www.welivesecu rity. COM /en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/

Introducing HybridPetya: Petya/NotPetya copycat with UEFI
Secure Boot bypass

ESET Research

UEFI copycat of Petya/NotPetya exploiting CVE-2024-7344 discovered on VirusTotal

Martin Smolar

12 Sep 2025 + , 14 min. read

ESET Research has discovered HybridPetya, on the VirusTotal sample sharing platform. It is a copycat of
the infamous Petya/NotPetya malware, adding the capability of compromising UEFI-based systems and
weaponizing CVE-2024-7344 to bypass UEFI Secure Boot on outdated systems.

Key points of this blogpost:

117

https://www.welivesecurity.com/en/eset-research/introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass/#iocs
https://undefined/en/our-experts/martin-smolar/
https://undefined/en/our-experts/martin-smolar/
https://nvd.nist.gov/vuln/detail/cve-2024-7344

* New ransomware samples, which we named HybridPetya, resembling the infamous
Petya/NotPetya malware, were uploaded to VirusTotal in February 2025.

o HybridPetya encrypts the Master File Table, which contains important metadata about all
the files on NTFS-formatted partitions.

¢ Unlike the original Petya/NotPetya, HybridPetya can compromise modern UEFI-based
systems by installing a malicious EFI application onto the EFI System Partition.

¢ One of the analyzed HybridPetya variants exploits CVE-2024-7344 to bypass UEFI Secure
Boot on outdated systems, leveraging a specially crafted cloak.dat file.

o ESET telemetry shows no signs of HybridPetya being used in the wild yet; this malware
does not exhibit the aggressive network propagation seen in the original NotPetya.

Overview

Late in July 2025, we encountered suspicious ransomware samples, uploaded to VirusTotal from Poland,
under various filenames, including notpetyanew.exe and other similar ones, suggesting a connection with the
infamously destructive malware that struck Ukraine and many other countries back in 2017. The NotPetya
attack is believed to be the most destructive cyberattack in history, with more than $10 billion in total
damages. Despite NotPetya’s similarity to the Petya ransomware, first discovered in March 2016, NotPetya’s
purpose was pure destruction, as encryption key recovery from the victim’s personal installation key was not
possible. Because of the shared characteristics of the currently discovered samples with both Petya and
NotPetya, we named the new discovery HybridPetya.

While ESET telemetry shows no active use of HybridPetya in the wild, one important detail in these samples
still caught our attention — unlike the original NotPetya (and Petya ransomware as well), HybridPetya is also
capable of compromising modern UEFI-based systems by installing a malicious EFI application to the EFI
System Partition. The deployed UEFI application is then responsible for encryption of the NTFS-related
Master File Table (MFT) file — an important metadata file containing information about all the files on the
NTFS-formatted partition.

After a bit more digging, we discovered something even more interesting on VirusTotal: an archive containing
the whole EFI System Partition contents, including a very similar HybridPetya UEFI application, but this time

bundled in a specially formatted cloak.dat file, vulnerable to CVE-2024-7344 — the UEF| Secure Boot bypass
vulnerability — that our team disclosed in early 2025.

Interestingly, despite the filenames on VirusTotal and the format of the ransom note in the current samples
suggesting that they might be related to NotPetya, the algorithm used for the generation of the victim’s
personal installation key, unlike in the original NotPetya, allows the malware operator to reconstruct the
decryption key from the victim’s personal installation keys. Thus, HybridPetya can serve as regular
ransomware (more like Petya), rather than being solely destructive like NotPetya.

Interestingly, on September 91, 2025, @hasherezade published a post about the existence of a UEFI Petya
PoC, with a video demonstrating execution of the malware with UEFI Secure Boot enabled. Even though the

sample from the video is obviously different from the one presented in this blogpost (showing the typical

217

https://www.welivesecurity.com/2017/06/27/new-ransomware-attack-hits-ukraine/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.gdatasoftware.com/blog/2016/03/28226-ransomware-petya-a-technical-review
https://learn.microsoft.com/en-us/windows-server/storage/file-server/ntfs-overview
https://learn.microsoft.com/en-us/windows/win32/fileio/master-file-table
https://www.virustotal.com/gui/file/796b0ef499e99cef5a5e9df60a4b7aef42f83cfccfa6df14f946121c2ba7283c/details
https://www.welivesecurity.com/en/eset-research/under-cloak-uefi-secure-boot-introducing-cve-2024-7344/
https://x.com/hasherezade
https://x.com/hasherezade/status/1965389009175412769

Petya ASCII art skull, which is not present in the samples we discovered), we suspect that there might be
some relationship between the two cases, and that HybridPetya might also be just a proof of concept
developed by a security researcher or an unknown threat actor.

In this blogpost, we focus on the technical analysis of HybridPetya.

HybridPetya technical analysis

In this section, we provide a technical analysis of HybridPetya’s components: the bootkit and its installer. We
also separately dissect a version of HybridPetya that is capable of bypassing UEFI Secure Boot by exploiting
CVE-2024-7344. Note that HybridPetya supports both legacy and UEFI based systems — in this blogpost,

we’ll focus on the UEFI part.

Interestingly, the code responsible for generating the victims’ personal installation keys seems to be inspired
by the RedPetyaOpenSSL PoC. We are aware of at least one other UEFI-compatible PoC rewrite of
NotPetya, dubbed NotPetyaAgain, which is written in Rust; however, that code is unrelated to HybridPetya.

UEFI bootkit

We obtained two distinct versions of the UEFI bootkit component, both very similar but with certain
differences. When executed, the bootkit first loads its configuration from the \EFI\Microsoft\Boot\config file,
and checks the encryption flag indicating the current encryption status — same as the original
Petya/NotPetya samples, the encryption flag can have one of the following values:

¢ 0 - ready for encryption,
e 1 - already encrypted, or
e 2 -ransom paid, disk decrypted.

It continues with execution based on the encryption status flag, as shown in Figure 1.

3/17

https://github.com/FirstBlood12/RedPetyaOpenSSL
https://github.com/rdp-studio/NotPetyaAgain
https://www.rust-lang.org/

Configuration file

\EFI\Microsoft\Boot\config
I
1 I
| I

=

Encryption flag

! ! l

P:(= 0 (ready for encryption) > P:(=1 (already encrypted) - == P:(= 2 (ransom paid, disk decrypted)

l l

Encrypts MFT and all disk sectors Displays ransom note (detail in Figures 5 and 6)

l

Displays CHKDSK message (detail in Figure 4)

l

Standard boot

T
1
If ransom is paid !

v

l Decrypts disk and reboots - — — — — 4

Reboots —

Figure 1. Overview of HybridPetya’s execution logic
Disk encryption

If the value of the encryption flag is 0, the bootkit extracts the 32-byte-long Salsa20 encryption key and 8-
byte-long nonce from the configuration data, and subsequently rewrites the configuration file, now with the
encryption key zeroed and the encryption flag set to 1. It continues with encryption of the
\EF\Microsoft\Boot\verify file with the Salsa20 encryption algorithm using the key and nonce from the
configuration. Then, before proceeding to its main functionality — disk encryption — it creates the file
\EFN\Microsoft\Boot\counter on the EFI System Partition; the purpose of this file is explained later.

The disk encryption process starts with identification of all NTFS-formatted partitions. As shown in Figure 2,
the sample does so by getting the list of handles for connected storage devices, identifying the individual
partitions by checking that EFI_BLOCK_10_MEDIA->LogicalPartition is TRUE, and finally verifying whether
the partition is NTFS formatted by comparing the first four bytes of the data present in the first partition’s
sector with the NTFS signature NTFS.

4/17

https://en.wikipedia.org/wiki/Salsa20

gStatus = gBS->LocateHandleBuffer(ByProtocol, &EFI_BLOCK_IO_PROTOCOL_GUID, ©, &noBlockIoHandles, &gBuffDevices);
devIindex = @;
gIndex = 0;
if (!noBlockIoHandles)
return (SystemTable->RuntimeServices->ResetSystem)(o, @, @, @);
do
{
gStatus = gBS->HandleProtocol(gBuffDevices[devIndex], &EFI_BLOCK_IO_PROTOCOL_GUID, &currDev);
Media_2 = currDev->Media;
if (IMedia_2->LogicalPartition)
goto skip_device;
(currDev->ReadBlocks) (currDev, Media_2->MediaId, @, 512, &gNtfsVolume);
gKeyLenght = 4;
gSigbword = *gNtfsvolume.file_system_signature;
signature_length = 4;
vl6 = &gSigDword;
NTFS Key: 1 = aNtfsKey; // "NTFS Key: "
while (1)
{
--signature_length;
if (*vie l= *NTFS_Key:_ 1)
break;
vi6 = (V16 + 1)}
+HNTFS_Key: _1;
if (!signature_length)
{
result = @;
goto check_result;
}
result = *vl16 - *NTFS_Key:_ 1;
check_result:

if (result)
goto skip device;

Figure 2. Hex-Rays decompiled code for NTFS patrtition identification

Once the NTFS partitions have been identified, the bootkit continues with encryption of the Master File Table
(MFT) file, the essential metadata file containing information about other files and the location of their data
on the NTFS-formatted partition. As shown in Figure 3, during the encryption, the bootkit rewrites the
contents of the \EFI\Microsoft\Boot\counter file with the number of already encrypted disk clusters, and
updates the fake CHKDSK message displayed on the victim’s screen (shown in Figure 4), with the
information about the current encryption status (though, based on the message, the victim may believe that
the disk is being checked for errors, not being encrypted).

5/17

https://learn.microsoft.com/en-us/windows/win32/fileio/master-file-table

do
{
(currDev->ReadBlocks)(
currDev,
currDev->Media->Mediald,
_curr_datarun_start_sector,
sectors_per_cluster_block 1 << 9,
gpClusterDataBuffer);
gVerifyData 2 = gpClusterDataBuffer;
salsa2e(&gSalsakey, &gSalsaNonce, gpClusterDataBuffer, g_sectors_per_cluster << 9);
(currDev->WriteBlocks)(
currDev,
currDev->Media->Mediald,
curr_datarun_start_sector,
g_sectors_per_cluster << 9,
gVerifyData_2);
++gCounterTotal;
(gVolume->0pen) (
gvolume,
&ghCounter,
aEfiMicrosoftBo_1, // "\\EFI\\Microsoft\\Boot\\counter"
3,
9);
(ghCounter->Write)(ghCounter, &gCounterDataSize, &gCounterTotal);
(ghCounter->Close) (ghCounter);
printconsole(
aChkdskIsRepair, // "\r CHKDSK is repairing sector %1d of %1ld (%d%%)"
processed_sectors,
total_sectors_current_data_run,
100 * processed_sectors / total_sectors_current_data_run);
sectors_per cluster block 1 = g_sectors_per_cluster;
_curr_datarun_start_sector = g_sectors_per_cluster + curr_datarun_start_sector;
processed_sectors += g _sectors_per_cluster;
curr_datarun_start_sector = _curr_datarun_start_sector;

while (processed_sectors <= total_sectors_current_data_run);

Figure 3. Hex-Rays decompiled code: MFT encryption

6/17

Repairing file sustem on C:

The tupe of the file system is NTFS.

One of your disks contains errors and needs to be repaired. This process
may take several hours to complete. It is strongly recommended to let it
complete.

UARNING: DO NOT TURN OFF YOUR PC? IF YOU ABORT THIS PROCESS, YOU COULD
DESTROY ALL OF YOUR DATAt PLEASE ENSURE THAT YOUR POWER CABLE IS PLUGGED
INt

CHKDSK is repairing sector 221656 of 409824 (54Y)

Figure 4. Fake CHKDSK message shown by HybridPetya during disk encryption (identical with
NotPetya and Petya)

When done with the encryption, the bootkit reboots the machine.
Disk decryption

If the bootkit detects that the disk is already encrypted, meaning that the value of the encryption flag from the
configuration file is 1, it shows the ransom note shown in Figure 5 or Figure 6 (depending on the bootkit
version), and asks the victim to enter the decryption key. Note that while the HybridPetya ransom note has
the same format as that of the original NotPetya (shown in Figure 7), the ransom amount, bitcoin address,
and the operator’s email address are different. Also, the version deployed with the UEFI Secure Boot bypass
uses a different contact email address (wowsmith999999@proton[.]Jme) than the version deployed by the
obtained installers (wowsmith1234567 @proton[.Jme). It's worth mentioning that the bitcoin address is the
same in both versions.

717

Figure 5. Ransom note from the bootkit installed by the installers without the UEFI Secure Boot

bypass

8/17

Figure 6. Ransom note displayed by the bootkit version deployed by exploiting CVE-2024-7344

Ooops, your important files are encrypted.

If you =ee this text, then your files are no longer accessible, because they
have been encrypted. Perhaps you are busy looking for a way to recover your
files, but don’'t waste your time. HNobody can recover your files without our
decryption service.

He guarantee that you can recover all your files safely and easily. All you
need to do is submit the payment and purchase the decryption key.

Please follow the instructions:

1. Send $388 worth of Bitcoin to following address:
1Mz7153HMuxXTuR2R1t78mGSdzaAt NbBLX
Send your Bitcoin wallet ID and personal installation key to e-mail
WoWsHMith123456@posteo. net. Your personal installation key:
30i6rc-CqgbBfD-zMM7gC—upUPgZ-SAdnyu—-RIZZsg-HPEM? j- i PIBAM-XSPBPz—-G4hN4dn

If you already purchased your key, please enter it belowu.
Key:

Figure 7. Original NotPetya ransom note

When a key with the correct length — 32 characters — is entered and confirmed by the victim pressing Enter,
the bootkit proceeds to verification of the key. As depicted in Figure 8, key validity is established by
attempting to decrypt the aforementioned \EFI\Microsoft\Boot\verify file with the supplied key, and checking
whether the plaintext contains only bytes with value 0x07. Note that the bootkit variant deployed via the UEFI
Secure Boot bypass hashes the supplied key with an algorithm probably based on SPONGENT-256/256/16,
using that hash value as the decryption key, while the bootkit deployed by the obtained installers takes the
user’s input as is.

(gVolume->0pen)(
gvolume,
&ghverify,
aEfiMicrosoftBo_#0, // "\\EFI\\Microsoft\\Boot\\verify"
3,
9);
(ghverify->Read) (ghverify, &gVerifySize, gVerifyFileData);
(ghverify->Close)(ghverify);
salsa20(p_gpInputData_key, &gNonce, gVerifyFileData_, ©x200u);
for (k = 512; k > @; gTmpVerifyExpectedData[k] = 7)
--k;
n512 = 512;
gVerifyFileData = gVerifyFileData_;
IpTmpVerifyExpectedData = gTmpVerifyExpectedData;
do
{
--n512;
if (*gverifyFileData != *1pTmpVerifyExpectedData)
{
NotVerified = *gVerifyFileData - *1lpTmpVerifyExpectedData;
goto LABEL_95;
}
++gVerifyFileData;
++1pTmpVerifyExpectedData;
}
while (n512);
NotVerified = @;

if (!NotVerified)

{

// correct key entered
Figure 8. Hex-Rays decompiled code: disk-decryption key validity verification

If the correct key is entered, the bootkit updates the configuration file with the encryption flag value set to 2
and also fills in the decryption key. Then it reads the contents of the \EFI\Microsoft\Boot\counter file
(containing the number of disk clusters previously encrypted) and proceeds with disk decryption. For the
decryption, the bootkit proceeds with a very similar process to that of NTFS partition discovery and MFT
decryption (the Salsa20 encryption and decryption process is the same) as described in the Disk encryption
section. The decryption stops when the number of decrypted clusters is equal to the value from the counter

10/17

https://eprint.iacr.org/2011/697.pdf

file. During the process of MFT decryption, the bootkit shows the current decryption process status, depicted

in Figure 9, on the victim’s screen.

Figure 9. Decryption status shown to a victim after entering a valid key

Next, the bootkit proceeds with recovering the legitimate bootloaders \EFI\Microsoft\Boot\bootmgfw.efi and
\EF\Boot\bootx64.efi from the backup file previously created during the installation process:
\EF\Microsoft\Boot\bootmgfw.efi.old.

Finally, after the decryption process is finished and the legitimate bootloaders recovered, the bootkit prompts
the victim to reboot the device (Figure 10). If everything went well, the device should start the operating
system successfully after the reboot.

11/17

Figure 10. Prompt to reboot victim device after successful disk decryption

Deploying the UEFI bootkit component

In this section, we focus on the bootkit-installation functionality of the discovered HybridPetya installers. Note

that the installers we were able to obtain do not take UEFI Secure Boot into account. However, as explained
in the CVE-2024-7344 exploitation section, there is likely a variant with such an improvement.

To decide whether the system is UEFI based, the installer retrieves the disk information
(IOCTL_DISK_GET_DRIVE_LAYOUT_EX), checks whether the GPT partitioning scheme is used
(PARTITION_STYLE_GPT), and walks through the partitions until it discovers the one with
PARTITION_INFORMATION_GPT.PartitionType set to PARTITION_SYSTEM_GUID, which is the identifier
of the EFI System Partition. After discovering the EFI System Partition, it continues:

Removing the fallback UEFI bootloader, stored in \EFI\Boot\Bootx64.efi.

Dropping a disk-encryption-related configuration along with the encryption flag, to the
\EFI\Microsoft\Boot\config file on the EFI System Partition; the encryption configuration contains the
Salsa20 encryption key, 8-byte nonce, and victim’s personal installation key (base58-encoded data).
Dropping an encryption-verification array consisting of 0x200 bytes with value 0x07 to the
\EFI\Microsoft\Boot\verify file on the EFI System Partition; this array is later encrypted by the bootkit
component using the same Salsa20 key as used for disk encryption. The purpose of this array is to
verify whether the victim entered a valid decryption key (by decrypting the array with the entered key,
and verifying that the plaintext contains an array of bytes with value 0x07).

Creating a backup of \EFI\Microsoft\Boot\bootmgfw.efi, the default bootloader for Windows-based
systems, by copying it into \EFI\Microsoft\Boot\bootmgfw.efi.old.

When done, it triggers a system crash (Blue Screen Of Death, BSOD) by using the same method that Petya
did — invoking the NtRaiseHardError API with the ErrorStatus parameter set to 0xC0000350

12/17

https://learn.microsoft.com/en-us/windows/win32/api/winioctl/ns-winioctl-partition_information_gpt
https://learnmeabitcoin.com/technical/keys/base58/

(STATUS_HOST_DOWN) and the ResponseOption set to value 6 (OptionShutdownSystem), resulting in a
system shutdown.

The abovementioned changes ensure that on systems with Windows set as the primary OS, the bootkit
binary will be executed once the device is powered on again.

CVE-2024-7344 exploitation

In this section, we examine an archive that we discovered on VirusTotal that contains a variant of the UEFI
bootkit described in the UEF/ bootkit section, but this time bundled in a specially formatted cloak.dat file
related to CVE-2024-7344 — the UEF| Secure Boot bypass vulnerability that our team publicly disclosed in
early 2025.

A list of the files present in the archive along with their contents suggests that this EFI System Partition was
copied from a system already encrypted by this Petya/NotPetya copycat variant. Note that we haven’t
obtained the installer responsible for deploying this version with the UEFI Secure Boot bypass, but based on
the archive’s contents, which are shown in Figure 11, it would be pretty similar to the process described in
the previous section. Specifically, the archive contains:

¢ \EFI\Microsoft\Boot\counter, a file already containing a non-zero value representing the number of disk
clusters previously encrypted by the bootkit,

¢ \EFI\Microsoft\Boot\config, a file with the encryption flag value set to 1, meaning that the disk should
be already encrypted and the bootkit should proceed with displaying the ransom note,

¢ \EFI\Microsoft\Boot\bootmgfw.efi.old, a file with the first 0x400 bytes XORed with the value 0x07,

¢ \EFI\Microsoft\Boot\bootmgfw.efi, a legitimate, but vulnerable (CVE-2024-7344) UEFI application
signed by Microsoft (revoked in Microsoft’s dbx since January 2025); in this section we’ll refer to this
file with its original name reloader.efi, and

¢ \EFI\Microsoft\Boot\cloak.dat, a specially crafted file loadable through reloader.efi and containing the
XORed bootkit binary.

13/17

https://www.virustotal.com/gui/file/796b0ef499e99cef5a5e9df60a4b7aef42f83cfccfa6df14f946121c2ba7283c/details
https://www.welivesecurity.com/en/eset-research/under-cloak-uefi-secure-boot-introducing-cve-2024-7344/
https://github.com/microsoft/secureboot_objects/blob/main/Archived/dbx_info_msft_1_14_25.json

Name Type

B bootmgr.efi EFI File

B memtest.efi EFI File

B bootmgfw.efi.old OLD File
B bootmgfw.efi EFI File

R BCD File

B cloak.dat DAT File
B boot.stl STL File

B config File

B verify File

B counter File
Figure 11. Archive containing the CVE-2024-7344-exploiting version of the bootkit

As described in our report from January 2025, the exploit mechanism is quite simple. The cloak.dat file
contains specially formatted data that contains a UEFI application. When the reloader.efi binary (deployed as
bootmgfw.efi) is executed during boot, it searches for the presence of the cloak.dat file on the EFI System
Partition, and loads the embedded UEFI application from the file in a very unsafe way, completely ignoring
any integrity checks, thus bypassing UEFI Secure Boot.

Note that our blogpost from January 2025 didn’t explain the exploitation in fine detail; thus, the malware
author probably reconstructed the correct cloak.dat file format based on reverse engineering the vulnerable
application on their own.

The vulnerability cannot be exploited on systems with Microsoft's January 2025 dbx update applied. For
guidance on how to protect and verify whether your system is exposed to this vulnerability, check the
Protection and Detection section of our January 2025 blogpost.

Conclusion

HybridPetya is now at least the fourth publicly known example of a real or proof-of-concept UEFI bootkit with
UEFI Secure Boot bypass functionality, joining BlackLotus (exploiting CVE-2022-21894), BootKitty

14/17

https://www.welivesecurity.com/en/eset-research/under-cloak-uefi-secure-boot-introducing-cve-2024-7344/
https://github.com/microsoft/secureboot_objects/blob/main/Archived/dbx_info_msft_1_14_25.json
https://www.welivesecurity.com/en/eset-research/under-cloak-uefi-secure-boot-introducing-cve-2024-7344/#protection-and-detection
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.binarly.io/blog/logofail-exploited-to-deploy-bootkitty-the-first-uefi-bootkit-for-linux

(exploiting LogoFail), and the Hyper-V Backdoor PoC (exploiting CVE-2020-26200). This shows that Secure

Boot bypasses are not just possible — they’re becoming more common and attractive to both researchers
and attackers.

Although HybridPetya is not actively spreading, its technical capabilities — especially MFT encryption, UEFI
system compatibility, and Secure Boot bypass — make it noteworthy for future threat monitoring.

For any inquiries about our research published on WeLiveSecurity, please contact us at
threatintel@eset.com.

ESET Research offers private APT intelligence reports and data feeds. For any inquiries about
this service, visit the ESET Threat Intelligence page.

loCs

A comprehensive list of indicators of compromise (IoCs) and samples can be found in our GitHub repository.

Files
SHA-1 [Filename [Detection [Description
[BD35908D5A5E9F 7TE41A6 . . HybridPetya - UEFI
1B7AB598AB9A88DB723D [PCOtMIW.efi [EFUDiskcoder A bootkit component.
HybridPetya - UEFI
9DF922D00171AA3C31B7 . bootkit component,
5446D700EE567F8D787B |V/A [EFI/DiskcoderA | iracted from
cloak.dat.
OBOEEO5FFFDAOB16CFID — HybridPetya
AAC587CB92BB06D3981B VA Win32/injector. AJBK | i ller.
CDC8CB3D211589202B49 — HybridPetya
A48618B0D90C4D8F86FD (COre-dl Win32/Filecoder.OSK, i iler.
ID31F86BA572904192D74 [20000.mbam — HybridPetya
76CA376686E76E103D28 | update.exe Win32/Filecoder.OSKE i ller.
AGEBFA062270A3212414 [improved_not HybridPetya

39E8DF72664CD54EATBC [petyanew.exe |V No2/KIyptik-BFRR ki cialer.

C8E3F1BFO0B67C83D2A6D . . [HybridPetya
OE594DE8067F0378E6C5 notpetya_new.exe |Win32/Kryptik.BFRR

installer.
C7C270F9D3AEBOEC5ESS . . HybridPetya
26A3CD1FB5CID208F 1Dj"otPetyanew.exe Win32/Kryptik BFRR |qim 6,
3393A8C258239D680255 |notpetyanew_imp | ,,. . [HybridPetya
3FD1CCE397E18FA285A1 froved finalexe |V No2/Kryptik BFRR {cialer

|UEFI application
98C3E659A903E74D2EE3 |
98464D3A5109E92BD9Ag [Pootmatw.efi — IN/A ‘égg‘f_?fé%to CVE-

Specially formatted
cloak.dat related to

IDOBD283133A80B471375 . CVE-2024-7433,
62F2AAABT40FA15E6441 |cl0ak-dat [EFI/Diskcoder.A |- tains XORed
HybridPetya UEF|

bootkit component.

15/17

https://www.binarly.io/blog/the-far-reaching-consequences-of-logofail
https://github.com/Cr4sh/s6_pcie_microblaze/tree/eef8da94e2eec6d6894370e2216e718931842be4/python/payloads/DmaBackdoorHv#deploying-the-backdoor-using-signed-kaspersky-bootloader
https://nvd.nist.gov/vuln/detail/CVE-2020-26200
https://undefined/mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass&sfdccampaignid=7011n0000017htTAAQ
https://github.com/eset/malware-ioc/tree/master/hybridpetya

MITRE ATT&CK techniques

This table was built using version 17 of the MITRE ATT&CK framework.

Tactic (ID [Name IDescription
Develop HybridPetya is new ransomware
T1587 001 Capabilities: \t/)wth QEFI compatibility and a UEFI
Malware ootkit component developed by
Eesolurce unknown authors.
evelopment Develop HybridPetya’s authors developed an
T1587.004 C L .._lexploit for the CVE-2024-7344 UEFI
apabilities: Exploits S o
ecure Boot bypass vulnerability.
HybridPetya exploits
Exploitation for CVI_E-2024-7344 to e>§ecute an
11203 Client Execution unsigned UEFI bootkit on outdated
systems with UEFI Secure Boot
|[Execution enabled.
HybridPetya installers use
undocumented native API
T1106 Native API NtRaiseHardError to cause a
system crash after the bootkit’s
installation.
HybridPetya persists using the
T1542.003 Pre-OS Boot: Bootkit|pootkit component. It supports both
legacy and UEFI| systems.
|Persistence HybridPetya installers hijack the
T1574 Hijack Execution regular system boot process by
Flow replacing the legitimate Windows
bootloader with a malicious one.
HybridPetya exploits
Privilege Exploitation for CVE-2024-7344 to bypass UEFI
Escalation 11068 Privilege Escalation Secure Boot and execute the
malicious UEFI| bootkit with high
privileges during bootup.
o HybridPetya exploits
T1211 EXp'O'tat'O” for — |oVE-2024-7344 to bypass UEFI
efense Evasion S
ecure Boot.
Reflective Code HybridPetya installers use the
[E)‘?;Z?;e‘ 11620 Loading reflective DLL loading technique.
The HybridPetya bootkit displays
T1036 IMasquerading fake CHKDSK messages on the
screen during disk encryption to
mask its malicious activity.
The HybridPetya installer encrypts
files with specified extensions and
11486 I:?T;a;zcEtncrypted for the bootkit component encrypts
{impact [MFT file on each NTFS-formatted
partition.
T1529 System HybridPetya reboots the device
Shutdown/Reboot [after MFT encryption.

16/17

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v17/techniques/T1587/001
https://attack.mitre.org/versions/v17/techniques/T1587/004
https://attack.mitre.org/versions/v17/techniques/T1203
https://attack.mitre.org/versions/v17/techniques/T1106
https://attack.mitre.org/versions/v17/techniques/T1542/003
https://attack.mitre.org/versions/v17/techniques/T1574
https://attack.mitre.org/versions/v17/techniques/T1068
https://attack.mitre.org/versions/v17/techniques/T1211
https://attack.mitre.org/versions/v17/techniques/T1620
https://attack.mitre.org/versions/v17/techniques/T1036
https://attack.mitre.org/versions/v17/techniques/T1486
https://attack.mitre.org/versions/v17/techniques/T1529

eS[=l) THREAT INTELLIGENCE

]

GET A DEMO

Let us keep you
up to date

Sign up for our newsletters

17/17

https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=introducing-hybridpetya-petya-notpetya-copycat-uefi-secure-boot-bypass&sfdccampaignid=7011n0000017htTAAQ

