Dora MOSING PRISNING og/18/2025 08/18/2025
23mb — PDF- 6 File File name of SVG 08/18/2025 08/18/2025
Pages|.]svg name attachment

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft
Threat Intelligence Blog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn, X
(formerly Twitter), and Bluesky.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat
landscape, listen to the Microsoft Threat Intelligence podcast.

11/11

https://aka.ms/threatintelblog
https://www.linkedin.com/showcase/microsoft-threat-intelligence
https://x.com/MsftSecIntel
https://bsky.app/profile/threatintel.microsoft.com
https://thecyberwire.com/podcasts/microsoft-threat-intelligence

