Dark Web Profile: BQTLock Ransomware

: 9/12/2025

- 1. Home
- 2. Blog
- 3. Dark Web
- 4. Dark Web Pr...

Sep 12, 2025

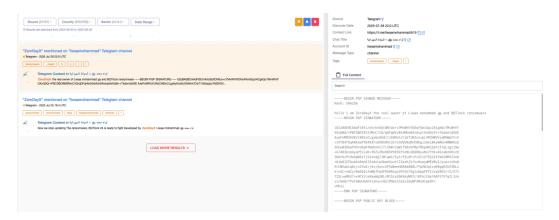
24 Mins Read

BQTLock is a new and advanced Ransomware-as-a-Service (RaaS) that has quickly gained attention for its disruptive operations and unique methods. Emerging from the Middle East and expanding globally, it shows fast technical growth and uses aggressive extortion tactics.

The group runs **wave-based** campaigns, demands payment mainly in Monero (XMR), and blends financial motives with propaganda. This mix of profit and ideology is unusual in ransomware, making BQTLock a case of special interest for us at SOCRadar as researchers and defenders.

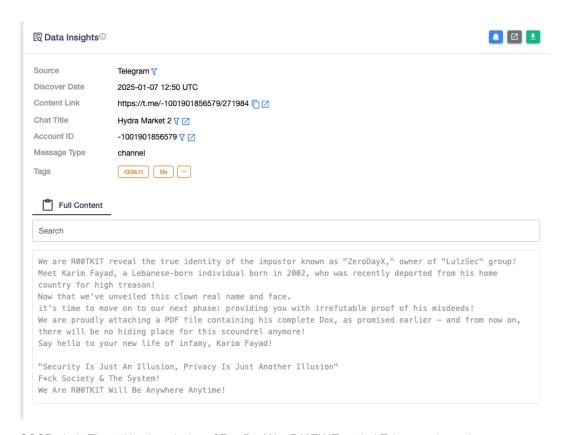
This overview scratches the surface. We are publishing a whitepaper that explores the full scope of BQTLock's operation in detail.

Who is BQTLock Ransomware?

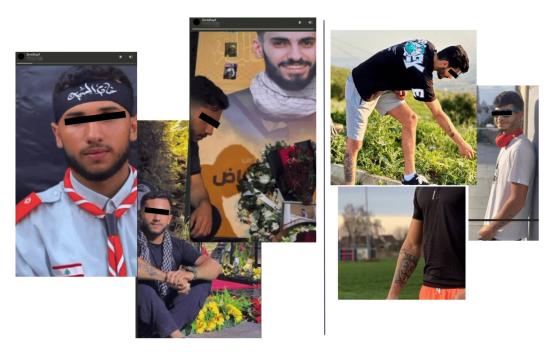

This threat group developed ransomware, which gave its name to the operation. Its main representative is Karim Fayad (known online as **ZeroDayX** or **ZeroDayX1**), supported by **Fuch0u**, who frequently appears on the adversary's public pages. The group appears to maintain close relationships with pro-Palestinian hacktivist groups such as **Liwaa Mohammed**, with mutual activity on social networks.

Threat actor card of BQTLock Ransomware

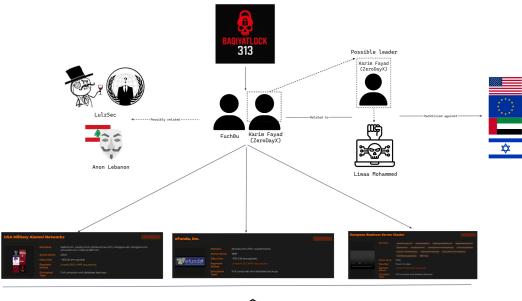
Publicly, BQTLock emphasizes political messaging and ideological motives; however, the primary internal driver is **financial gain**, contrasting with true hacktivist operations. This **dual model**, part hacktivist, part criminal, introduces a novel twist to traditional RaaS models, raising questions about the potential misuse of political narratives to instill fear while pursuing financial objectives.


The core team appears to include ZeroDayX and Fuch0u, who have historically been linked to accounts such as **Anonymous Lebanon**, and have had interactions with **LulzSec-related accounts** and **Anonymous affiliated activities**.

SOCRadar's Threat Hunting, message in liwaamohammad Telegram channel: "Hello, i am ZeroDayX the real owner of Liwaa mohammad and BQTLock ransomware."


In addition, both BQTLock and ZeroDayX itself have had direct interactions with the pro-Palestinian hacktivist group **Liwaa Mohammed**, who proclaims himself as the leader of this organization, and has consistently posted BQTLock update messages through Telegram channels managed by the hacktivist group.

ZeroDayX was doxed by another hacktivist group, **R00TK1T**, which directly linked him to **LulzSec**. His real name was revealed as Karim Fayad, with personal information exposed that connected the current leader of BQTLock directly to these hacktivist groups.


SOCRadar's Threat Hunting, doxing of ZeroDayX by R00TK1T on theirTelegram channel

The proximity and potential authorship of the same user or relationship with different hacktivist groups, as well as that of BQTLock, is evident across all the social networks mentioned, creating a solid core of organization and communication.

Photos of the suspected admin of BQTLock, shared on Telegram

Analysis shows BQTLock's leadership (Karim Fayad aka ZeroDayX and Fuch0u), ties to Liwaa Mohammed, possible past links to LulzSec and Anonymous Lebanon, and victim listings with ransom demands totaling over 700 XMR (~190k USD).

Link analysis of the BQTLock Ransomware

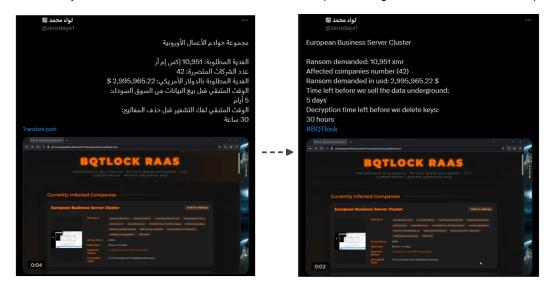
The BQTLock team has consistently communicated via **Telegram channels**, which have been used for propaganda, information about updates, and to liaise with RaaS affiliates. Victims were also left a note with an email address for more direct and professional communication.

What are BQTLock's Targets?

Since BQTLock burst onto the scene, it has appeared in various orchestrated campaigns or attacks that have severely impacted victims.

Confirmed Victims

USA Military Alumni Networks – full computer and database backups compromised, with an unpaid demand
of 500 XMR.


Victim posting on their data leak site (DLS)

• eFunda, Inc. - over 270 subdomains affected, with full backups encrypted and an unpaid demand of 600 XMR.

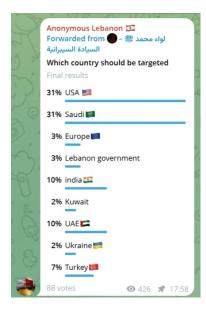
Victim posting on their DLS #2

• European Business Server Cluster - servers in Europe were targeted, and 1500 XMR was requested.

Victim posting on their DLS & Telegram #3

The adversary boasts on their various social media platforms about attacks on the domains of the mentioned targets, which belong to sectors such as education or public-military matters, fitting into the usual modus operandi of similar threat actors that started before BQTlock, following the aforementioned argumentative line, where targets are generally from the US, with components that the adversary can use for their pro-Palestine narrative.

Target Industries


Beyond confirmed victims, BQTLock and possible affiliates using its RaaS model show patterns seen in other new ransomware groups with pro-Palestinian propaganda. Their behavior often follows similar paths, though shaped by their own traits.

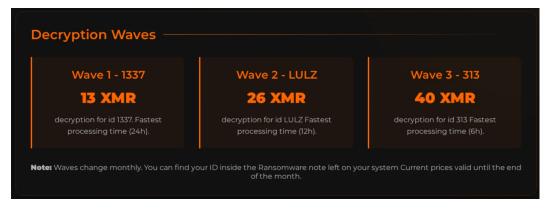
Potential BQTLock victim types:

- Healthcare: Low defenses, high criticality, risks to human life, and strong propaganda value in key countries.
- Education: Weak cybersecurity, links to companies, and valuable intellectual property.
- **Public sector:** Local governments and agencies serve as test grounds due to weak defenses, with added hacktivist potential.
- Critical infrastructure: Complex but attractive targets in energy, utilities, and logistics, with political or public
 ties
- **Financial sector:** Banks and fintech, combining real financial damage with symbolic attacks on "Western capitalism."

Target Countries

Confirmed attacks hit organizations in the **United States** and **Europe**. BQTlock's hacktivist stance shapes victim choice for both its core group and affiliates, making it key to track likely targets. These include the US and **Israel** as "resistance" symbols, European states with pro-Israel policies or many multinationals, and "Western-aligned" nations such as **Australia**, **Canada**, **Saudi Arabia**, **India**, and the **UAE**.

A poll for" Which country should be targeted" on their Telegram channel/s


This strategy allows BQTlock to justify attacks as "acts of resistance" while sustaining a profitable business model, creating a dangerous precedent where economic motivations are concealed under seemingly legitimate political causes.

How Does BQTLock Ransomware Operate?

As stated before, BQTLock runs under a Ransomware-as-a-Service model, with the core team developing the malware and affiliates carrying out attacks in exchange for a share of the ransom.

Decryption Waves

A key feature is its wave-based decryption system, using hacktivist slang like 1337, LULZ, and 313 as pricing tiers. Victims pay between 13 and 40 XMR, depending on the wave, with demands sometimes reaching millions. In less than three months, BQTLock has claimed at least three companies, with earnings likely above 1,000 XMR (~\$300,000).

Tiers of decryption waves

Affiliate Program

The group also sells access to affiliates in starter, professional, and enterprise tiers (9–30 XMR). Buyers get customization options, support, and full platform access.

Pricing system for the RaaS program

The system also implements psychological pressure tactics on victims, where ransom fees double after 48 hours and decryption keys are destroyed after 7 days without response.

Technical Details

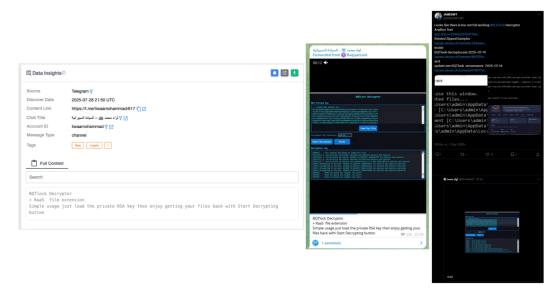
Once the attacker has gained access, they can develop their activities by trying to obtain information from the compromised device, also discovering information about adjacent disks or networks in order to move tools or the ransomware itself to other devices and detonate it.

The adversary has recently worked with a **ZIP file**, a package that contains the main ransomware executable along with supporting files. This package often includes **legitimate libraries**, not custom-built ones, but they serve an important role: making the malware resilient and self-sufficient.

decryptor.exe	Application	3,253 KB
update.exe	Application	4,075 KB
	Application extens	141 KB
libbrotlidec.dll	Application extens	59 KB
libcrypto-3-x64.dll	Application extens	5,657 KB
libcurl-4.dll	Application extens	1,170 KB
libgcc_s_seh-1.dll	Application extens	147 KB
libiconv-2.dll	Application extens	1,110 KB
libidn2-0.dll	Application extens	241 KB
libintl-8.dll	Application extens	293 KB
libnghttp2-14.dll	Application extens	206 KB
libnghttp3-9.dll	Application extens	186 KB
libngtcp2_crypto_ossl.dll	Application extens	51 KB
libngtcp2-16.dll	Application extens	336 KB
libpsl-5.dll	Application extens	103 KB
libssh2-1.dll	Application extens	303 KB
libssl-3-x64.dll	Application extens	1,026 KB
libstdc++-6.dll	Application extens	2,371 KB
libunistring-5.dll	Application extens	2,175 KB
libwinpthread-1.dll	Application extens	63 KB
libzstd.dll	Application extens	1,169 KB
⊗ zlib1.dll	Application extens	118 KB

Contents of the mentioned ZIP file

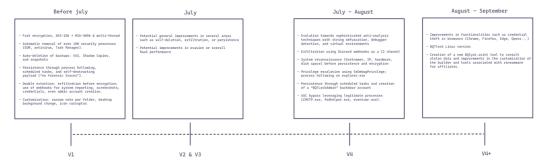
The libraries cover several core functions. For encryption, BQTLock relies on **OpenSSL** with **AES-256** and **RSA-4096**. For communication, it supports common protocols like HTTP/HTTPS, QUIC, SSH, and FTP, often tied to platforms such as Discord or Telegram. It also uses multiple compression algorithms, including Brotli, Zstandard, and Zlib, which help speed up operations and manage stolen data. Other libraries handle tasks like multi-threading and asynchronous communication, ensuring smoother execution.


By bundling these files, BQTLock avoids depending on what is already installed on a victim's system. This guarantees that the ransomware can execute consistently, even in diverse environments. Thus, it also signals that the malware is still **under development**, with the operators experimenting and showcasing its capabilities to attract new affiliates.

Decryptor

BQTLock includes an example decryptor designed to scan drives, search folders for encrypted files, and attempt recovery through its decrypt function. This tool is only a **sample**; the complete version is kept private and made available only to affiliates who buy into the Professional or Enterprise tiers.

BQTLock decryptor in action, console output scanning directories and reporting errors


The group has gone further by showcasing this decryptor publicly. On social media platforms such as Telegram and X, they share demonstrations of new versions running in different environments, passing file extensions and keys to execute the operation. These displays serve both as proof of capability and as promotion to potential affiliates.

The threat actor is showcasing the decryptor in social media platforms (Left to right, SOCRadar-Threat Hunting, Telegram, and X)

Versions

The main ransomware binary has evolved quickly despite BQTLock's short lifespan. Developers have consistently updated the malware, adding features and refining techniques across multiple versions.

Version timeline of BQTLock

After analyzing various samples, BQTlock presents itself as ransomware that contains a large number of interesting characteristics that we will review in order to understand how they work, with the objective of breaking down all relevant functionalities and having an orderly understanding of the work done by the developers, taking into account that the binary usually uses multi-threading in the latest versions, allowing it to perform operations simultaneously.

Builder

The Builder is central to BQTLock's RaaS model, giving affiliates wide control over how the ransomware operates and looks on victim systems.

There are two versions: **Windows** and **Linux**. The Windows Builder is the more advanced, allowing customization of ransom notes, encrypted file extensions, size limits, and communication channels like Discord, Telegram, or dedicated C2 servers. It also includes advanced options such as process termination, persistence, anti-VM/debug, UAC bypass, backup deletion, process hollowing, and even double-extortion features like screenshot capture and browser data theft. Affiliates can also modify icons and wallpapers for visual impact.

BQTLock Ransomware Builder v4.0


The Linux Builder is less developed but still offers key functions, including note and extension customization, process termination (targeting tools like OSSEC or Splunk), persistence via systemd, anti-analysis features, and backup removal with rm -rf. Visual customization is also available. Its capabilities are expected to expand, reflecting the importance of Linux servers in enterprise environments.

BQTLock Ransomware Builder, Linux Edition

Attack Chain

The malware's behavior may vary depending on the version, but the execution chain tends to remain consistent in terms of the tasks it performs. Depending on the builder, additional capabilities may be included.

Visualization of the BQTLock's attack chain

Initial Access

The exact entry points used by BQTLock remain unclear, but several common methods from other RaaS operations provide strong clues. Attackers may exploit exposed services such as RDP with weak or stolen credentials, often purchased through Initial Access Brokers. Phishing emails carrying malicious **ZIP** files have also been linked to

BQTLock, with the payload disguised as Update.exe. Other likely routes are the exploitation of unpatched software and supply chain compromises.

Execution

BQTLock starts by writing a log file in the temporary folder (WindowsTempbqt_log.txt). This file records each step of execution while avoiding system folders that could raise suspicion.

Decompiled and disassembled codes showing BQTLock creating and writing logs to C:WindowsTempbqt log.txt

It then collects operating system details such as version and build. To prevent duplicate execution, a mutex in GUID format is created, which changes with each build and is harder to detect.

The malware also checks for analysis environments. It looks for virtual machines and active debuggers using functions like IsDebuggerPresent and CheckRemoteDebuggerPresent. If found, it can change behavior to hinder researchers.

```
| International Content of the Conte
```

Decompiled view showing BQTLock using IsDebuggerPresent to detect debugging environments

Finally, BQTLock queries external services like *icanhazip[.]com* to capture the victim's public IP. This gives operators context about the infected device and its location.

BQTLock using the legitimate service icanhazip[.]com to obtain the victim's public IP address

Discovery

After setup, BQTLock gathers detailed information about the infected system. It collects the computer name and username, which help identify the victim.

```
mov rax, cs: _imp_GetComputerNameA
call rax; _imp_GetComputerNameA
lea rax, [rbp+0620h+var_922]
mov [rbp+0620h+var_70], rax
nop
nop
lea rax, aUsername; "USERNAME"
mov rcx, rax
call getenv
```

BQTLock is retrieving the computer name and username from the infected system

In some versions, it queries BIOS and motherboard serial numbers through WMI. This data is used to generate unique identifiers and to profile the machine more precisely.

The malware also scans connected drives and shared folders. It records the size of each disk and how much free space remains. This helps operators decide what to encrypt and how to move across the network.

By combining hardware details with storage data, BQTLock builds a full picture of the victim environment. This information supports both encryption and extortion later in the attack.

Privilege Escalation

In this stage, BQTLock performs less common actions to gain higher control. It can create new administrator accounts before running the ransomware, giving operators or affiliates more freedom to launch tools or execute malware with elevated rights. It also checks who is running the sample to confirm sufficient permissions.

```
v67 = a1;
v65 = &v18;
sub_1400E32F0(&v17, "INFO", &v18);
voa = &vzo;
sub_140823F0(&v19, "Attempting to create new admin user.", &v20);
sub_14080170B(&v19, &v17);
sub_1400E39A0(&v19);
sub_1400CFF60(&v20);
sub_1400E39A0(&v17);
sub_1400CFF60(&v18);
sub_1400E32F0(&v16, "BQTLockAdmin", &v21);
sub_1400CFF60(&v21);
v62 = &v22;
sub 1400E32F0(&v15, "Password123!", &v22);
sub_1400CFF60(&v22);
v61 = &v23:
v1 = sub_1400E0850(&v16);
v2 = sub_1400E0F10(&v16);
sub_1400E7AE0(&v14, v2, v1, &v23);
sub_1400D0010(&v23);
v60 = &v24;
v3 = sub_1400E0850(&v15);
v4 = sub_1400E0F10(&v15);
sub_1400E7AE0(&v13, v4, v3, &v24);
sub_1400D0010(&v24);
sub_140000010(&V24);

memset(&Dst, 0, 0x38ui64);

Dst = sub_14003FFD0(&V14);

v10 = sub_14003FFD0(&V13);

v11 = 1;

v12 = 577;
vi2 - 3//,
parm_err = 0;
v66 = NetUserAdd(0i64, 1u, (LPBYTE)&Dst, &parm_err);
if ( v66 )
   if ( v66 == 2224 )
       v56 = &v44:
      v56 = &v44;

sub_140823F0(&v43, "WARNING", &v44);

sub_140101A80(&v46, "User '", &v16);

sub_140101880(&v45, &v46, "' already exists. Skipping creation.");

sub_140001780(&v45, &v43);

sub_1400E39A0(&v45);
       sub 1400E39A0(&v46);
       sub_1400E39A0(&v43);
       sub_1400CFF60(&v44);
sub_140101A80(v67, "User Already Exists: ", &v16);
```

Creation of an administrator user

Newer versions add User Account Control (UAC) bypass methods. These allow the malware to run legitimate binaries (LOLbins) that auto-elevate without showing the usual approval prompt. The technique used depends on the Windows version:

- Windows 11: Copies the payload to a temporary path (bgt btpass.inf) and runs it with cmstp.exe.
- Windows 10: Alters the registry key HKCUSoftwareClassesms-settingsShellOpencommand and launches
 fodhelper.exe to trigger the payload.
- Windows 7/8: Alters the registry key HKCUSoftwareClassesmscfileshellopencommand and uses eventvwr.exe
 to run the payload.

If the malware already has administrator rights, these steps may not be required.

After the bypass, BQTLock adjusts tokens to further raise privileges, using functions like *OpenProcessToken*, *Token_Adjust_Privileges*, and *SeDebugPrivilege*. This ensures control at the highest level.

OpenProcessToken+Token_Adjust_Privileges(0x28)+LookUpPrivilegeValueA+SeDebugPrivilege

OpenProcessToken + Token_Adjust_Privileges (0x28) + LookUpPrivilegeValueA + SeDebugPrivilege

Finally, the ransomware creates administrator accounts with names such as *BQTLockAdmin* or *Guest_[ID]*. The ID is generated during execution, making each sample unique. Passwords are basic but meet minimum security rules: at least eight characters, including uppercase, lowercase, numbers, and symbols.

Command & Control (C2)

After escalating privileges, BQTLock connects to its command-and-control servers. Samples have used IPs like 92[.]113[.]146[.]56 and 208[.]99[.]44[.]55.

Login screen for C2 IPs

During this phase, the malware registers the infected device. It sends details such as:

- · Operating system version
- · Hostname and username
- · BIOS and motherboard serials
- Public IP address
- · Administrator account and password created earlier
- API key (BQTLOCK_...)

This data is encrypted with RSA and sent to the server. In return, the server provides a BOT-ID, which links each victim machine to a campaign. That same ID is added to ransom notes so victims can communicate with the attackers in an organized way.

BQTLock is preparing an API key parameter used for authenticating infected devices with its C2 server

BQTLock also has fallback options. It can send the same information to a Telegram bot or upload stolen files via Discord webhooks. These methods give affiliates more flexibility, ensure infections can still be tracked if a panel is taken down, and allow operators to receive alerts on mobile devices.

BQTLock sample using the Telegram API to send stolen data via bot commands

Once contact is established, BQTLock begins stealing additional data. It can take screenshots of the desktop and search for browser profiles to extract saved credentials.

BQTLock captures a screenshot of the victim's desktop and saves it as bqt_screenshot in the Windows Temp directory

Stolen passwords are stored in a text file and then exfiltrated. One such exfiltration platform is Discord. Using these kinds of common platforms makes traffic look normal and gives the group an easy way to manage data without running its own infrastructure.

BQTLock using HttpOpenRequestA to send stolen data via Discord webhooks

Impact

In this stage, the malware first prepares a ransom wallpaper. It decodes static code at runtime into a BMP file and saves it in the temporary directory before applying it with Windows API calls.

Decode + write folder & path + SystemParametersInfoA + SPI_SETDESKWALLPAPER (0x14)

C:WindowsTempbqt_wallpaper.bmp

Simultaneously, it deletes recovery options by abusing *vssadmin* and *wmic* to wipe shadow copies and using *bcdedit* to disable Windows startup repair and recovery environment.

vssadmin.exe delete shadows /all /quiet

wmic.exe shadowcopy delete > NUL 2>&1

bcdedit.exe /set {default} bootstatuspolicy ignoreallfailures > NUL 2>&1

bcdedit.exe /set {default} recoveryenabled no > NUL 2>&1

Following system modifications, the malware verifies running processes, a technique designed to eliminate processes that could either halt encryption or alert users to BQTLock's presence, such as database application failures. The malware employs the standard approach of capturing running processes and comparing them against an internal blacklist, terminating any matches found.

CreateToolHelp32Snapshot + Process32First (OpenProcess+TerminateProcess) + Process32Next

The malware also has evasion capabilities. During the analysis, if a monitored process is detected, it can be modified to bypass the check and avoid termination.

```
mov rsi_rax

rsi:a"procmon.exe"

rsi:a"procmon.exe"
```

BQTLock detecting procmon.exe

After these steps, it performs process hollowing, injecting its code into *explorer.exe* to appear as a legitimate process and avoid detection.

CreateProcess (Explorer.exe in Suspended mode) + GetThreatContext + VirtualAlloc + WriteProcessMemory + SetThreadContext + ResumeThread

Persistence is established through scheduled tasks, often named *SystemHealthCheck* or *BQTLock_Startup_[ID]*, which run the malware at every startup.

Usual Commandline:

schtasks /create /tn "<TaskName>" /tr "<Binary Path>" /sc ONLOGON /rl HIGHEST /f

Task names used

MicrosoftWindowsMaintenanceSystemHealthCheck

BQTLock Startup <ID>

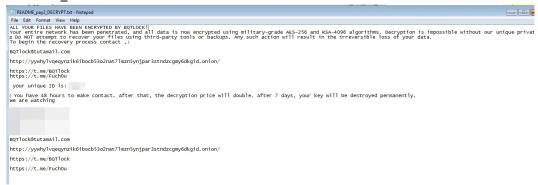
In some cases, it attempts lateral movement by copying files via WMIC or creating remote services. Older versions may also delete the original binary after execution, relying on scheduled tasks to maintain presence.

wmic /node:<HOST> process call create "<command>"

Once file movement and injection are completed, depending on the version, the malware may execute original binary deletion. Since it commonly creates copies in temporary directories, this improves evasion. With persistence already established in the system, a scheduled path will be called at each iteration. This execution commonly occurs using `cmd.exe` or through batch files in older versions.

cmd.exe /C timeout /t 3 /nobreaj > NUL & del /f /q "<PathBinary>" & exit

In the most critical phase where encryption begins, multi-threading becomes most apparent, as the sample systematically traverses each disk to locate target files for encryption.


Code snippet showing BQTLock scanning and identifying available logical drives for encryption

During this operation, the sample accesses functions that prepare the ransom note, typically stored as Base64encoded strings that are processed during execution. The filename is variable since the builder allows modification of both the filename and the extension used for renaming encrypted files, which is also prepared during this phase.

README_pay_DECRYPT.txt

README pay2 DECRYPT.txt

README_DECRYPT.txt

Decoded ransom note

Encryption is performed using a hybrid **AES-256 + RSA-4096** scheme while iterating through selected files with separate threads. Each file receives AES encryption, and each key is encrypted with RSA (using OpenSSL) public key cryptography that can only be decrypted with the private key held by affiliates or operators who launched the attack. During the process, depending on the sample, files may be renamed to .temp, then encrypted and changed to ".bqtlock".

What Actions Should You Take Against BQTLock Ransomware?

Understanding how BQTLock works is only useful if paired with strong defenses. Organizations need measures to **detect**, **respond** to, and **prevent** attacks.

Detection

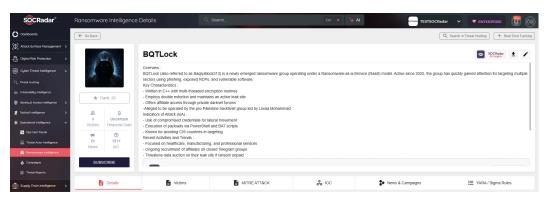
Focus monitoring on the ransomware's known behaviors. Look for suspicious account creation, use of tools like *vssadmin*, *bcdedit*, or *schtasks*, and outbound traffic to Telegram or Discord. Deploy the Sigma and Yara rules provided in the SOCRadar platform to flag these early.

Response & Remediation

If an infection occurs, speed matters:

- Containment: Disconnect compromised systems from networks, disable suspicious accounts, and block remote access protocols like RDP and SMB.
- Disruption: Kill injected processes, cut C2 channels by blocking Telegram, Discord, and known BQTLock IPs, and revoke stolen credentials.
- Forensics: Collect memory dumps, disk images, and security logs before wiping or restoring machines.
- Clean-up: Remove scheduled tasks, registry changes, and malicious binaries. Reset all administrative passwords and audit account creation logs. Restore systems from clean, offline backups or consider forensic recovery if backups are unavailable.

Prevention


The best defense is making it hard for ransomware to take root:

- **Harden endpoints**: Limit access to Windows tools often abused by ransomware and block untrusted code from running in *%Temp%* or *%AppData%*.
- Control accounts: Disable the default Administrator account and enforce MFA on RDP and VPN access.
- Secure backups: Maintain segmented, immutable backups and test recovery regularly.
- **Network protection**: Block communication with Telegram, Discord, and suspicious C2 addresses. Monitor for unusual outbound traffic, especially from processes like *explorer.exe*.

Conclusion

BQTLock is a versatile RaaS with traits that set it apart from others, rooted in strong political propaganda uncommon in this space. Its goals will remain framed as ideology, though the true motive is criminal. The group will keep evolving its ransomware and seeking exposure to attract affiliates, aiming to climb in global rankings.

Though its infrastructure, malware, and site may change, its core ideals and direction stay constant. SOCRadar's **Ransomware Intelligence** provides visibility into these shifts, helping defenders prepare and respond.

SOCRadar Platform -> Cyber Threat Intelligence -> Ransomware Intelligence

Stay tuned for our upcoming whitepaper, where we will dive deeper into BQTLock's technical evolution, attack chain, and loCs.

What are the MITRE ATT&CK TTPs of BQTLock Ransomware?

Tactic	Technique	Description – Example
TA0002 Execution	T1047: Windows Management Instrumentation	Remote execution of the binary, as well as deletion of ShadowCopies by abusing WMI (process call create)
	T1055.012: Process Hollowing	Process hollowing
TA0003 Persistence	T1053: Scheduled Task/Job	schtasks /create /tn " <name>" /tr "C:Users<users>Desktop<name>.exe" /sc ONLOGON /rl HIGHEST /f</name></users></name>
	T1136.001: Create Account: Local Account	Create a new admin user
TA0004 Privilege Escalation	T1548.002: Bypass User Account Control	UAC abuse to execute legitimate binaries (CMSTP, fodhelper, & eventvwr)
TA0005 Defense Evasion	^e T1112: Modify Registry	Modification of the registry
	T1562.001: Impair Defenses: Disable Tools	Kill security processes (e.g., Sysmon)
	T1070.004: File Deletion	Auto-delete file (e.g., cmd.exe / C timeout /t 3 /nobreak > NUL & del /f /q "".)
	T1548.002: Abuse Elevation Control Mechanism: Bypass User Account Control	UAC bypass via CMSTP (.inf with /s), later using fodhelper or eventvwr.exe
TA0006 Credential	T1078: Valid Accounts	Check admin privileges

Access

T1555.003: Credentials from Collect saved passwords from browsers

Web Browsers

Saved passwords written to T1074: Data Staged

C:WindowsTemp<name>_passwords.txt

System information discovery

TA0007 Discovery T1082: System Information

Discovery

TA0009 T1622: Debugger Evasion Anti-debug checks Collection T1113: Screen Capture Take screenshots

TA0011 T1071.001: Application Layer

Command and Control

Protocol: Web

Get public IP via WinInet

T1041: Exfiltration Over C2 Channel

T1490: Inhibit System Recovery

Extract info collected to C2

T1486: Data Encrypted for TA0040 Impact

Impact

File encryption

Delete backups (VSS, Shadow Copies, Volume

Snapshots)

loCs

425b2f283b71237276f84d941d9c2982c7f61a9aff12ece10e15065b73b7165e

b211537ea626fae4ad2ef5ee2652633dc68aaf20da6eb953a44f266c4106b367

11affbeb18f4d6edcc9a4be5a82f8e23dfc31178887e97119faa5ddc75990494

00005ed250d85fc47e4c3883b8e6179a9888b8140acfeb94a40edc36bd523adb

a6a397fec6c109a1402c6f1144d647843b2093f65fedd27204b40ebeea0640b6

618070d597dd73c43ba5d4bde2baa93a4f6038e3279de3bafe688caa5c409a58

cd5e7b3b59cea14b804f6c01821d1ab94a0046422fe956f623b238c5db0cac99

4369aed581de0fe84c25a1ef2c3cf0bb6bf70df8b51fdf38b3b0b2a55f43261b

862f29aa00bb4ee33729bc6699990dbdf9ef890b8364f8288b173cb1ca5d6787

49f89b2fdef345a9d92fc821e4a226d8ac99e4ca0d2d11b5654f6557800b85f2

881b048234ebed82339244eb0c18580d785944dc82f83949f6adc1a9bc225c3b

f77c203d0c80598954c06a0f6f0c46f8b885ba423d12a21f13ded0168aa11b10

dacbba7f18d0835deb2eeb4e4d82c8f57234767291a90da1a5f3fd02d6bc13c2

fbd67a3bcc964e370931f620a85bf368d7b5797ebc1d53fe3be11a89a90e7961

10938c2d01dc999d2fe1f8c635e3705e7e663077935a17e730c849d1191c76ed

e2622ede1ebe5a37c439a32f0c63c13f893d1e5513b27367502898651cc5464b

590e47944ef0597bf1ff1d41656859b776e7031a4611cbf22d619002cbe49312

97524f4c582e0fbe46b74a7cfe4db9f078f368520cda25f27a50c5d2c50161f9

56eec59a5fe3f5a3c2c836701557bf1956770f465cd9e049995b86aef76a3e39

b61ae633616d7dd29aaf0b170fdfbe8f282c0f8bdcb1c52aedee473ce4bf5789

780e34c72404fd464669626ae554b81393d2bae95293284b375bb5d989914486

5b992a3438e344dddcdd66151a40efb3452b2ff37cdc40b37db612afeb29ed29

008ec0226066572f4b27f100d08443120b9dd55cefbec2bbff994b5b552e546c

0ccd3f2d7e6637eaf5414e35b97d9d8bf6b8e4182859cace8ca8e02377a4e62a

9547933dd46501af7fc095a3513e48b81178e344b86e075b679259875f0fd5a7

af90666822646e35eb52248f4a89eb715ce9f44459205bc24827a2aafe053548

324eabc27a25f524c94bb62573986b3335ab5181ddc6825d959d16aaaccdc7aa

b7796a3b1812f329c43d5d37bbb6d8032b7bc06b15af29f555eb3e0c7b1b1c3d

9cd62dbace3324487124787127cff7c63a9f005d8d3aff9bac28c437e5caefc7

92.113.146[.]56

208.99.44[.]55

· bcoins[.]online

yywhylvqeqynzik6ibocb53o2nat7lmzn5ynjpar3stndzcgmy6dkgid.onion

https://t.me/BQTlock raas

https://t.me/Fuch0u

https://t.me/liwaamohammad

https://t.me/BQTlock

https://x.com/zerodayx1

https://t.me/ZeroDayX1

https://x.com/anonlb_

https://t.me/anonlb

https://t.me/BQTosint

https://guns.lol/zerodayx

BQTlock@tutanmail.com

89RQN2EUmiX6vL7nTv3viqUAgbDpN4ab329zPCEgbceQJuS233uye4eXtYk3MXAtVoKNMmzgVrxXphLZbJPtearY7QVuAr

Visit the SOCRadar platform for further loCs to come and rules to detect.

PROTECTION OF PERSONAL DATA COOKIE POLICY FOR THE INTERNET SITE

Protecting your personal data is one of the core principles of our organization, SOCRadar, which operates the internet site (www.socradar.com). This Cookie Usage Policy ("Policy") explains the types of cookies used and the conditions under which they are used to all website visitors and users.

Cookies are small text files stored on your computer or mobile device by the websites you visit.

Cookies are commonly used to provide you with a personalized experience while using a website, enhance the services offered, and improve your overall browsing experience, contributing to ease of use while navigating a website. If you prefer not to use cookies, you can delete or block them through your browser settings. However, please be aware that this may affect your usage of our website. Unless you change your cookie settings in your browser, we will assume that you accept the use of cookies on this site.

1. WHAT KIND OF DATA IS PROCESSED IN COOKIES?

Cookies on websites collect data related to your browsing and usage preferences on the device you use to visit the site, depending on their type. This data includes information about the pages you access, the services and products you explore, your preferred language choice, and other preferences.

2. WHAT ARE COOKIES AND WHAT ARE THEIR PURPOSES?

Cookies are small text files stored on your device or web server by the websites you visit through your browsers. These small text files, containing your preferred language and other settings, help us remember your preferences on your next visit and assist us in making improvements to our services to enhance your experience on the site. This way, you can have a better and more personalized user experience on your next visit.

The main purposes of using cookies on our Internet Site are as follows:

- Improve the functionality and performance of the website to enhance the services provided to you,
- Enhance and introduce new features to the Internet Site and customize the provided features based on your preferences,
- Ensure legal and commercial security for the Internet Site, yourself, and the Organization, and prevent fraudulent transactions through the Site,
- Fulfill legal and contractual obligations, including those arising from Law No. 5651 on the Regulation of Publications on the Internet and the Fight Against Crimes Committed Through These Publications, as well as the Regulation on the Procedures and Principles Regarding the Regulation of Publications on the Internet.

3. TYPES OF COOKIES USED ON OUR INTERNET SITE 3.1. Session Cookies

Session cookies ensure the smooth operation of the internet site during your visit. They are used for purposes such as ensuring the security and continuity of our sites and your visits. Session cookies are temporary cookies and are deleted when you close your browser; they are not permanent.

3.2. Persistent Cookies

These cookies are used to remember your preferences and are stored on your device through browsers. Persistent cookies remain stored on your device even after you close your browser or restart your computer. These cookies are stored in your browser's subfolders until deleted from your browser's settings. Some types of persistent cookies can be used to provide personalized recommendations based on your usage purposes.

With persistent cookies, when you revisit our website with the same device, the website checks if a cookie created by our website exists on your device. If so, it is understood that you have visited the site before, and the content to be presented to you is determined accordingly, offering you a better service.

3.3. Mandatory/Technical Cookies

Mandatory cookies are essential for the proper functioning of the visited internet site. The purpose of these cookies is to provide necessary services by ensuring the operation of the site. For example, they allow access to secure sections of the internet site, use of its features, and navigation.

3.4. Analytical Cookies

These cookies gather information about how the website is used, the frequency and number of visits, and show how visitors navigate to the site. The purpose of using these cookies is to improve the operation of the site, increase its performance, and determine general trend directions. They do not contain data that can identify visitors. For example, they show the number of error messages displayed or the most visited pages.

3.5. Functional Cookies

Functional cookies remember the choices made by visitors within the site and recall them during the next visit. The purpose of these cookies is to provide ease of use to visitors. For example, they prevent the need to re-enter the user's password on each page visited by the site user.

3.6. Targeting/Advertising Cookies

They measure the effectiveness of advertisements shown to visitors and calculate how many times ads are displayed. The purpose of these cookies is to present personalized advertisements to visitors based on their interests.

Similarly, they determine the specific interests of visitors' navigation and present appropriate content. For example, they prevent the same advertisement from being shown again to the visitor in a short period.

4. HOW TO MANAGE COOKIE PREFERENCES?

To change your preferences regarding the use of cookies, block or delete cookies, you only need to change your browser settings.

Many browsers offer options to accept or reject cookies, only accept certain types of cookies, or receive notifications from the browser when a website requests to store cookies on your device.

Also, it is possible to delete previously saved cookies from your browser.

If you disable or reject cookies, you may need to manually adjust some preferences, and certain features and services on the website may not work properly as we will not be able to recognize and associate with your account. You can change your browser settings by clicking on the relevant link from the table below.

5. EFFECTIVE DATE OF THE INTERNET SITE PRIVACY POLICY

The Internet Site Privacy Policy is dated The effective date of the Policy will be updated if the entire Policy or specific sections are renewed. The Privacy Policy is published on the Organization's website (www.socradar.com) and made accessible to relevant individuals upon request.

SOCRadar

Address: 651 N Broad St, Suite 205 Middletown, DE 19709 USA

Phone: +1 (571) 249-4598 Email: info@socradar.io Website: www.socradar.com