
1/24

research.checkpoint.com /2025/nimbus-manticore-deploys-new-malware-targeting-europe/

Unknown Title
⋮ 9/22/2025

Nimbus Manticore Deploys New Malware Targeting Europe

Key Findings

Check Point Research is tracking a long‑running campaign by the Iranian threat actor Nimbus
Manticore, which overlaps with UNC1549, Smoke Sandstorm, and the “Iranian Dream Job”
operations. The ongoing campaign targets defense manufacturing, telecommunications, and aviation
that are aligned with IRGC strategic priorities.
Nimbus Manticore’s recent activity indicates a heightened focus on Western Europe, specifically
Denmark, Sweden, and Portugal. The threat actor impersonates local and global aerospace, defense
manufacturing, and telecommunications organizations.

https://research.checkpoint.com/2025/nimbus-manticore-deploys-new-malware-targeting-europe/


2/24

The threat actor uses tailored spear‑phishing from alleged HR recruters directing victims to fake career
portals. Each target receives a unique URL and credentials, enabling tracking and controlled access of
each victim. This approach demonstrates strong OPSEC and credible pretexting.
The attacker uses previously undocumented low-level APIs to establish a multi-stage DLL side-loading
chain. This causes a legitimate process to sideload a malicious DLL from a different location and
override the normal DLL search order.
The Nimbus Manticore toolset includes the MiniJunk backdoor and the MiniBrowse stealer. The tools
continuously evolve to remain covert, leveraging valid digital signatures, inflate binary sizes, and use
multi-stage sideloading and heavy, compiler‑level obfuscation that renders samples be “irreversible” for
regular advanced static analysis.
Overall, the campaign reflects a mature, well‑resourced actor prioritizing stealth, resiliency, and
operational security across delivery, infrastructure, and payload layers, an approach consistent with
nation‑state tradecraft.

Introduction

Since early 2025, Check Point Research (CPR) has tracked waves of Nimbus Manticore activity. Known
as UNC1549 or Smoke Sandstorm, Nimbus Manticore is a mature Iran-nexus APT group that primarily
targets aerospace and defense organizations in the Middle East and Europe. Some of its operations were
also previously described as the Iranian DreamJob campaign.

Nimbus Manticore’s activity is characterized by highly targeted phishing campaigns leading to the
deployment of custom implants, including Minibike. First reported by Mandiant in June 2022, Minibike, also
known as SlugResin, has evolved steadily since its creation. Sample analysis over the years shows its
progress, including the addition of obfuscation techniques to evade detection and static analysis, a modular
architecture, and the introduction of redundant command-and-control (C2) servers.

The most recent Minibike variants suggest a significant increase in the actor’s abilities, including using a
novel (and previously undocumented) technique to load DLLs from alternate paths by modifying process
execution parameters. This variant has new TTPs such as size inflation, junk code, obfuscation, and code
signing to lower detection rates.

In this article, we highlight the evolution of Minibike into a new variant dubbed MiniJunk. We also examine a
distinct cluster within the Nimbus Manticore umbrella that targets different sectors and employs unique
domain naming conventions, while continuing to use similar spear-phishing techniques and share malware
resources.

While we were finalizing this publication, PRODAFT has released a comprehensive report on Subtle Snail,
an espionage group with connections to Iran. In this publication, we address Subtle Snail in the chapter
entitled ‘Separate Cluster of Activity”. While this cluster employs tactics, techniques, and procedures (TTPs)
that broadly align with those observed in Nimbus Manticore operations, it is differentiated by its unique
malware capabilities, command-and-control (C2) infrastructure, and targeting preferences.

https://www.clearskysec.com/irdreamjob24/
https://cloud.google.com/blog/topics/threat-intelligence/suspected-iranian-unc1549-targets-israel-middle-east/
https://catalyst.prodaft.com/public/report/modus-operandi-of-subtle-snail


3/24

Malware Delivery websites

The attack starts with a phishing link that directs the victim to a fake job-related login page:

Figure 1 – Websites used to deliver malicious archives after successful login.

The infrastructure used by the attacker to lure job seekers is based on the React template, which varies
depending on the impersonated brand, such as Boeing, Airbus, Rheinmetall and flydubai.

The domain naming convention is usually “career” themed and registered behind Cloudflare, most likely to
keep the real server IP confidential.

The credentials for these login panels are pre-shared with the victim together with a link to the login page.
After entering credentials and clicking the login button, a post request is sent to /login-user api. If the
credentials are not correct, a 401 Unauthorized response is returned. Otherwise, the user downloads a
malicious archive with the malware.

Infection Chain

A malicious archive downloaded by the victim often masquerades as legitimate hiring process-related
software. In the following example, a ZIP archive named Survey.zip starts an elaborated infection chain.



4/24

The execution chain leverages a unique technique which we call multi-stage sideloading:

Figure 2 – The infection chain.The infection chain includes the following stages:

User Execution: The victim runs Setup.exe from the archive. This is a legitimate Windows
executable, which sideloads userenv.dll from the same archive.
Malware setup: Setup.exe starts another benign binary, a Windows Defender component
called SenseSampleUploader.exe. This executable in turn sideloads the malware
loader, xmllite.dll, from the archive’s directory.
Persistence: The loader copies Setup.exe under its original name, MigAutoPlay.exe, and the
malicious userenv.dll that it sideloads, to the malware working
directory %AppData%\Local\Microsoft\MigAutoPlay\. It creates a scheduled task to run the
executable.

Figure 3 – The contents of malicious ZIP archive downloaded from the fake recruiting website.

Userenv.dll in the malware setup stage
Once the initial Setup executable runs, it sideloads the userenv.dll from the same folder. The DLL first
checks the name of the executing PE module to determine the current stage of the infection chain. This way,
if the DLL does not run from MigAutoPlay.exe (meaning the setup of the backdoor did not occur yet), it



5/24

will load the Loader DLL in a special way, exploiting undocumented low-level API to hijack the DLL loading
path.

userenv.dll uses low-level ntdll API calls to execute a Windows Defender binary located at C:\Program
Files\Windows Defender Advanced Threat Protection\SenseSampleUploader.exe. The
Windows Defender executable is vulnerable to DLL hijacking due to using the relative path
to xmllite.dll. This flaw is abused to sideload the xmllite.dll. However, the actor manages to
sideload it from the same folder as the malicious archive as part of a unique multi-stage sideloading attack
chain.

Normally, a legitimate Windows Defender executable does not load random DLLs from folders outside the
Windows DLL search order path. So, what’s happening here?

When using low-level NT API calls to create a process, a call to RtlCreateProcessParameters is
mandatory to build a process parameter struct RTL_USER_PROCESS_PARAMETERS which is then handed
to RtlCreateUserProcess. A key field in this structure is the DllPath parameter, which defines the
search path that the process loader uses to locate and resolve imported modules. If set, it specifies the
location where the loader should search for a DLL if it is not found in the application directory.

The malware abuses this undocumented feature by using GetModuleHandle to get a path
to Setup.exe and then provides it as a DllPath parameter. As setup.exe and xmllite.dll are next to each
other in the malicious archive, when the dll is not found next to SenseSampleUploader.exe, it will be
loaded from the archive directory:

Figure 4 – Windows Defender SenseSampleUploader.exe component search for xmllite.dll,
resulted in it loading from the archive folder.

Once the xmllite.dll is loaded, its actions are pretty straightforward. It creates a working folder under the
path AppData\Local\Microsoft\MigAutoPlay\. It copies the backdoor userenv.dll to it, also
places the legitimate executable there as MigAutoPlay.exe, and then adds an auto-run registry key to
execute the benign executable.



6/24

Figure 5 – Sideloading of userenv.dll.

After persistence is completed, the malware is launched through the MigAutoPlay.exe, which
sideloads userenv.dll and shows the victim a fake error pop-up about network issues blocking the lure
program from running.

Figure 6 – Fake error at the end of the malware setup process.

The Backdoor: MiniJunk

In the last year, the actor introduced a lot of changes to the backdoor, first documented by Mandiant as
“Minibike.” We chose to track this sample as “MiniJunk.”

The userenv.dll backdoor core logic starts from the DLLMain function. The backdoor first resolves many
imports needed for it to function, but oddly enough, when it wants to use a function that was already
resolved, it resolves it again. This behavior is unusual, but it might have been leveraged in the development
cycle to identify API resolution issues. The backdoor then collects two identifiers from the infected system:
the computer name and the domain name with the username.

Although the sample employs a substantial amount of obfuscation (which is discussed in detail in the next
section), it does not encrypt the network data. Instead, it encodes it. We saw similar samples in the past that
used a simple encryption on the network data, such as XOR with a few bytes. In this case, however, it uses
a simple encoding algorithm: data is collected in a wide string, then converted to bytes, and the bytes are
reversed. Finally, the entire string is reversed.

When the main logic starts, the backdoor checks if the running executable is
called MigAutoPlay.exe (meaning the backdoor is running after the setup from its permanent working
directory) and hooks the ExitProcess function to a function that sleeps, probably preventing fatal exits or
allowing other threads to run in case of a program crash:



7/24

Figure 7 – ExitProcess function hook.

After initialization, the backdoor starts a main thread that handles networking and the remaining logic.
Analyzing the sample in this part is quite tricky: the logic is heavily branched through functions that utilize
various states, for example, a large number of classes for network requests, and obfuscations in
combination with library functions. However, all of this ultimately masks simple backdoor functionality.

Command and Control

The backdoor variants typically utilize multiple command and control (C2) servers in rotation for redundancy.
There are several (between three to five) hardcoded C2 servers, so if one C2 goes down, the next one in the
list will be used. The backdoor uses regular HTTPS requests using the Windows API. When the C2
responds, a thread is created to parse the C2 request. The C2 responds using encoded strings, similar to the
initial network data. The response structure consists of a string separated by ##. It is parsed by the backdoor
and split into a vector of strings. Most C2 commands need 3 values:

Command settings
Command ID
Command argument

For example, a “read file” command looks like this:

##[chunks size]##[read file command id]##[file path]

After parsing the command, in this case, the backdoor sends the file from the specified path via several
network requests, based on the chunk size provided as an argument. The backdoor supports the following
commands:

Command
Id Description Arguments

0 Collect computer name, domain
name with the username None

1 Get computer name None



8/24

Command
Id Description Arguments

2 Read a file and send it back File path / chunks
3 Create file File path, URL to the fille on the C2

4 List hard drives / List files in a folder String to list all hard drives or a
directory path to list all files in

5 Delete file File path

6 Create a process and use a named
pipe for its output Process path

7 Load DLL DLL path
8 / 9 Do nothing / Placeholder None
10 Move / Rename file File target, File destination
11 Not implemented None

As can be seen by the functions, these are pretty standard for a backdoor. The real complexity in the
samples comes from their obfuscations which make the samples harder to analyze.

MiniBrowse – Stealer component
MiniBrowse is a lightweight stealer used by Nimbus Manticore. We observed two variants, one to steal
Chrome credentials and another which targets Edge. Both versions are DLL designed to be injected into
browsers to steal the stored passwords.

After it’s executed, MiniBrowse first collects two identifiers from the system, username and domain name,
and then connects to a predefined endpoint on the C2 server sending data in JSON payload.

Figure 8 – MiniBrowse sends victim data.



9/24

We identified a unique network communication behavior, as the C2 needs to respond with any HTTP
response except for 200. If it does, the backdoor continues its execution looking for several files related to
Edge login data.

Each of those files is then exfiltrated to the C2, using a simple POST request:

Figure 9 – MiniBrowse exfiltrating data stolen from Edge browser.

Another method of sending those files is through connecting and sending the JSONs to a named pipe. We
identified multiple MiniBrowse versions with support for this functionality.

Obfuscation

The MiniJunk and MiniBrowse samples that we investigated exhibit heavy compiler‑level code obfuscation,
possibly implemented via custom LLVM passes. We had to address several obfuscation techniques to
facilitate analysis, including junk code insertion, control‑flow obfuscation, opaque predicates, obfuscated
function calls, and encrypted strings. The attacker invested significant effort in developing these LLVM
passes and continues to refine them; each “generation” of samples shows improvements over the previous
one, typically introduced between campaigns. The actor appears to be targeting a substantial number of
victims, and these obfuscations help the malware remain undetected while at the same time slowing down
researchers trying to determine the samples’ behavior. As with most obfuscation, no single tool addresses all
cases: off‑the‑shelf tools often fail unless the scheme matches a generic framework such as OLLVM – which
is not the case here. This underscores the attacker’s willingness to invest in their toolset and, conversely,
benefits researchers by exposing new techniques. We invested considerable effort to make the samples
sufficiently “reversible” for analysis.

Function call obfuscations

The backdoors contain compiler-level obfuscation. As a result, almost all function calls are obfuscated. The
decision on what function to call is based on several arithmetic operations, which are then stored in the RAX
register. Here is an example of a DLL’s primary function:

Figure 10 – DLL’s primary function with obfuscated function calls.



10/24

Obfuscated Control Flow

Not only are function calls obfuscated, but there are also obfuscated branches inside functions.

In this next example, there is a JMP RAX instruction, but it’s not a single JMP. Depending on various
conditions that are met when the code is running, the JMP can lead to two different places, just like a
conditional JMP, but masked as a single JMP.

Figure 11 – Obfuscated branch.

String encryption

Each string is individually encrypted with its own key. The encrypted bytes are stored in memory with the key
placed at the end of each string. Each string gets its own decryption function, adding another layer of
complexity. To top it off, the decryption routines are each overloaded with opaque predicates:



11/24

Figure 12 – String encryption.

We used LLM to simplify the function mentioned above. Eventually the encryption algorithm is
just string[i] ^ key[i % key_length]. Once we established that, we were able to automate and
decrypt all strings.

Junk code

The samples contain a bit of unused junk code:



12/24

Figure 13 – Functions with junk code.

Distinct patterns helped us deduce that a “block” of instructions can be classified as junk code, highly
repetitive in the code. Then we can exclude it in the decompile view, and continue with static analysis:



13/24

Figure 14 – The same function without junk code.

The evolution of MiniJunk

Over the past year, MiniJunk has undergone many changes and incorporated a variety of techniques. In this
section, we describe the most significant.

Signing

In May, Nimbus Manticore started to use the service SSL.com to sign their code. This led to a drastic
decrease in detections, with many samples remaining undetectable by multiple malware engines.

Based on the signing dates and our analysis of samples signed by this certificate, we determined that they
were generated by the threat actor, masquerading as existing IT organizations in Europe.

Command and control

In June, the actor re‑architected C2 to combine Cloudflare and Azure App Service. This improved the
resiliency so execution could continue even if a provider or domain was suspended.

File Size and detections

Large malware files often have lower endpoint detection, as many Antivirus engines enforce time, size, and
resource limits that truncate deep unpacking, emulation, and heuristic layers on oversized inputs. Nimbus
Manticore exploits this by inflating binaries with inert junk code blocks. Feature extraction and ML models
frequently cap analysis to the first portion of a file, so padding pushes discriminative byte patterns past those

http://ssl.com/


14/24

limits, while some engines simply skip or downgrade scanning of large files to avoid false positives and
performance hits. The combination of obfuscations, size, and codesigning result in lower endpoint detection.
As you can see, some of the largest samples remained with zero detections on VirusTotal:

Figure 15 – MiniJunk with zero detection in VirusTotal.

Separate Cluster of Activity

In addition to the operations involving the MiniJunk backdoor we described earlier in this blog, we observed
a separate but closely related activity cluster. This cluster, first reported by PRODAFT, employs TTPs that
broadly align with those documented above, but is distinguished by much smaller payloads and a lack of
sophisticated obfuscation.

Spear phishing emails

Check Point Harmony Email & Collaboration platform identified and blocked a spear-phishing attack against
a telecommunication provider in Israel.

As documented in past intrusions, the attacker uses professional social media such as LinkedIn,
masquerades as an HR specialist, then asks the target to move to another platform such as email.

A malicious email sent from an Outlook account with a job application invitation:

Figure 16 – Malicious email sent by Nimbus Manticore.

https://github.com/prodaft/malware-ioc/tree/master/SubtleSnail


15/24

As previously observed in other Nimbus Manticore campaigns, the link leads to a React-based fake
recruiting login page:

Figure 17 – Fake page delivering malware after login.

Payload

The malware used in this operation is delivered through DLL hijacking of dxgi.dll:

Figure 18 – Contents of the malware folder.

The malware strings were obfuscated by using simple one-byte XOR with 0x55.

The execution started by decrypting 5 predefined C&C servers:



16/24

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

services-update-check.azurewebsites[.]net

send-feedback.azurewebsites[.]net

send-feedback-413.azurewebsites[.]net

send-feedback-838.azurewebsites[.]net

send-feedback-296.azurewebsites[.]net

services-update-check.azurewebsites[.]net send-feedback.azurewebsites[.]net send-feedback-
413.azurewebsites[.]net send-feedback-838.azurewebsites[.]net send-feedback-296.azurewebsites[.]net

services-update-check.azurewebsites[.]net

send-feedback.azurewebsites[.]net

send-feedback-413.azurewebsites[.]net

send-feedback-838.azurewebsites[.]net

send-feedback-296.azurewebsites[.]net

Figure 19 – C2 domain encryption.

Despite overlapping infection chain steps and infrastructure, dxgi and MiniJunk implement different
command sets. At the same time, dxgi does not exhibit evasion or obfuscation techniques. All this indicates
parallel activity that could be conducted by more than one actor.



17/24

Command ID Behavior (high-level)
0 Do nothing
1 Get computer name
2 Get username
3 List files and folders in a directory
4 Delete a file
5 Move / rename a file
6 Enumerate hard drives
7 Upload a file
8 Get a list of running processes
9 Kill a process
10 Execute a bat/exe/cmd command/load dll
11 Create a process and use a named pipe for its output
12 Load a DLL

Comparison to MiniJunk

dxgi.dll and MiniJunk samples overlap in multiple details: they hook the exit process in a very similar
way, and they both collect the username and desktop name (but the new sample also collects adapter
information).

In terms of C2 communication, the key similarities lie in two areas: the parsing of network responses from C2
server, and the set of C2 commands.

The responses from C2 to MiniJunk use various separators for the data, such as ### or ---.
The dxgi.dll backdoor includes an additional verification of the request by hashing one of the parameters
with FNV and comparing the result with a generated value. Overall, the C2 communication between these
backdoors is not identical but is still quite similar.

The C2 commands in both versions closely resemble each other, with very similar logic and an identical
order of operations within the functions themselves. While the command ID varies, the underlying code base
appears to be the same.

Regarding significant differences, for network communications, dxgi.dll adds a layer of encryption. In
addition, the backdoor utilizes the WinHTTP API, but unlike MiniJunk which employs classes and branching
on network requests, this current backdoor handles all network logic within a single function. Finally, it
appears the backdoor developer didn’t bother changing the user agent, instead keeping it as is WinHTTP
Example:



18/24

Figure 20 – Network communications using WinHTTP API and a sample user agent.

The findings above suggest dxgi.dll shares a common code base with MiniJunk versions. Both of the
activity clusters may have access to the code base, and can modify the code as needed, adding compiler
passes, and altering the logic slightly. At the same time, the programming paradigm remains similar. This
is hard to notice at first, due to MiniJunk obfuscations, the different layout of the HTTP request method
(classes vs non-classes), and other variations. But once the obfuscations are addressed, it becomes clear
that they share the same code base.

Infrastructure

MiniJunk campaigns use long, concatenated health-themed subdomains of azurewebsites[.]net. Notably, the
domain naming convention in this campaign is different: the unique domain pattern is [a-z]-[a-z]+-[a-
z]+-[0-9]{3}.azurewebsites.net combining multiple words joined by hyphen separators.

While hunting for these domain naming conventions, we observed a distinct set of domains used to target
Europe which featured the following sequence of malicious domains:

1. telespazio-careers[.]com – Lure website
2. update-health-service[.]azurewebsites[.]net – First observed Azure app service domain

(mentioned by PRODAFT)

We were able to capture the following domain block, which we believe is unique for each sample:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter



19/24

check-backup-service.azurewebsites[.]net

check-backup-service-288.azurewebsites[.]net

check-backup-service-179.azurewebsites[.]net

check-backup-service-736.azurewebsites[.]net

check-backup-service.azurewebsites[.]net check-backup-service-288.azurewebsites[.]net check-backup-
service-179.azurewebsites[.]net check-backup-service-736.azurewebsites[.]net

check-backup-service.azurewebsites[.]net

check-backup-service-288.azurewebsites[.]net

check-backup-service-179.azurewebsites[.]net

check-backup-service-736.azurewebsites[.]net

C2 Infrastructure based on azurewebsites allows the attacker flexibility and redundancy; if one C2 goes
down, they can easily set up a new one.

Victimology
While Nimbus Manticore consistently targets the Middle East, especially Israel and the UAE, recent
operations show increased interest in Western Europe. We found a correlation between the malware delivery
websites and the targeted sectors. For example, a fake hiring portal of a telecommunication company will
target an employee and organizations in this sector. Our findings point to similar targets in several key
sectors: telecommunications, especially satellite providers, defense contractors, aerospace and airlines.
These sectors align with the IRGC’s strategic intelligence collection efforts.

Figure 21 – Geographic distribution of targeted organizations.



20/24

The deployment of Minibike samples in June suggests “business as usual”, occurring as it did against the
backdrop of the twelve-day conflict between Israel and Iran. The identified samples indicate that Israel
was the primary focus at that time.

Conclusion

In our research, we uncovered the elusive operations of the Iranian threat actor known as Nimbus
Manticore. Over the last year, this threat actor adopted a new set of techniques that allowed them to remain
under the radar and continue operating even during the twelve-day Israeli-Iranian conflict.

Nimbus Manticore also expanded its interest in European targets, particularly in the telecommunications,
defense, aerospace, satellite and airline sectors. We analyzed the evolution of the Minibike implant, which
has incorporated multi-layered obfuscation and increasingly relies on legitimate cloud services to remain
stealthy and difficult to detect.

IOCs:
Hashes:

23c0b4f1733284934c071df2bf953a1a894bb77c84cff71d9bfcf80ce3dc4c16- malicious zip

0b2c137ef9087cb4635e110f8e12bb0ed43b6d6e30c62d1f880db20778b73c9a - malicious zip

6780116ec3eb7d26cf721607e14f352957a495d97d74234aade67adbdc3ed339 - malicious zip

41d60b7090607e0d4048a3317b45ec7af637d27e5c3e6e89ea8bdcad62c15bf9 - malicious zip

4260328c81e13a65a081be30958d94b945fea6f2a483d051c52537798b100c69 -malicious zip

a37d36ade863966fb8520ea819b1fd580bc13314fac6e73cb62f74192021dab9- malicious zip

5d832f1da0c7e07927dcf72d6a6f011bfc7737dc34f39c561d1457af83e04e70- malicious zip

ffeacef025ef32ad092eea4761e4eec3c96d4ac46682a0ae15c9303b5c654e3e

c22b12d8b1e21468ed5d163efbf7fee306e357053d454e1683ddc3fe14d25db5

4da158293f93db27906e364a33e5adf8de07a97edaba052d4a9c1c3c3a7f234d

061c28a9cf06c9f338655a520d13d9b0373ba9826a2759f989985713b5a4ba2b

bc9f2abce42141329b2ecd0bf5d63e329a657a0d7f33ccdf78b87cf4e172fbd1

e69c7ea1301e8d723f775ee911900fbf7caf8dcd9c85728f178f0703c4e6c5c0

e77b7ec4ace252d37956d6a68663692e6bde90cdbbb07c1b8990bfaa311ecfb2

b43487153219d960b585c5e3ea5bb38f6ea04ec9830cca183eb39ccc95d15793

1b629042b5f08b7460975b5ecabc5b195fcbdf76ea50416f512a3ae7a677614a

f8a1c69c03002222980963a5d50ab9257bc4a1f2f486c3e7912d75558432be88

954de96c7fcc84fb062ca1e68831ae5745cf091ef5fb2cb2622edf2358e749e0

afe679de1a84301048ce1313a057af456e7ee055519b3693654bbb7312083876

9ec7899729aac48481272d4b305cefffa7799dcdad88d02278ee14315a0a8cc1

3b4667af3a3e6ed905ae73683ee78d2c608a00e566ae446003da47947320097f

a4f5251c81f080d80d1f75ad4cc8f5bc751e7c6df5addcfca268d59107737bd0

cf0c50670102e7fc6499e8d912ce1f5bd389fad5358d5cae53884593c337ac2e

3b58fd0c0ef8a42226be4d26a64235da059986ec7f5990d5c50d47b7a6cfadcd



21/24

7c77865f27b8f749b7df805ee76cf6e4575cbe0c4d9c29b75f8260210a802fce

d2db5b9b554470f5e9ad26f37b6b3f4f3dae336b3deea3f189933d007c17e3d8

b9b3ba39dbb6f4da3ed492140ffc167bde5dee005a35228ce156bed413af622d

53ff76014f650b3180bc87a23d40dc861a005f47a6977cb2fba8907259c3cf7a

b405ae67c4ad4704c2ae33b2cf60f5b0ccdaff65c2ec44f5913664805d446c9b

5985bf904c546c2474cbf94d6d6b2a18a4c82a1407c23a5a5eca3cd828f03826

0e4ff052250ade1edaab87de194e87a9afeff903695799bcbc3571918b131100

8e7771ed1126b79c9a6a1093b2598282221cad8524c061943185272fbe58142d

f54fccb26a6f65de0d0e09324c84e8d85e7549d4d04e0aa81e4c7b1ae2f3c0f8

054483046c9f593114bc3ddc3613f71af6b30d2e4b7e7faec1f26e72ae6d7669

95d246e4956ad5e6b167a3d9d939542d6d80ec7301f337e00bb109cc220432cf - Minibrowse

9b186530f291f0e6ebc981399c956e1de3ba26b0315b945a263250c06831f281 - Minibrowse

Domains:

asylimed[.]azurewebsites[.]net

clinichaven[.]azurewebsites[.]net

healsanctum[.]azurewebsites[.]net

mediasylum[.]azurewebsites[.]net

therashelter[.]azurewebsites[.]net

arabiccountriestalent[.]com

arabiccountriestalenthr[.]azurewebsites[.]net

arabiccountriestalents[.]azurewebsites[.]net

arabiccountriestalentshr[.]azurewebsites[.]net

talenthumanresourcestalent[.]com

carebytesolutions[.]azurewebsites[.]net

medicoreit[.]azurewebsites[.]net

smartmediq[.]azurewebsites[.]net

vitatechlink[.]azurewebsites[.]net

biolinksystems[.]azurewebsites[.]net

digicura[.]azurewebsites[.]net

healthcarefluent[.]com

hivemedtech[.]azurewebsites[.]net

neurocloudhq[.]azurewebsites[.]net

marsoxygen[.]azurewebsites[.]net

nanobreathe[.]azurewebsites[.]net

turbulencemd[.]azurewebsites[.]net

zerogmed[.]azurewebsites[.]net

virgomarketingsolutions[.]com

virgomarketingsolutions[.]comtions[.]com

airtravellog[.]com

masterflexiblecloud[.]azurewebsites[.]net

storagewiz[.]co[.]azurewebsites[.]net



22/24

thecloudappbox[.]azurewebsites[.]net

arabiccountriestalent[.]azurewebsites[.]net

focusfusion[.]eastus[.]cloudapp[.]azure[.]com

frameforward[.]azurewebsites[.]net

tacticalsnap[.]eastus[.]cloudapp[.]azure[.]com

thetacticstore[.]com

lensvisionary[.]azurewebsites[.]net

wellnessglowluth[.]azurewebsites[.]net

activehealthlab[.]azurewebsites[.]net

ehealthpsuluth[.]com

grownehealth[.]eastus[.]cloudapp[.]azure[.]com

activespiritluth[.]eastus[.]cloudapp[.]azure[.]com

createformquestionshelper[.]com[.]net

collaboromarketing[.]com

cloudaskquestioning[.]eastus[.]cloudapp[.]azure[.]com[.]net

cloudaskquestionanswers[.]com[.]net

cloudaskquestionanswers[.]azurewebsites[.]net[.]net

cloudaskingquestions[.]eastus[.]cloudapp[.]azure[.]com[.]net

cloudaskingquestions[.]azurewebsites[.]net[.]net

cloudaskingquestioning[.]azurewebsites[.]net[.]net

vitatechlinks[.]azurewebsites[.]net

mojavemassageandwellness[.]com

airmdsolutions[.]azurewebsites[.]net

ventilateainest[.]azurewebsites[.]net

aeroclinicit[.]azurewebsites[.]net

exchtestcheckingapijson[.]azurewebsites[.]net

exchtestcheckingapihealth[.]com

exchtestchecking[.]azurewebsites[.]net

maydaymed[.]azurewebsites[.]net

traveltipspage[.]com

smartapptools[.]azurewebsites[.]net

createformquestionshelper[.]com

cloudaskquestioning[.]eastus[.]cloudapp[.]azure[.]com

cloudaskquestionanswers[.]com

cloudaskquestionanswers[.]azurewebsites[.]net

cloudaskingquestions[.]eastus[.]cloudapp[.]azure[.]com

cloudaskingquestioning[.]azurewebsites[.]net

healthbodymonitoring[.]azurewebsites[.]net

healthcare-azureapi[.]azurewebsites[.]net

healthdataanalyticsrecord[.]azurewebsites[.]net

medical-deepresearch[.]azurewebsites[.]net



23/24

medicalit-imaging[.]azurewebsites[.]net

mentalhealth-support-portal[.]azurewebsites[.]net

patient-azureportal[.]azurewebsites[.]net

pharmainfo[.]azurewebsites[.]net

symptom-recordchecker[.]azurewebsites[.]net

systemmedicaleducation[.]azurewebsites[.]net

acupuncturebentonville[.]com

cardiomedspecialists[.]azurewebsites[.]net

digithealthplatform[.]azurewebsites[.]net

medicpathsolutions[.]azurewebsites[.]net

nextgenhealthtrack[.]azurewebsites[.]net

sulumorbusinessservices[.]com

telehealthconnectpro[.]azurewebsites[.]net

totalcaremedcenter[.]azurewebsites[.]net

trustedcarehub360[.]azurewebsites[.]net

virtualcliniczone[.]azurewebsites[.]net

wellnessfirstgroup[.]azurewebsites[.]net

yourfamilymdclinic[.]azurewebsites[.]net

doctorconsult-app.azurewebsites[.]net

managetools-platform.azurewebsites[.]net

msnotetask-insights.azurewebsites[.]net

mstrakcer-tools.azurewebsites[.]net

olemanage-dashboard.azurewebsites[.]net

oletask-tracker.azurewebsites[.]net

patientcare-portal.azurewebsites[.]net

Similar activity cluster:

rpcconnection.azurewebsites[.]net

backsrv66.azurewebsites[.]net 

backsrv74.azurewebsites[.]net

datasheet96.azurewebsites[.]net

mainrepo10.azurewebsites[.]net

services-update-check[.]azurewebsites[.]net

send-feedback[.]azurewebsites[.]net

send-feedback-413[.]azurewebsites[.]net

send-feedback-838[.]azurewebsites[.]net

send-feedback-296[.]azurewebsites[.]net

check-backup-service[.]azurewebsites[.]net

check-backup-service-288[.]azurewebsites[.]net

check-backup-service-179[.]azurewebsites[.]net

check-backup-service-736[.]azurewebsites[.]net



24/24

boeing-careers[.]com

rheinmetallcareer[.]org

rheinmetallcareer[.]com

airbus[.]global-careers[.]com

airbus[.]careersworld[.]org

airbus[.]usa-careers[.]com

airbus[.]germanywork[.]org

airbus[.]careers-portal[.]org

rheinmetall[.]careersworld[.]org

rheinmetall[.]careers-hub[.]org

rheinmetall[.]theworldcareers[.]com

rheinmetall[.]gocareers[.]org

flydubaicareers[.]ae[.]org

global-careers[.]com

careers-hub[.]org

careersworld[.]org

usa-careers[.]com

germanywork[.]org

careers-portal[.]org

theworldcareers[.]com

gocareers[.]org

GO UP
BACK TO ALL POSTS

https://undefined/latest-publications/

