cybersecuritynews.com /shai-hulud-npm-supply-chain-attack/

Lessons Learned From Massive npm Supply Chain Attack Using
“Shai-Hulud” Self-Replicating Malware

Guru Baran : : 9/18/2025

By

Guru Baran

September 18, 2025

I | Cyber
== |security

=—=|News

“Shai-Hulud” NPM Supply Chain Attack

AV,
g IMPACT SUMMARY
N @ 477+ packages compromised|
A

@ 2.5+ billion total downloads
@ Attack duration: 2-3 days
@ Sept 14-16, 2026

‘- npmjs.help spoofing @ npm install trigger hdlejs (3.6MB)

|e MFA reset social eng @ bundle s executes jtinstall scripts

|e Account takeover '« NpmModule update pjot@0.8.8 first]
]]

>

@ npm whoami check [ffleHog deploy @ webhook site endpoint
@ Package enumeration cess.env dump @ Shai-Hulud repo

® 477+ packages IS/GCP/Azure keys| @ GitHub Actions

® Exponential spread Hub PATs @ Base64 payloads

The JavaScript ecosystem experienced one of its most sophisticated and damaging supply chain attacks in
September 2025, when a novel self-replicating worm dubbed “Shai-Hulud” compromised over 477 npm packages,
marking the first successful automated propagation campaign in the npm registry’s history.

This attack represents a significant evolution in supply chain threats, leveraging both social engineering and technical
automation to achieve unprecedented scale and persistence across the open-source software ecosystem.

The Shai-Hulud campaign began with a sophisticated phishing operation targeting npm package maintainers through
fake domains spoofing the official npm registry.

Attackers created convincing emails from the fraudulent domain npmijs[.]Jhelp, closely mimicking the
legitimate npmjs[.Jcom, and urged maintainers to “update” their multi-factor authentication credentials under threat of
account lockout.

1/7

https://cybersecuritynews.com/shai-hulud-npm-supply-chain-attack/
https://cybersecuritynews.com/author/guru/
https://i3.wp.com/blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj7Z55c2jBvG1SSSOPmdk4UCA-TKEO7ih2SidN_2csHdTTKM3cRc0cEkNlDSAc5RdexN2WFDc2QfPLU_LX258mfqT5n56RLyenBUdKrzXY0J09j4D-dYm7PnR3kMTNDOhC9hIuYQcRwsOFc1i9U0dRRzRd-9bNfLnWZlkb1ReQ1bwFpsIxhyphenhyphenFCXEThBRwLQ/s16000/%E2%80%9CShai-Hulud%E2%80%9D%20NPM%20Supply%20Chain%20Attack.webp?w=1600&resize=1600,900&ssl=1
https://cybersecuritynews.com/npm-supply-chain-ctrl-tinycolor/
https://news.google.com/publications/CAAqMggKIixDQklTR3dnTWFoY0tGV041WW1WeWMyVmpkWEpwZEhsdVpYZHpMbU52YlNnQVAB?hl=en-IN&gl=IN&ceid=IN:en
https://cybersecuritynews.com/authentication/

SHAI-HULUD NPM SUPPLY CHAIN ATTACK

IMPACT SUMMARY

o 477+ packages compromised|
o 2.5+ billion total downloads.

o Attack duration: 2-3 days

o Sept 14-16, 2025

ins
epljot@0.8.8 first)

-pmwhoam check [ffleHog deploy o webhook site endpoint] -
 Package enumeration cess.env dump o Shai-Hulud repo

® 477+ packages 1S/GCP/Azure keys| @ GitHub Actions. \

dlejs (36MB)
tall scripts

o Exponential spread _ Hub PATs o Base64 payloads

Shai-Hulud NPM Supply Chain Attack

This social engineering approach proved devastatingly effective, as it exploited the trust relationship between
developers and the npm platform while creating a sense of urgency that bypassed normal security caution.

The attack’s sophistication was further evidenced by Unit 42’s assessment that the threat actors likely leveraged
Large Language Models (LLMs) to assist in writing the malicious bash scripts, based on the inclusion of comments
and emojis in the code.

This represents a concerning trend in cybercriminal operations, where Al tools are increasingly being weaponized to
enhance the quality and effectiveness of malicious code development.

Supply Chain Attack Using “Shai-Hulud” Self-Replicating Malware

The malware’s core innovation lies in its self-replicating mechanism, implemented through

the NpmModule.updatePackage function. Unlike traditional supply chain attacks that require manual intervention
for each compromised package, Shai-Hulud operates as a true worm, automatically identifying and infecting
additional packages maintained by compromised developers.

The propagation process follows a systematic approach: downloading existing package tarballs,
modifying package . json files to inject malicious postinstall scripts, embedding the ~3.6MB
minified bundle. js payload, repackaging the archives, and republishing them to the npm registry.

This automated approach enabled exponential growth in affected packages, with the malware spreading from an
initial handful of compromised packages to over 477 infected packages within approximately 72 hours.

2/7

https://cybersecuritynews.com/social-engineering/
https://cybersecuritynews.com/new-supply-chain-attack-targets-legitimate-npm-package/

Shai-Hulud Attack Timeline

® Critical High ® Medium @ Low
Contained
Community Act
CrowdStrike Hit
2
% Worm Found
@
tinycolor Hack
airpilot Pub
rxnt Update
18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
Sep 14, 2025 Sep 15, 2025 Sep 16, 2025

Date
Shai-Hulud NPM Supply Chain Attack Timeline

The worm’s design ensures persistence across the ecosystem by leveraging legitimate maintainer credentials and
publishing rights, effectively turning trusted developers into unwitting vectors for malware distribution.

The malware execution begins when users install compromised packages via npm install, triggering
the postinstall script that launches the bundle. js payload.

This Webpack-bundled script performs comprehensive system reconnaissance, beginning with environment variable
extraction (process.env) to capture sensitive credentials immediately available in the execution context.

The payload then deploys TruffleHog, a legitimate open-source secret scanning tool, using the
command trufflehog filesystem . --json --results=verified to systematically scan the local
filesystem for over 800 different types of credentials.

The malware demonstrates sophisticated credential validation capabilities, using npm whoami commands to verify
the authenticity of discovered npm tokens and access cloud service APIs to confirm the validity of AWS, Google
Cloud Platform, and Microsoft Azure credentials.

This validation step ensures that only working credentials are exfiltrated, maximizing the value of stolen data for
subsequent malicious activities.

Comprehensive Package Analysis

The attack timeline reveals a rapid escalation that caught the security community off-guard. The earliest confirmed
malicious package, airpilot@0. 8.8, was published on September 14, 2025, at 18:35:07.600Z UTC.

The campaign gained significant momentum with the compromise of @ctrl/tinycolor@4.1.1, a package with
over 2.2 million weekly downloads, which was first reported by security researcher Daniel Pereira on September 15,
2025.

The attack’s scope expanded dramatically on September 16, when security researchers identified compromised
packages belonging to enterprise vendors, including multiple CrowdStrike npm packages.

This expansion demonstrated the worm'’s ability to breach high-value targets and potentially access enterprise
development environments, raising the stakes significantly for affected organizations.

3/7

https://cybersecuritynews.com/npm-supply-chain-attack-crowdstrike/

Affected Package Inventory
Package_Name

rxnt-authentication
airpilot
angulartics2

encounter-playground
json-rules-engine-simplified
koa2-swagger-ui

ngx-color

ngx-toastr

ngx-trend
react-complaint-image

Compromised_Version
ctrl/tinycolor
0.0.6
0.8.8 (earliest identified)
14.1.2
ctrl/deluge
ctrl/golang-template
ctrl/magnet-link
ctrl/ngx-codemirror
ctrl/ngx-csv
ctrl/ngx-emoji-mart
ctrl/ngx-rightclick
ctrl/gbittorrent
ctrl/react-adsense
ctrl/shared-torrent
ctrl/torrent-file
ctrl/transmission
ctrl/ts-base32

0.0.5
0.2.4,0.21
5.11.2,5.11.1

nativescript-community/gesturehandler

nativescript-community/sentry
nativescript-community/text

nativescript-community/ui-collectionview

nativescript-community/ui-drawer
nativescript-community/ui-image

Status
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed

nativescript-community/ui-material-bottomsheet Removed

nativescript-community/ui-material-core
nativescript-community/ui-material-core-tabs

10.0.2
19.0.2
8.0.1

0.0.35

react-jsonschema-form-conditionals 0.3.21

react-jsonschema-form-extras
rxnt-healthchecks-nestjs
rxnt-kue

swc-plugin-component-annotate

ts-gaussian

The complete inventory of affected packages spans multiple maintainer namespaces and includes both popular

1.04
1.0.5
1.0.7
1.9.2
3.0.6

libraries and specialized tools. Key compromised packages include:

High-Impact Packages:

e @ctrl/tinycolor@4.1.1, 4.1.2 - 2.2 million weekly downloads

e angulartics2@14.1.2 — Popular Angular analytics library

e ngx-toastr@19.0.2 — Widely-used notification component

¢ Multiple @nativescript-community packages affecting mobile development workflows

Enterprise and Security-Related Packages:

¢ Multiple CrowdStrike npm packages (specific package names were rapidly removed by npm administrators)

e rxnt-authentication@0.0.6 — Authentication-related functionality

Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed
Removed

47

e Various @ctrl namespace packages spanning file management, networking, and media processing

The malware’s selection of targets appears strategic, focusing on packages with high download counts and broad
dependency graphs to maximize infection potential.

The inclusion of enterprise vendor packages suggests either sophisticated targeting or opportunistic exploitation of
compromised maintainer accounts with access to commercial package repositories.

Indicators of Compromise (IOCs) and Detection Methods

Category Indicator Value
file_hashes bundle.js 46faab8ab153fae6e80e7cca38eab363075bb524edd79e42269217a08362¢
network_indicators ~ webhook_url https://webhook.site/bb8ca5f6-4175-45d2-b042-fc9ebb8170b7

network_indicators trufflehog_download Downloaded and executed from filesystem

file_system_indicators malicious_workflow .github/workflows/shai-hulud-workflow.yml

file_system_indicators github_branch shai-hulud
file_system_indicators bundle_file bundle.js (varies in size, ~3.6MB minified)
file_system_indicators public_repo Shai-Hulud repository created in victim accounts

process_indicators npm_commands npm whoami, npm publish commands
process_indicators trufflehog_command trufflehog filesystem . —json —results=verified
process_indicators postinstall_script node bundle.js

Security teams can identify potential compromises through several file system artifacts. The primary indicator is the
presence of malicious bundle. js files with the SHA-256

hash 46faab8abl53fae6e80e7cca38eab363075bb524edd79e42269217a083628£009.

However, researchers note that this hash may vary across different campaign iterations, requiring behavioral
detection rather than relying solely on static signatures.

Critical file system indicators include:

e .github/workflows/shai-hulud-workflow.yml —Malicious GitHub Actions workflow
e shai-hulud branch creation in Git repositories

¢ Public repositories named “Shai-Hulud” containing credential dumps
e Unexpected postinstall script additions to package. json files

The malware communicates with a specific command-and-control infrastructure for data exfiltration. The primary
exfiltration endpoint is https://webhook.site/bb8ca5f6-4175-45d2-b042-fc9ebb8170b7, which received

stolen credentials and system information in JSON format. Network monitoring teams should watch for:

¢ Outbound connections to webhook. site domains

e Base64-encoded HTTP POST requests containing credential data
GitHub API abuse for repository creation and workflow injection
TruffleHog binary downloads and filesystem scanning activity

The malware exhibits distinctive behavioral patterns that can aid in detection and incident response. Key process
indicators include:

e Execution of npm whoami commands for credential validation

e Automated npm publish operations from compromised accounts
¢ TruffleHog process execution with filesystem scanning parameters
¢ GitHub API calls for repository enumeration and modification

Credential Harvesting and Data Exfiltration

5/7

https://webhook.site/bb8ca5f6-4175-45d2-b042-fc9ebb8170b7

Shai-Hulud implements a comprehensive credential harvesting strategy targeting multiple credential types and
storage locations.

The malware prioritizes high-value credentials, including npm publishing tokens, GitHub Personal Access Tokens
(PATs), and cloud service credentials for AWS, Google Cloud Platform, and Microsoft Azure.

The systematic approach includes scanning . npmrc files for npm registry tokens, extracting SSH private keys
(id_rsa) from default locations, and parsing Git configuration files (. git/config) for embedded credentials.

The malware also targets environment-specific credential storage, including . env files commonly used in

development environments and CI/CD pipeline configurations. This comprehensive approach ensures maximum
credential exposure across different development workflows and deployment scenarios.

Critical supply chain attack on npm package @ctrl/tinycolor infecting 40+ packages with self-propagating malware
and a critical severity level

The attack employs a dual-channel exfiltration strategy to ensure data persistence and accessibility. Primary
exfiltration occurs through webhook endpoints at webhook. site, providing immediate access to stolen credentials

via HTTP POST requests containing JSON-encoded credential data.

The secondary exfiltration method involves creating public GitHub repositories named “Shai-Hulud” within
compromised accounts, where complete credential dumps are stored as base64-encoded files.

The malware also establishes persistence through GitHub Actions workflows,
injecting . github/workflows/shai-hulud-workflow.yml files that execute on code pushes and automatically
exfiltrate repository secrets using the toJSON (secrets) function.

This persistence mechanism ensures continued data collection even after the initial infection is removed from
development machines.

The compromise of CrowdStrike npm packages represents a significant escalation in the attack’s potential impact on
enterprise environments.

While specific package names were rapidly removed by npm administrators and CrowdStrike’s incident response
team, the compromise demonstrates the malware’s ability to infiltrate packages belonging to major cybersecurity
vendors.

This development raises concerns about supply chain security in enterprise software development and the potential
for insider threat scenarios resulting from compromised vendor packages.

CrowdStrike confirmed that they acted quickly to remove the compromised packages upon discovery, but the incident
highlights the challenges faced by enterprise software vendors in maintaining supply chain integrity.

The compromise also underscores the importance of comprehensive dependency scanning and package integrity
verification in enterprise development workflows.

Security researchers have identified significant operational and technical overlaps between Shai-Hulud and previous
npm supply chain attacks, particularly the S1ngularity/Nx compromise that occurred in late August 2025.

Both campaigns share similar credential harvesting techniques, GitHub repository manipulation methods, and a
preference for creating public repositories to store stolen data. The technical similarities suggest either the same
threat actor group or shared tooling and methodologies between related groups.

The progression from the S1ngularity attack to Shai-Hulud demonstrates a clear evolution in attacker capabilities,
with the addition of self-propagating worm functionality representing a significant advancement in automated supply
chain exploitation.

This evolution suggests that threat actors are continuously refining their techniques and investing in more
sophisticated attack infrastructure.

6/7

https://cybersecuritynews.com/npm-supply-chain-ctrl-tinycolor/
https://cybersecuritynews.com/npm-supply-chain-attack-crowdstrike/
https://cybersecuritynews.com/nx-packages-hacked/

Lessons Learned and Future Implications

The Shai-Hulud attack represents a watershed moment in supply chain security, demonstrating how traditional
security measures are inadequate against self-propagating threats that operate at CI/CD speed.

The attack’s success highlights the need for fundamental changes in how organizations approach dependency
management and package validation.

Traditional approaches that focus on static vulnerability scanning and known-bad package identification are
insufficient against dynamic, self-modifying threats that leverage legitimate credentials and publishing infrastructure.

The attack also underscores the critical importance of maintainer account security, as compromise of a single high-
privilege account can cascade across entire package ecosystems.

The Shai-Hulud npm supply chain attack represents a paradigm shift in supply chain threats, combining sophisticated
social engineering with automated propagation mechanisms to achieve unprecedented scale and impact.

The attack’s success in compromising over 477 packages within a three-day period demonstrates the vulnerability of
trust-based ecosystems to well-executed adversarial operations.

The incident’s lessons extend beyond immediate technical remediations to fundamental questions about ecosystem
security architecture and the balance between accessibility and security in open-source software distribution.

As the JavaScript ecosystem continues to grow and enterprises increase their reliance on npm packages, the
security implications of Shai-Hulud will influence supply chain security practices for years to come.

The attack has proven that traditional security approaches are inadequate against adaptive, self-propagating threats,
necessitating new approaches that combine automated detection, community collaboration, and enhanced maintainer
security practices.

Future supply chain security must evolve to address not just known threats, but the innovative attack methodologies
that sophisticated adversaries continue to develop.

The npm ecosystem’s recovery from Shai-Hulud has demonstrated both its resilience and its vulnerabilities, providing
a critical learning opportunity for improving supply chain security across all software distribution platforms.

The lessons learned from this incident must inform not only technical security improvements but also policy changes,
community practices, and organizational security strategies to better defend against the next generation of supply
chain attacks.

Find this Story Interesting! Follow us on Google News, LinkedIn, and X to Get More Instant Updates.

7/7

https://cybersecuritynews.com/secure-your-ci-cd-pipeline/
https://news.google.com/publications/CAAqMggKIixDQklTR3dnTWFoY0tGV041WW1WeWMyVmpkWEpwZEhsdVpYZHpMbU52YlNnQVAB?hl=en-IN&gl=IN&ceid=IN:en
https://www.linkedin.com/company/cybersecurity-news/
https://x.com/cyber_press_org

