www.zscaler.com /blogs/security-research/yibackdoor-new-malware-family-links-icedid-and-latrodectus

YiBackdoor: A New Malware Family With Links to IcedID and
Latrodectus

ThreatLabz : : 9/22/2025

Technical Analysis

In this section, the features and capabilities of YiBackdoor are described along with the code similarities with
IcedID and Latrodectus.

ANALYST NOTE: YiBackdoor generates and uses pseudo-random values at different stages (e.q. for
generating the registry persistence value name). The malware implements custom algorithms for deriving
random values, which are primarily based on the bot ID (used as a seed) combined with an implementation
of Microsoft’s Linear Congruential Generator (LCG). Since not all pseudo-random values are generated
using a single method, ThreatLabz reversed each function and ported them to Python individually. To ensure
consistency and clarity throughout this blog, the random values that are referenced can be derived using the
Python script available in the ThreatLabz GitHub repository.

1/13

https://www.zscaler.com/blogs/security-research/yibackdoor-new-malware-family-links-icedid-and-latrodectus
https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py

Anti-analysis

YiBackdoor includes a limited set of anti-analysis techniques with most of them targeting virtualized
environments, and by extension, malware sandboxes. The malware employs the following anti-analysis

methods:

e Dynamically loads Windows API functions by walking the loaded modules list, computing an ROR-

based hash for each function name, and comparing the results with expected values to identify
specific Windows API functions.
YiBackdoor utilizes the CPUID instruction with the parameter 0x40000000 to retrieve hypervisor
information. The result is then compared to values that match known hypervisors, including the
following:

o VMWare

o Xen

o KVM
Virtual Box
Microsoft Hyper-V

[¢]

[e]

o

Parallels

Decrypts strings at runtime by pushing an encrypted string onto the stack, which is then decrypted by
performing an XOR operation with a 4-byte key (that is unique for each encrypted string).

Measures the execution time of a code block to determine if the host is running on a hypervisor.
Specifically, YiBackdoor begins by calling the Windows API function SwitchToThread followed by a
call to the instruction rdtsc. Next, YiBackdoor calls the CPUID instruction, which triggers a VM exit,
and then calls rdtsc again to calculate the time taken to execute the CPUID instruction. Once the
time has been calculated, YiBackdoor calls the rdtsc instruction two more times and calculates the
execution time again. This process is repeated 16 times and the final calculated value must be greater
than 20 to bypass the detection. This behavior can be reproduced using the following code example.

[[nodiscard]] bool isHyperVisor()

{

uint64 t timerl = 0;
uint64 t timer2 = 0;
int loop counter = 16;
int cpulnfo[4] = { 0 };
while (loop counter)

{
SwitchToThread();
uint64 t first rdtsc timer value = rdtsc();
__cpuid(cpuInfo, 1);
timerl += rdtsc() - first rdtsc timer value;
SwitchToThread();

uint64 t second rdtsc = rdtsc();

2/13

uint64 t third rdtsc = rdtsc();
timer2 += ((third rdtsc

It is worth noting that YiBackdoor stores the aforementioned information internally, but does not use the
information or transmit it to the C2 server. As a result, the detection methods outlined above currently have
no impact on the code’s behavior.

Initialization stage

There are several actions that YiBackdoor performs during the initialization phase including injecting code
into a remote process and establishing persistence.

YiBackdoor first checks for existing instances of itself by attempting to create a mutex with a host-based
name. If the mutex already exists, indicating another instance is active, YiBackdoor will terminate execution.

Code injection

Before proceeding to the core functionality, YiBackdoor ensures that it is running within an injected process.
YiBackdoor determines this by checking whether its current memory address falls within the memory range
of any loaded DLLs. If it does, YiBackdoor creates a new svchost.exe process and injects its code into it.

The injection begins with YiBackdoor allocating memory in the remote svchost.exe target process and
copying its code into that new region. YiBackdoor patches the Windows API

function Rt LExitUserProcess with assembly code that pushes YiBackdoor’s entry point on the stack,
which is then followed by a return instruction. Thus, when the Rt LExitUserProcess function is called, the
process execution flow will be redirected to the YiBackdoor’s entry point. Interestingly, the svchost.exe target
process is created without any special flags (e.g., in a suspended state). However, YiBackdoor does have
enough time to inject its code between the process creation and termination. Since

the Rt LExitUserProcess function is hooked, the malware’s code executes just as the target process is
about to terminate. This injection technique may allow YiBackdoor to evade detection by some security
products.

Persistence

After completing the code injection phase, YiBackdoor proceeds to establish persistence on the

compromised host using the Windows Run registry key. YiBackdoor first copies itself (the malware DLL) into
a newly created directory under a random name. Next, YiBackdoor adds regsvr32.exe malicious_path in the
registry value name (derived using a pseudo-random algorithm) and self-deletes to hinder forensic analysis.

Backdoor configuration

3/13

https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L175
https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L58

YiBackdoor contains an embedded configuration stored in an encrypted state. The configuration blob is
decrypted and initialized at runtime. The decryption algorithm uses a 64-byte string as the key, as shown in
the decryption routine below.

def decrypt(data: bytes, key: bytes) -> bytearray:
decrypted config = bytearray()
for 1 in range(len(data)):
x =1 % len(key)
y = (1 + 1) % len(key)
cipher = key[x] + keyl[y]
cipher = (cipher ~ data[i]) & OxFF
decrypted config.append(cipher)
rotation x = ror(n=key[x] >> (key[y] & 7), bits=key[x] > (rotation x
& 7), bits=key[y]

The decrypted configuration data includes the following information:

e Alist of C2 servers (separated using a space delimiter) where each C2 server has a boolean flag to
indicate if the requests should be in HTTP (false) or HTTPS (true). For instance, the
entry 127.0.0.1:0 instructs YiBackdoor to communicate using HTTP to the C2 address 127.0.0.1.

e Three strings that are used for deriving the TripleDES encryption/decryption keys and the initialization
vector (IV) during the network communication process.

e Two integer values that YiBackdoor converts to numerical strings, which are used to construct the C2
URI.

¢ An unknown string identifier, which could represent a campaign or botnet ID. In the sample analyzed
by ThreatLabz, this value is set to the string test.

The configuration’s structure is provided below.

#pragma pack(push, 1)
struct configuration
{
char C2s[300];
char response triple des key table[192];
char request triple des key table[192];
char triple des iv[128];
uint32 t uril;
uint32 t pad;
uint32 t uri2;
char botnet id[64];
}i
#pragma pack(pop)

4/13

ANALYST NOTE: Before decrypting the configuration data, YiBackdoor ensures that the encrypted
configuration does not start with the hardcoded string “YYYYYYYYYY”. If a match is found, the embedded

configuration data is considered corrupted and the execution stops. ThreatLabz has not been able to confirm

the reason for this check yet. Moreover, two of the three configuration C2s are local IP addresses, which
further supports the argument that YiBackdoor is still in a development or testing phase.

Network communication

Before initializing a network session with the C2, YiBackdoor derives the C2 URL by reading the following
values from the decrypted configuration blob.

e C2 domain or IP address.
e Two hardcoded strings that are used as part of the C2 URI.
e Generated bot ID (calculated at runtime).

Thus, the C2 URL is structured as http(s)://C2/bot id/uril/uri2.

Next, YiBackdoor creates a JSON packet that contains the host’s system time (UTC format) and username.

The JSON packet is then encrypted using the TripleDES encryption algorithm. The creation of
encryption/decryption keys along with the 1V is quite unique. The configuration blob includes three strings
with each one of them used for deriving the encryption key, decryption key, and IV. However, YiBackdoor
does not use their entire values. Instead, it uses the current day of the week as an offset to calculate the
starting address of the target value. Using this approach, YiBackdoor manages to have dynamic (and
different) encryption keys per day and as a result makes the network traffic more resilient against static-
based signatures. This algorithm is shown in the figure below:

5/13

https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L17

et _api(¢

1fig |? = ::decrypted_config_ptr;

+ 3 .
LLineE . ¥

> zscaler ‘ ThreatLabz

Figure 1: Network dynamic key derivation function for YiBackdoor.

The encrypted output is then Base64-encoded and appended to the HTTP header X-tag, and sent in an
HTTP GET request.

The C2 response decryption process is similar. YiBackdoor verifies the presence of the HTTP header X-tag
and decrypts it. The decrypted header contains the same information that was included in the HTTP request.
YiBackdoor then decrypts and parses the HTTP body data, which contains incoming commands, which are
in a JSON format.

Network commands

YiBackdoor supports the commands described in the table below.

Command Command Parameters Description
Name
Systeminfo None Collects the following system information:

e Windows version.

o List of process names.

¢ Network and miscellaneous system information by

executing the system commands provided below.

o chcp 65001
o whoami /all

arp -a

ipconfig /all

net view /all

O O O

6/13

Command

N Command Parameters Description
ame
o nltest /domain_trusts /all_trusts
o net share
o net localgroup
o wmic product get name
screen None Takes a screenshot of the compromised host’s desktop.

o Base64-encoded
command line to
CMD execute. Executes a system shell command using cmd.exe.

¢ Timeout value.

e Base64-encoded
command line to
PWS execute. Executes a system shell command using PowerShell.

e Timeout value.

e Plugin name.
lugin e Command data for Passes a command to an existing plugin to execute based
g the plugin to execute. on its name and reports the result to the C2 server.

e Baseb4-encoded and
encrypted plugin
data.

Initializes and executes a new plugin. If the plugin already
exists, then reload the plugin using the data that was
received.

task

Table 1: YiBackdoor network commands.
Note that the command names above use inconsistent casing (e.g., camel case, lowercase, and uppercase).

The structures (in C format) that YiBackdoor uses to parse both tasks received and network commands are
shown below.

enum Command

{

system info = 0x3,
screenshot = 0x4,
execute new plugin = 0x5,
execute loaded plugin = 0x8,
execute cmd = 0x9,
execute powershell = 0OxA,
i

struct custom string

{
char *string;
size t size;

7/13

size t capacity;

b

#pragma pack(push, 1)

struct task info

{
uint32_t task id;
Command cmd id;
uint32 t unknown 1ID;
custom string command parameter;
custom string plugin name;
uint32_ t timeout time;

b

#pragma pack(pop)

Command status

YiBackdoor reports the output of each command to the C2 by sending an HTTP POST request. Each
command status packet is in a JSON format and includes the following information:

e Task ID.

¢ Aboolean value that represents the execution status of the command.
e The output of the command.

The reported output is summarized in the table below.

Network Reported Information
Command
o Collected system information.
Systeminfo o Alist of Ioadgd plugins thgt include the ID and name of each plugin in the
format plugin name-ID.bin.
screen o Screenshot encoded in Base64 format.
o Alist of loaded plugins that include the ID and name of each plugin in the
task format plugin name-ID.bin.
olugin o Output data resulting from executing a command within the specified plugin.

o Output data resulting from executing a system shell command formatted in
CMD/PWS Base64.

Table 2: YiBackdoor command status messages.

8/13

ANALYST NOTE: The task status for the network command ‘task’is always set to true (success) regardless

of the plugin’s loading status.

Plugins

YiBackdoor stores each plugin that is received locally in the Windows temporary folder using a random

filename with the file extension .bin. The malware identifies a target plugin by validating the flename against

its own filename generation algorithm. The plugins are reloaded each time YiBackdoor is executed.

Each plugin is stored in an encrypted format. The following Python code snippet represents the

encryption/decryption algorithm.

def

def

fix key(key: bytearray, x: int, y: int) -> bytearray:
temp val = key[y:y + 4]

temp val = int.from bytes(temp val, byteorder="little")
rot val = (temp val & 7) & OxFF

temp val = key[x:x + 4]

temp val = int.from bytes(temp val, byteorder="little")
temp val = ror(temp val, rot val) & OxFFFFFFFF

temp val += 1

temp val &= OxFFFFFFFF

temp val x = temp val.to bytes(4, byteorder="little")
rot val = (temp val & 7) & OxFF

temp val = key[y:y + 4]

temp val = int.from bytes(temp val, byteorder="little")
temp val = ror(temp val, rot val) & OxFFFFFFFF

temp val += 1

temp val &= OXFFFFFFFF

temp val y = temp val.to bytes(4, byteorder="little")
temp key = key[:x] + temp val x + key[x + 4:]

temp key = temp key[:y] + temp val y + temp key[y + 4:]
return temp key

crypt plugin(data: bytes, key: int) -> bytes:

decrypted plugin = []

for i in range(len(data)):

X = (i & 3)

y = ((1+1) & 3)

c = key[y * 4] + key[x * 4]
c = (c ~ data[i]) & OXxFF

decrypted plugin.append(c.to bytes(1l, byteorder="little"))

key = fix key(key, x * 4, y * 4)
return b''.join(decrypted plugin)

9/13

https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L109
https://github.com/ThreatLabz/tools/blob/main/yibackdoor/yibackdoor_rand.py#L109

YiBackdoor manages and parses any plugins by using the structures provided below.

#pragma pack(push, 1)
struct struct plugin execution info
{
uint32 t unknown field;
uint32 t plugin id;
uint8 t do start plugin;
char plugin disk name[16];
IMAGE DOS HEADER* plugin memory data;
}i
#pragma pack(pop)
struct plugin
{
custom string plugin name;
void *plugin entry address;
void *plugin data;
void *sizeof plugin data;
struct plugin execution info *plugin execution info;
void *mapped plugin memory address;
i
struct plugin manager
{
plugin *plugins[1];
uint64 t number of plugins;
uint64 t max allowed plugins;

};

Code similarities

ThreatLabz observed notable code overlaps between YiBackdoor, IcedID, and Latrodectus. IcedID is a
malware family that consists of several different components such as a downloader (which has gone through
various updates in the past), a main module backdoor, and a main module loader. These similarities are
present in both critical and non-critical parts of YiBackdoor’s code.

The code similarities between YiBackdoor, IcedID, and Latrodectus are the following:

e The use of identical alphabet charsets to derive bot-specific randomized strings. The identified
charsets are aeiou and abcedfikmnopsutw.

e The format (Base64) and length (64-bytes) of YiBackdoor’s configuration decryption key matches the
RC4 keys used by Latrodectus to encrypt its network traffic.

10/13

YiBackdoor hooks the Windows API function Rt LExitUserProcess as part of the remote code
injection process. This code injection technique is quite uncommon and resembles IcedID’s extensive
use of this Windows API.

Although YiBackdoor uses a different approach to calculate the bot ID, part of the process involves the
Fowler—Noll-Vo (FVN) hashing algorithm, which is also present in the codebase of IcedID and
Latrodectus.

YiBackdoor includes a Windows GUID list that is not used during execution. The exact same array of
GUIDs is present and utilized in both IcedID and Latrodectus. Hence, the GUIDs in YiBackdoor may
be code remnants from the latter two malware families.

The most significant code similarity is the decryption routines for the configuration blob and the
plugins. The plugins’ decryption routine is identical to the algorithm previously used by IcedID to
decrypt the core payload and configuration data. The figure below shows the algorithm, comparing the
decryption routine from a (GZIP) IcedID downloader sample and the plugins’ decryption routine found
in YiBackdoor. Furthermore, the algorithm used to decrypt YiBackdoor’s embedded configuration blob
is similar to the aforementioned decryption routine found in IcedID samples.

11/13

virtualfree_ wrapper

Plugins’ decryption routine in YiBackdoor.

Configurati wnloader.

5> zscaler | ThreatLabz

Figure 2: Comparison of YiBackdoor and IcedID GZIP decryption routines.

13/13

