
1/10

www.pointwild.com /threat-intelligence/raven-stealer

Raven Stealer
Lat61 Threat Intelligence Team ⋮ ⋮ 9/16/2025

Introduction to Raven Stealer
Raven Stealer is a contemporary, lightweight information-stealing malware developed primarily in Delphi and C++.
Designed for stealth and efficiency, it operates with minimal user interaction while maintaining a high level of
operational concealment. This malware steals credentials from various applications, harvests browser data such as
cookies, autofill entries, and browsing history, and performs real-time data exfiltration via Telegram bot integration.

Its distribution often occurs through underground forums or bundled with cracked software, making it a persistent
threat to both personal and enterprise environments. Due to its ability to bypass basic antivirus detection and transmit
stolen data instantly, Raven Stealer poses significant security risks. Mitigating its impact requires behavioural-based
threat detection, vigilant monitoring of Telegram traffic, user education on phishing tactics, and consistent software
patching to close vulnerabilities.

This report presents a comprehensive technical evaluation of Raven Stealer’s functional capabilities, examines its
external distribution mechanisms, correlates observed behavioural and offers strategic recommendations to enhance
detection and defensive measures.

How does the Raven Stealer work?

Raven Stealer targets Chromium-based browsers like Chrome and Edge, extracting passwords, cookies, payment
data, and autofill entries. Its modular design and built-in resource editor let attackers embed configuration details
such as Telegram bot tokens directly into the payload, streamlining deployment for even low-skilled threat actors.

Raven Stealer is promoted via a dedicated Telegram channel. The integration of Telegram for command-and-control
(C2)-like operations, combined with a streamlined user interface and support for dynamic modules, enhances the
tool’s appeal within the commodity malware landscape, positioning it as a commercially viable and technically
sophisticated offering.

https://www.pointwild.com/threat-intelligence/raven-stealer


2/10

Figure 1: Execution Flow

Static Analysis

File Information:

File Name: 2b24885942253784e0f6617b26f5e6a05b8ad45f092d2856473439fa6e095ce4.exe

MD5: 7e281e88a3d6c1f0be56d7bf6f5302d7

SHA-1: b91e7699ded3913ddbf1c04b87dbcb63a6084489

SHA256: 2b24885942253784e0f6617b26f5e6a05b8ad45f092d2856473439fa6e095ce4

File Size: 7.00 MB (7337472 bytes)

File Type: Win32 EXE

Figure 2: Information of EXE in CFF Explore.

The executable is a 32-bit Windows Portable Executable (PE) compiled using Borland Delphi, as indicated by its
structural markers and section naming conventions. Within its resource section, the file stores critical payload
components, likely encrypted or obfuscated DLLs or configuration data used during runtime.



3/10

Figure 3: Information about EXE in CFF Explore.

Key observations:

Resource Embedding: The payload is embedded directly into the .rsrc section, a common Delphi practice for
bundling external modules or data.
Execution Strategy: These embedded resources are typically extracted and loaded into memory during
execution, allowing the malware to operate without dropping files to disk enhancing stealth and evasion.

Figure 4: The above figure shows the UI of the file

Created with Delphi, the builder offers a user-friendly graphical interface that allows users to craft a stub payload
tailored to their need either in its raw format or compressed using UPX. Each payload is automatically assigned a
unique, randomly generated name consisting of twelve characters. Users can enable Telegram communication by
supplying a bot token and chat ID, which the payload will use to send messages. The builder comes with a built-in
stub payload written in C++, seamlessly embedded within the application.

Dynamic Analysis



4/10

Figure 5: Generating Payload

The builder automatically generates .exe files with a unique, randomly generated 12-character filename each time
it is executed. This ensures that every output binary has a distinct name, likely to evade signature-based detection
and simplify obfuscation.

Figure 6: Size of Payload file

Once the resource file size is configured, the file handle is closed, and a user interface is launched to collect input
credentials such as the Chat ID and Bot Token. This step initiates the configuration phase, allowing the user to
embed communication parameters into the payload.

Step-by-Step Breakdown:

1. Resource Initialization
The builder defines the size of the resource section to accommodate embedded payloads and
configuration data.

2. Handle Closure
Once the size is set, the file handle is closed to finalize the resource allocation.

3. Credential UI Launch



5/10

A graphical interface is invoked, prompting the user to enter communication credentials.
4. Credential Capture

Inputs such as Telegram Chat ID and Bot Token are collected for integration into the payload
5. Payload Configuration

These credentials are embedded into the final executable, enabling remote communication upon
execution.

Figure 7: Provided credentials to Builder

Figure 8: Generating Credentials for Payload File

Once the user supplies the required credentials such as the Chat ID and Bot Token the builder proceeds to embed
them into the payload by updating its resource section. This is accomplished using the BeginUpdateResource API,
which allows the builder to modify the executable’s embedded data before finalizing the build.



6/10

Figure 9: Payload file Shows Before and After Credentials.

The malware embeds sensitive Telegram credentials, specifically the Chat_ID and Bot_Token as plain text within its
resource section, using resource IDs 102 and 103 respectively. This unencrypted storage method poses a significant
risk of credential exposure. Additionally, the sample includes a PAYLOAD_DLL as an embedded resource. Entropy
analysis reveals a value of 8.0, indicating a high level of obfuscation. This DLL is likely designed for process injection,
enabling the malware to execute within the context of a trusted application and evade detection.

Figure 10: Payload generated successfully

Once the credentials are provided by the user such as the Chat ID and Bot Token the builder proceeds to generate a
payload executable named 65a16KM1.69n.exe. This filename is randomly constructed, ensuring uniqueness for
each build and contributing to evasion of static detection mechanisms.

Analysis of Payload File

File Name: 65a16KM1.69n.exe.

MD5: 79a34043d69bc9ae09b1d869ef9867ba.

SHA-1: 9c7c0e08a915adb51de7648d8a97896eeda0a3c9.

SHA-256: 65ca89993f2ee21b95362e151a7cfc50b87183bf0e9c5b753c5e5e17b46f8c24.

Compiler: x64 Microsoft Visual C++ v14



7/10

Figure 11: Payload File Information

Dynamic Analysis:

Figure 12: Generating report

Upon execution, the payload activates a reporting mechanism that aggregates all harvested data including login
credentials, system details, and browser-related artifacts into a well-organized format. This compiled report is
structured for seamless transmission to the threat actor, commonly labeled as the “admin,” enabling remote access
and review of the stolen information.

Chromium Process Injection via Encrypted Payload

Encrypted Payload: Malware embeds its main DLL payload using ChaCha20 encryption, keeping it hidden
within its own binary.
In-Memory Execution: The DLL is decrypted in memory only, avoiding disk writes to bypass file-based
detection.
Process Creation: A new Chromium browser instance is launched in a suspended state using.
Reflective Process Hollowing: The decrypted DLL is injected into the suspended process, allowing execution
under a legitimate browser identity.
Evasion Tactics: This method helps the malware evade behavioral and signature-based detection by
mimicking trusted software.

The malware initiates a broad enumeration routine across the infected system, aiming to uncover stored credentials.
Its primary targets are browser-based authentication data, including saved passwords and session cookies. It
specifically probes applications built on the Chromium framework—such as Chrome, Brave, and similar browsers, by
accessing local storage paths and credential vaults. This behavior enables the attacker to harvest sensitive login
information for potential account compromise, data exfiltration, or further lateral movement.

The malware consolidates stolen credentials and system information within a well-defined folder hierarchy under
%Local%\RavenStealer, streamlining access and transmission of collected data.



8/10

Figure 13: Raven Stealer Directory & Files Structure

The stealer deposits extracted browser artifacts including cookies, saved passwords, and payment details into plain
text files located at: C:\Users\admin\AppData\Local\RavenStealer\Edge\Default.

File Name Contents Purpose / Risk

cookies.txt Aggregated browser cookies from multiple
Chromium-based browsers

Enables session hijacking and
impersonation

passwords.txt Decrypted or plaintext credentials (usernames
and passwords)

Facilitates unauthorized account
access

payment.txt Stored credit/debit card details and billing
information from browsers

Used for financial fraud and
identity theft

Figure 14: Stealer Stored User-Information in above Files

Figure 15: Shows all the information on Console

The malware begins by loading a Telegram Chat ID and Bot Token, indicating its use of Telegram’s API for
data exfiltration.
 It accesses the AES encryption key stored in the Edge browser’s Local State file:
     C:\Users\admin\AppData\Local\Microsoft\Edge\User Data\Local State



9/10

 This key is used to decrypt sensitive browser data such as cookies and credentials.
 Decrypted data is saved in plain text format at:
    C:\Users\admin\AppData\Local\RavenStealer\Edge\Default\cookies.txt
The malware captures a screenshot of the victim’s desktop and stores it as:
    C:\Users\admin\AppData\Local\RavenStealer\screenshot.png
 All collected artifacts are compressed into a ZIP archive:
    C:\Users\admin\AppData\Local\Temp\admin_RavenStealer.zip
The ZIP file is sent to the attacker via Telegram using the API endpoint:
https://api.telegram.org/bot/sendDocument
The attempt fails with a 404 error, suggesting an invalid or expired bot token.

Removal
1. Reboot into Safe Mode with Networking
2. Use UltraAV antivirus to delete malicious files.
3. Detected as the following name by UltraAV: Trojan.W32.100925.RavenStealer.ORS

Figure 16: Threat Detection Name

Prevention Tips

Use updated antivirus and enable real-time protection
Avoid downloading pirated software or cracks
Don’t click on suspicious links or attachments
Monitor system performance regularly (Task Manager)

Indicators of Compromise

Files Indicator – SHA256 Context
2b24885942253784e0f6617b26f5e6a05b8ad45f092d2856473439fa6e095ce4 Raven Stealer
65ca89993f2ee21b95362e151a7cfc50b87183bf0e9c5b753c5e5e17b46f8c24 65a16KM1.69n.exe

Files Artifact

cookies.txt
passwords.txt
payment.txt

https://api.telegram.org/bot/sendDocument
https://ultraantivirus.com/
https://ultraantivirus.com/


10/10

Network Indicator:

https://api.telegram.org/

Conclusion
Raven Stealer is a sophisticated piece of malware known for its stealth and modular design, allowing attackers to
tailor its behaviour for specific data theft operations. One of its standout features is the use of Telegram for
exfiltration, where stolen data such as passwords, browser cookies, and payment information is sent through
encrypted messaging channels, bypassing many conventional security filters. This combination of quiet operation and
clever data transmission underscores the importance of layered cybersecurity defences, including behavioural
monitoring, endpoint protection, and proactive threat detection strategies.


