
1/11

www.zscaler.com /blogs/security-research/technical-analysis-zloader-updates

Technical Analysis of Zloader Updates
ThreatLabz ⋮ ⋮ 9/21/2025

Technical Analysis
In this section, we will explore the various changes that were introduced in the latest versions of Zloader
including new evasion techniques, additional functionality for lateral movement, and modifications to network
communication.

Anti-analysis

One notable change to Zloader’s functionality involves the required filename that was expected by the
malware. Previously, Zloader samples were expected to be run with a specific hardcoded filename. If the
actual filename did not match the expected value, that Zloader sample would not run. This design is likely
intended to evade automated malware sandbox environments. However, in the most recent versions, the

https://www.zscaler.com/blogs/security-research/technical-analysis-zloader-updates

2/11

malware Zloader author introduced two new generic filenames to allow the threat actors that deploy (or
update) Zloader with more flexibility. These two generic filenames are Updater.exe and Updater.dll.

Another significant change that was made to hinder analysis is more obfuscation layers. This level of
obfuscation is achieved using different XOR-based integer decoding functions. To simplify the analysis,
ThreatLabz used an IDA script to remove these layers of obfuscation as shown in the example below.

import idautils

XOR_KEY = 0xAE # CHANGE ACCORDINGLY

FUNCTION_NAME = "Calculate_Int1" # CHANGE ACCORDINGLY

Iterate through all functions in the IDA database.

for func_addr in Functions():

 func_name = get_func_name(func_addr)

 if func_name.startswith(FUNCTION_NAME):

 print(f"Processing function: {func_name}")

 # Search for cross-references (xrefs) to the function.

 for xref in idautils.XrefsTo(func_addr):

 print(f"\tFound xref at: {hex(xref.frm)}")

 # Grab the DWORD passed and perform a XOR operation on it.

 param = ida_bytes.get_byte(xref.frm-1) # CHANGE ACCORDINGLY

 result = param ^ XOR_KEY

 mov_eax_constant = b'\xB8' + result.to_bytes(4, 'little')

 ida_bytes.patch_bytes(xref.frm, mov_eax_constant)

 set_cmt(xref.frm, FUNCTION_NAME, 0)

The figure below illustrates a function that checks Zloader’s process integrity level, before and after
deobfuscation.

3/11

Figure 1: Example of Zloader’s new code obfuscation techniques and the same function after deobfuscation.

The process integrity level is important because Zloader will exit if it detects that the process is being
executed with high integrity. In modern versions of Windows, most standard processes run with medium
integrity. Thus, this new integrity level check is likely another detection mechanism for malware sandboxes,
which often run samples with administrator privileges (i.e., high integrity). If Zloader is executed with medium
integrity, the malware will be installed in the %APPDATA% directory. Otherwise, if Zloader has system integrity,
the malware will be installed in the %PROGRAMFILES% directory.

The typical integrity levels are shown in the table below:

Integrity Level Description
Low integrity (SID value:
0x1000)

Restricted processes, usually sandboxed (e.g., web browsers like
Chrome/Edge running untrusted content)

Medium integrity (SID
value: 0x2000) Standard user processes

High integrity (SID value:
0x3000) Administrator privileges

System integrity (SID
value: 0x4000)

Processes running as part of the OS kernel or critical system operations
(e.g., trusted installers, system services)

Table 1: Summary of Windows process integrity levels.

This behavior stands out because user-mode trojans like Zloader typically require elevated privileges to
perform various actions. By avoiding elevated permissions, Zloader sacrifices broader system access for the
added benefit of evading malware sandbox detection.

Static configuration

4/11

The Zloader static configuration has also undergone minor changes. The TLS Server Name Indication (SNI)
and the DNS nameserver, which functions as the command-and-control (C2 server) for Zloader’s network
communication when using the DNS Tunneling protocol, have been relocated to the end of the C2 domain
section.

The DNS servers used for resolving the C2 nameserver were previously stored in network byte order. The
DNS servers are now represented using a mini JSON configuration. A description for each JSON key is
shown in the table below:

Configuration
key Description

proto
Indicates the communication protocol used, such as UDP (DNS), HTTPS (DoH),
or TLS (DoT).

ip The resolver IP.
port The resolver port.

qps
(Queries Per Second) Indicates the maximum number of DNS queries the resolver
can process per second.

Table 2: Mini JSON configuration for the DNS servers used by Zloader’s DNS Tunneling protocol.

If a DNS entry equals 127.0.0.1, Zloader ignores the entry and treats it as a placeholder.

The figure below shows the modified static configuration, including the new location of the C2 domains, the
mini JSON format, and a placeholder entry for an additional DNS server.

https://undefined/blogs/security-research/inside-zloader-s-latest-trick-dns-tunneling

5/11

6/11

Figure 2: Zloader’s new static configuration format.

Shell commands

Zloader’s interactive shell commands allow a threat actor to execute commands, deploy second-stage
malware payloads, run shellcode, exfiltrate data, as well as identify and terminate specific processes. The
latest version of Zloader adds a new set of LDAP functions to improve network discovery and expand lateral
movement capabilities. The new functions are outlined in the table below.

Command Description
ldap_bind_s Authenticates and binds to the LDAP server.
ldap_err2string Converts an LDAP error code into a human-readable string.
ldap_first_attribute Retrieves the first attribute of an LDAP entry.
ldap_first_entry Retrieves the first entry from an LDAP search result.
ldap_get_values Retrieves the values associated with a specific attribute from an LDAP entry.
ldap_init Initializes a connection to the LDAP server.
ldap_memfree Releases allocated memory used by LDAP functions.
ldap_next_attribute Retrieves the next attribute from an LDAP entry.
ldap_next_entry Retrieves the next entry from an LDAP search result.
ldap_search_s Performs a synchronous search on the LDAP server.
ldap_set_option Sets various options for an LDAP session (e.g., timeout or protocol version).
ldap_value_free Releases memory used for an array of attribute values.
ldap_search Performs an asynchronous search on the LDAP server.

Table 3: New LDAP functions added to Zloader’s interactive shell.

Network communication

The latest versions of Zloader have removed the Domain Generation Algorithm (DGA), which was rarely
used in previous versions. In addition to this change, several other important updates have been introduced
to Zloader’s DNS tunnel encryption, together with new support for the WebSockets protocol. These updates
are explored in the following sections.

DNS C2 traffic

The DNS C2 protocol, previously described in our Zloader 2.9.4.0 blog, has undergone significant changes
in the latest iterations. In older versions, Zloader relied on TLS encryption for payloads in DNS queries and
responses. However, the current implementation replaces this with Base32 encoding layered on top of a
custom encryption algorithm. The comparison figure below highlights the differences between the old and
new Zloader DNS C2 messages.

https://undefined/blogs/security-research/inside-zloader-s-latest-trick-dns-tunneling#technical-analysis
https://undefined/blogs/security-research/inside-zloader-s-latest-trick-dns-tunneling#technical-analysis

7/11

Figure 3: Example DNS C2 message comparison between the old and new versions of Zloader.

The Zloader DNS C2 message format is now the following:

Figure 4: Zloader DNS tunneling protocol message format.

A new session key field has been introduced that contains a random DWORD, which is used throughout the
communication exchange. The session key field is used to generate the final key, which is then used to
decode the query’s header and payload. The final key is computed by applying an XOR operation between
the Base32-encoded DWORD in the session key and a hardcoded DWORD embedded in the malware
binary, which may vary between samples and instances of Zloader. Once the final key is generated, the
following algorithm is used to decode the header and payload:

8/11

def decode_sections(bytes_array, key):

 result = bytearray()

 for byte in bytes_array:

 # XOR uses the last byte of the key, then rotates and increments.

 last_byte = key & 0xFF

 result.append(byte ^ last_byte)

 key = ((key > 24) & 0xFF)

 key = (key & 0xFFFFFF00) | ((key + 1) & 0xFF)

 return result

The examples in the figure below show the final structure and decoded outputs of the DNS requests:

9/11

10/11

Figure 5: Showcases the final structure and decoded outputs of the DNS requests.

The purpose of switching from TLS-based encryption to a custom algorithm may be due to the fact that the
TLS messages can easily be identified in DNS traffic due to their well defined structure. Thus, this change
was likely made to better evade network-based signatures.

After decryption, the Zloader DNS tunnel header is identical to previous versions as shown below:

struct zloader_dns_tunnel_header {

 unsigned int session_id; // Randomly generated.

 unsigned int sequence_num; // Incremented per packet.

 byte msg_type; // 1-9

 byte reserved; // Reserved

 unsigned int generic_var; // Varies by msg_type

};

Once all components of the payload have been sent or received, the data format structure aligns with
Zloader’s HTTPS communications. The payload is first encrypted using the Zeus VisualEncrypt
algorithm, followed by encryption with a randomly generated 32-byte (256-bit) RC4 key. Finally, the RC4 key
itself is encrypted with a hardcoded 1,024-bit RSA public key.

WebSocket support

In the latest versions, Zloader introduced WebSockets that can be used to upgrade the HTTP connection
with the following hardcoded header:

GET %s HTTP/1.1\

Host: %s\

Connection: Upgrade

Pragma: no-cache

Cache-Control: no-cache

User-Agent: %s

Upgrade: websocket

Origin: %s

Sec-WebSocket-Version: 13

Accept-Encoding: gzip, deflate, br, zstd

Accept-Language: %s

Sec-WebSocket-Key: %s

The introduction of WebSockets in Zloader may be designed to further blend in with legitimate web-based
traffic to bypass network-based detections.

11/11

