
www.zscaler.com /blogs/security-research/yibackdoor-new-malware-family-links-icedid-and-latrodectus

YiBackdoor: A New Malware Family With Links to IcedID and

Latrodectus

ThreatLabz ⋮ ⋮ 9/22/2025

Technical Analysis

In this section, the features and capabilities of YiBackdoor are described along with the code similarities with

IcedID and Latrodectus.

ANALYST NOTE: YiBackdoor generates and uses pseudo-random values at different stages (e.g. for

generating the registry persistence value name). The malware implements custom algorithms for deriving

random values, which are primarily based on the bot ID (used as a seed) combined with an implementation

of Microsoft’s Linear Congruential Generator (LCG). Since not all pseudo-random values are generated

using a single method, ThreatLabz reversed each function and ported them to Python individually. To ensure

consistency and clarity throughout this blog, the random values that are referenced can be derived using the

Python script available in the ThreatLabz GitHub repository.

1/13

https://www.zscaler.com/blogs/security-research/yibackdoor-new-malware-family-links-icedid-and-latrodectus
https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py

Anti-analysis

YiBackdoor includes a limited set of anti-analysis techniques with most of them targeting virtualized

environments, and by extension, malware sandboxes. The malware employs the following anti-analysis

methods:

Dynamically loads Windows API functions by walking the loaded modules list, computing an ROR-

based hash for each function name, and comparing the results with expected values to identify

specific Windows API functions.

YiBackdoor utilizes the CPUID instruction with the parameter 0x40000000 to retrieve hypervisor

information. The result is then compared to values that match known hypervisors, including the

following:

VMWare

Xen

KVM

Virtual Box

Microsoft Hyper-V

Parallels

Decrypts strings at runtime by pushing an encrypted string onto the stack, which is then decrypted by

performing an XOR operation with a 4-byte key (that is unique for each encrypted string).

Measures the execution time of a code block to determine if the host is running on a hypervisor.

Specifically, YiBackdoor begins by calling the Windows API function SwitchToThread followed by a

call to the instruction rdtsc. Next, YiBackdoor calls the CPUID instruction, which triggers a VM exit,

and then calls rdtsc again to calculate the time taken to execute the CPUID instruction. Once the

time has been calculated, YiBackdoor calls the rdtsc instruction two more times and calculates the

execution time again. This process is repeated 16 times and the final calculated value must be greater

than 20 to bypass the detection. This behavior can be reproduced using the following code example.

[[nodiscard]] bool isHyperVisor()

{

 uint64_t timer1 = 0;

 uint64_t timer2 = 0;

 int loop_counter = 16;

 int cpuInfo[4] = { 0 };

 while (loop_counter)

 {

 SwitchToThread();

 uint64_t first_rdtsc_timer_value = __rdtsc();

 __cpuid(cpuInfo, 1);

 timer1 += __rdtsc() - first_rdtsc_timer_value;

 SwitchToThread();

 uint64_t second_rdtsc = __rdtsc();

2/13

 uint64_t third_rdtsc = __rdtsc();

 timer2 += ((third_rdtsc

It is worth noting that YiBackdoor stores the aforementioned information internally, but does not use the

information or transmit it to the C2 server. As a result, the detection methods outlined above currently have

no impact on the code’s behavior.

Initialization stage

There are several actions that YiBackdoor performs during the initialization phase including injecting code

into a remote process and establishing persistence.

YiBackdoor first checks for existing instances of itself by attempting to create a mutex with a host-based

name. If the mutex already exists, indicating another instance is active, YiBackdoor will terminate execution.

Code injection

Before proceeding to the core functionality, YiBackdoor ensures that it is running within an injected process.

YiBackdoor determines this by checking whether its current memory address falls within the memory range

of any loaded DLLs. If it does, YiBackdoor creates a new svchost.exe process and injects its code into it.

The injection begins with YiBackdoor allocating memory in the remote svchost.exe target process and

copying its code into that new region. YiBackdoor patches the Windows API

function RtlExitUserProcess with assembly code that pushes YiBackdoor’s entry point on the stack,

which is then followed by a return instruction. Thus, when the RtlExitUserProcess function is called, the

process execution flow will be redirected to the YiBackdoor’s entry point. Interestingly, the svchost.exe target

process is created without any special flags (e.g., in a suspended state). However, YiBackdoor does have

enough time to inject its code between the process creation and termination. Since

the RtlExitUserProcess function is hooked, the malware’s code executes just as the target process is

about to terminate. This injection technique may allow YiBackdoor to evade detection by some security

products.

Persistence

After completing the code injection phase, YiBackdoor proceeds to establish persistence on the

compromised host using the Windows Run registry key. YiBackdoor first copies itself (the malware DLL) into

a newly created directory under a random name. Next, YiBackdoor adds regsvr32.exe malicious_path in the

registry value name (derived using a pseudo-random algorithm) and self-deletes to hinder forensic analysis.

Backdoor configuration

3/13

https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L175
https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L58

YiBackdoor contains an embedded configuration stored in an encrypted state. The configuration blob is

decrypted and initialized at runtime. The decryption algorithm uses a 64-byte string as the key, as shown in

the decryption routine below.

def decrypt(data: bytes, key: bytes) -> bytearray:

 decrypted_config = bytearray()

 for i in range(len(data)):

 x = i % len(key)

 y = (i + 1) % len(key)

 cipher = key[x] + key[y]

 cipher = (cipher ^ data[i]) & 0xFF

 decrypted_config.append(cipher)

 rotation_x = ror(n=key[x] >> (key[y] & 7), bits=key[x] > (rotation_x

& 7), bits=key[y]

The decrypted configuration data includes the following information:

A list of C2 servers (separated using a space delimiter) where each C2 server has a boolean flag to

indicate if the requests should be in HTTP (false) or HTTPS (true). For instance, the

entry 127.0.0.1:0 instructs YiBackdoor to communicate using HTTP to the C2 address 127.0.0.1.

Three strings that are used for deriving the TripleDES encryption/decryption keys and the initialization

vector (IV) during the network communication process.

Two integer values that YiBackdoor converts to numerical strings, which are used to construct the C2

URI.

An unknown string identifier, which could represent a campaign or botnet ID. In the sample analyzed

by ThreatLabz, this value is set to the string test.

The configuration’s structure is provided below.

#pragma pack(push, 1)

struct configuration

{

 char C2s[300];

 char response_triple_des_key_table[192];

 char request_triple_des_key_table[192];

 char triple_des_iv[128];

 uint32_t uri1;

 uint32_t pad;

 uint32_t uri2;

 char botnet_id[64];

};

#pragma pack(pop)

4/13

ANALYST NOTE: Before decrypting the configuration data, YiBackdoor ensures that the encrypted

configuration does not start with the hardcoded string “YYYYYYYYYY”. If a match is found, the embedded

configuration data is considered corrupted and the execution stops. ThreatLabz has not been able to confirm

the reason for this check yet. Moreover, two of the three configuration C2s are local IP addresses, which

further supports the argument that YiBackdoor is still in a development or testing phase.

Network communication

Before initializing a network session with the C2, YiBackdoor derives the C2 URL by reading the following

values from the decrypted configuration blob.

C2 domain or IP address.

Two hardcoded strings that are used as part of the C2 URI.

Generated bot ID (calculated at runtime).

Thus, the C2 URL is structured as http(s)://C2/bot_id/uri1/uri2.

Next, YiBackdoor creates a JSON packet that contains the host’s system time (UTC format) and username.

The JSON packet is then encrypted using the TripleDES encryption algorithm. The creation of

encryption/decryption keys along with the IV is quite unique. The configuration blob includes three strings

with each one of them used for deriving the encryption key, decryption key, and IV. However, YiBackdoor

does not use their entire values. Instead, it uses the current day of the week as an offset to calculate the

starting address of the target value. Using this approach, YiBackdoor manages to have dynamic (and

different) encryption keys per day and as a result makes the network traffic more resilient against static-

based signatures. This algorithm is shown in the figure below:

5/13

https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L17

Figure 1: Network dynamic key derivation function for YiBackdoor.

The encrypted output is then Base64-encoded and appended to the HTTP header X-tag, and sent in an

HTTP GET request.

The C2 response decryption process is similar. YiBackdoor verifies the presence of the HTTP header X-tag

and decrypts it. The decrypted header contains the same information that was included in the HTTP request.

YiBackdoor then decrypts and parses the HTTP body data, which contains incoming commands, which are

in a JSON format.

Network commands

YiBackdoor supports the commands described in the table below.

Command

Name
Command Parameters Description

Systeminfo None Collects the following system information:

Windows version.

List of process names.

Network and miscellaneous system information by

executing the system commands provided below.

chcp 65001

whoami /all

arp -a

ipconfig /all

net view /all

6/13

Command

Name
Command Parameters Description

nltest /domain_trusts /all_trusts

net share

net localgroup

wmic product get name

screen None Takes a screenshot of the compromised host’s desktop.

CMD

Base64-encoded

command line to

execute.

Timeout value.

Executes a system shell command using cmd.exe.

PWS

Base64-encoded

command line to

execute.

Timeout value.

Executes a system shell command using PowerShell.

plugin

Plugin name.

Command data for

the plugin to execute.

Passes a command to an existing plugin to execute based

on its name and reports the result to the C2 server.

task

Base64-encoded and

encrypted plugin

data.

Initializes and executes a new plugin. If the plugin already

exists, then reload the plugin using the data that was

received.

Table 1: YiBackdoor network commands.

Note that the command names above use inconsistent casing (e.g., camel case, lowercase, and uppercase).

The structures (in C format) that YiBackdoor uses to parse both tasks received and network commands are

shown below.

enum Command

{

 system_info = 0x3,

 screenshot = 0x4,

 execute_new_plugin = 0x5,

 execute_loaded_plugin = 0x8,

 execute_cmd = 0x9,

 execute_powershell = 0xA,

};

struct custom_string

{

 char *string;

 size_t size;

7/13

 size_t capacity;

};

#pragma pack(push, 1)

struct task_info

{

 uint32_t task_id;

 Command cmd_id;

 uint32_t unknown_ID;

 custom_string command_parameter;

 custom_string plugin_name;

 uint32_t timeout_time;

};

#pragma pack(pop)

Command status

YiBackdoor reports the output of each command to the C2 by sending an HTTP POST request. Each

command status packet is in a JSON format and includes the following information:

Task ID.

A boolean value that represents the execution status of the command.

The output of the command.

The reported output is summarized in the table below.

Network

Command
Reported Information

Systeminfo

Collected system information.

A list of loaded plugins that include the ID and name of each plugin in the

format plugin_name-ID.bin.

screen
Screenshot encoded in Base64 format.

task

A list of loaded plugins that include the ID and name of each plugin in the

format plugin_name-ID.bin.

plugin
Output data resulting from executing a command within the specified plugin.

CMD/PWS

Output data resulting from executing a system shell command formatted in

Base64.

Table 2: YiBackdoor command status messages.

8/13

ANALYST NOTE: The task status for the network command ‘task’ is always set to true (success) regardless

of the plugin’s loading status.

Plugins

YiBackdoor stores each plugin that is received locally in the Windows temporary folder using a random

filename with the file extension .bin. The malware identifies a target plugin by validating the filename against

its own filename generation algorithm. The plugins are reloaded each time YiBackdoor is executed.

Each plugin is stored in an encrypted format. The following Python code snippet represents the

encryption/decryption algorithm.

 def fix_key(key: bytearray, x: int, y: int) -> bytearray:

 temp_val = key[y:y + 4]

 temp_val = int.from_bytes(temp_val, byteorder="little")

 rot_val = (temp_val & 7) & 0xFF

 temp_val = key[x:x + 4]

 temp_val = int.from_bytes(temp_val, byteorder="little")

 temp_val = ror(temp_val, rot_val) & 0xFFFFFFFF

 temp_val += 1

 temp_val &= 0xFFFFFFFF

 temp_val_x = temp_val.to_bytes(4, byteorder="little")

 rot_val = (temp_val & 7) & 0xFF

 temp_val = key[y:y + 4]

 temp_val = int.from_bytes(temp_val, byteorder="little")

 temp_val = ror(temp_val, rot_val) & 0xFFFFFFFF

 temp_val += 1

 temp_val &= 0xFFFFFFFF

 temp_val_y = temp_val.to_bytes(4, byteorder="little")

 temp_key = key[:x] + temp_val_x + key[x + 4:]

 temp_key = temp_key[:y] + temp_val_y + temp_key[y + 4:]

 return temp_key

 def crypt_plugin(data: bytes, key: int) -> bytes:

 decrypted_plugin = []

 for i in range(len(data)):

 x = (i & 3)

 y = ((i + 1) & 3)

 c = key[y * 4] + key[x * 4]

 c = (c ^ data[i]) & 0xFF

 decrypted_plugin.append(c.to_bytes(1, byteorder="little"))

 key = fix_key(key, x * 4, y * 4)

 return b''.join(decrypted_plugin)

9/13

https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L109
https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L109

YiBackdoor manages and parses any plugins by using the structures provided below.

#pragma pack(push, 1)

struct struct_plugin_execution_info

{

 uint32_t unknown_field;

 uint32_t plugin_id;

 uint8_t do_start_plugin;

 char plugin_disk_name[16];

 IMAGE_DOS_HEADER* plugin_memory_data;

};

#pragma pack(pop)

struct plugin

{

 custom_string plugin_name;

 void *plugin_entry_address;

 void *plugin_data;

 void *sizeof_plugin_data;

 struct_plugin_execution_info *plugin_execution_info;

 void *mapped_plugin_memory_address;

};

struct plugin_manager

{

 plugin *plugins[1];

 uint64_t number_of_plugins;

 uint64_t max_allowed_plugins;

};

Code similarities

ThreatLabz observed notable code overlaps between YiBackdoor, IcedID, and Latrodectus. IcedID is a

malware family that consists of several different components such as a downloader (which has gone through

various updates in the past), a main module backdoor, and a main module loader. These similarities are

present in both critical and non-critical parts of YiBackdoor’s code.

The code similarities between YiBackdoor, IcedID, and Latrodectus are the following:

The use of identical alphabet charsets to derive bot-specific randomized strings. The identified

charsets are aeiou and abcedfikmnopsutw.

The format (Base64) and length (64-bytes) of YiBackdoor’s configuration decryption key matches the

RC4 keys used by Latrodectus to encrypt its network traffic.

10/13

YiBackdoor hooks the Windows API function RtlExitUserProcess as part of the remote code

injection process. This code injection technique is quite uncommon and resembles IcedID’s extensive

use of this Windows API.

Although YiBackdoor uses a different approach to calculate the bot ID, part of the process involves the

Fowler–Noll–Vo (FVN) hashing algorithm, which is also present in the codebase of IcedID and

Latrodectus.

YiBackdoor includes a Windows GUID list that is not used during execution. The exact same array of

GUIDs is present and utilized in both IcedID and Latrodectus. Hence, the GUIDs in YiBackdoor may

be code remnants from the latter two malware families.

The most significant code similarity is the decryption routines for the configuration blob and the

plugins. The plugins’ decryption routine is identical to the algorithm previously used by IcedID to

decrypt the core payload and configuration data. The figure below shows the algorithm, comparing the

decryption routine from a (GZIP) IcedID downloader sample and the plugins’ decryption routine found

in YiBackdoor. Furthermore, the algorithm used to decrypt YiBackdoor’s embedded configuration blob

is similar to the aforementioned decryption routine found in IcedID samples.

11/13

12/13

Figure 2: Comparison of YiBackdoor and IcedID GZIP decryption routines.

13/13

