WWW.Se(q rite.com /blog/xworm-remcos-bat-svg-malware-analysis/

Malware Campaign Leverages SVGs, Email Attachments, and
CDNs to Drop XWorm and Remcos via BAT Scripts

Vaibhav Billade : : 9/11/2025

11 September 2025
Written by Vaibhav Billade

Table of Content:

¢ Introduction
¢ [nfection Chain
e Process Tree
e Campaign 1:
— Persistence
— BATCH files
— PowerShell script
— Loader
— Xworm/Remcos
e Campaign 2
e Conclusion
e |IOCS
¢ Detections
e MITRE ATTACK TTPs

Introduction:

Recent threat campaigns have revealed an evolving use of BAT-based loaders to deliver Remote Access
Trojans, including XWorm and Remcos. These campaigns often begin with a ZIP archive, typically hosted on
trusted looking platforms such as ImgKit, and are designed to appear as legitimate content to entice user
interaction.

Upon extraction, the ZIP file contains a highly obfuscated BAT script that serves as the initial stage of the
infection chain. These BAT files use advanced techniques to evade static detection and are responsible for
executing PowerShell based loaders that inject the RAT payload directly into memory. This approach
enables fileless execution, a growing trend in modern malware to bypass endpoint defences.

1/13

https://www.seqrite.com/blog/xworm-remcos-bat-svg-malware-analysis/
https://www.seqrite.com/blog/author/vaibhav-billade/

A notable development in this campaign is the use of SVG files to distribute the malicious BAT scripts. These
SVGs contain embedded JavaScript that triggers the execution chain when rendered in vulnerable
environments or embedded in phishing pages. This technique highlights a shift toward using non-traditional
file formats for malware delivery, exploiting their scripting capabilities to evade detection.

Infection Chain:

B
KR— — [
Spear Phishing Attachment tar QuotaticnReguest., bat
Email
CAMPAIGN 1
.r- -----------------------------------]
i |]
' i
oo by H '
e —h —
= i |
[
1
|]
CON link DECOY.ZIP July_Payrment. bt EP:).-.-I.'lshl.-ll Powershell E
|
! [i
i H
i []
H [
1
H i
' H
! H
[
11
CAMPAIGN 2 ' @@ — @@ H
' H
Iy H]
— T 1]
@ - @ i o o
1 [XWORM/ Remcos) '
L
Embedded ACH_Transler_Co ACH_Transfer_Con
SVG File Afirmation._Z1P firmathon. bat

Fig: Infection Chain

Process Tree:

S — N —— I
B o LESEK EITTE 2ETTH Windose Command Procenor Mimaosol Compossfion
[e BEMK T3AVER. 25K CorgleWirdke: Hoat izazsoh Compontion
E vttt e ¢ i TROME ENIE RIE Windoss Posesrihel Mo Comeihon

Fig: Process Tree
Campaign 1:

During the analysis Campaign 1, we identified multiple BAT scripts associated with the campaign, indicating
an evolving threat landscape. Some of these scripts appear to be in active development, containing partial or
test-stage code, while others are fully functional and capable of executing the complete attack chain,
including payload download, execution.

The image below showcases two BAT files:

e Method 1: Delivered directly as an attachment via EML (email file).
¢ Method 2: Downloaded via a URL hosted on the ImageKit platform.

2/13

This variation in delivery methods suggests that the threat actors are experimenting with different
approaches to improve infection success rates and evade detection mechanisms.

| ddtachmenttar BFO2085 113 P [AH File oE KR
a FIFeSedSc T Flc Ve TS 1AF 0500 A3 Je T Bb... BSS20ES T2 P EML File B3¢
s SMetschvant)
~ Mame - Dats rmodified g e
4
* | Quetakizn Raguirtdelpacifestiend 1+ 10, 80205 11040004 e Batzh Fila 1KE
L] e Date modified Type Size
I Juby Peyment Remittance Copy for Your Referencezip B5/2025 310 P Compressed (Tpp... 1 KB
v Juby Payment Remittance Copy for Your Reference w0 D Sparch Juky P
~
MNare Date rmodified Fype ime
=] July Payment Remittance Copy for Your .. /272005 205 P Win st ch File 56 b
Fig: Attachments
Persistence:

The malware achieves persistence by creating a BAT file in the Windows Startup folder. This ensures that

the malicious script is automatically executed whenever the user starts the system or logs into their account.

» SAppDats >

ers * admin
Flarme Dinte o

=] fzde.bat B 2025

fifemd

17:04 ArA

Fig: Persistence Mechanism through startup Menu

BATCH files:

The figure below displays the BAT script in its obfuscated form alongside its de obfuscated version.

k:r:_..'
Yannkedradikgrwgbokannkede
Yphkbivphk¥Ivphky Sphicinip
phichbelphk=1 & ¥phkhebphkl
l;.':iewt;r.nn
akpvolais

phkbdikphkh /
L1
sakprolcidnyoukpvol

wche off
if mot
kL3 &

r:m Pl #.r\D-\..., 1 (et phihl

Fig: Obfuscated and deobfuscated bat files

Sl

ukprotuldryoukpradevdnysukpeolc

Belphkel & &md e Btact

wed

LT

in

T e

WA s

0% & & axdt)

Romsming » Bicrosoft » Weindows: » Stack Pena » Programs = Stacbup

Size

akedradi kgruvgkiksnnkedradi kgrugbekannkede sdi kgrugickannkedesdl kyrwgthiznnk cdrsdi kyrwgbohannkedr sdi kgrugh

*1Hu:|..uql"h akcdeadikgrwghivsnnkedesdikgowgk
bokphkie ApRESDARHRAEAPHERFAPRERINPARANAEHRAENpREYDAPREY phkhbelphk (Sphikbvaiphkelatphkitiphky

fo kphkbabphkichphkbatphkboiphkbtiphky ™" Siphkisiphkbitphkiniphky "b-dpaxi™ &+

Nanyoukpvotebdny sukpwo N Phdnysukpvod i kdnyoukpes V1 bdnyou kpvokel

3/13

PowerShell script:

Below, the figure shows the PowerShell process window and the command-line arguments used during
execution. This provides insight into how the malware leverages PowerShell for in-memory payload delivery.
We will analyze the PowerShell script in detail in the following sections to understand its role in the
deployment of XWorm.

powershellece (FI08 Propetier - o *

Fancles MET sssembles PMET parformarce (== 1] Dok] Ntk Comment
Gereradl | Rty Peformance Threads Token Moduls Hemory Erwirorwent

Fils

Weircioes PosserShel

5 e Mgzt ke

Sersiore 1000150412013

Tnange e niarre:

e Wik Sy st e 32| WmehowerPomsd Tl] Dpoweer shal s s : -

Process = =
Cofrirarad bra: TG e emluWirdceniPorer Shelly | Dipovaihelgxs™ nop | |

Curmerk dirsctony: 'C:mmmﬂmﬂm1 m.dm“?am_

Sraited _nmnummwmu.ammg

FEB ackdrms: oA 00 | tmage type: pa-b
Parank: omiclsos [2ETTE) 4
Mtigation pocies: | DEP (permaners); ASUR (gh snirog CF Guard | | otats
Frotection: Nore Teminate

Fig: Process window of PWERSHELL with
argument as PS script

B Informistion k4

=Crwindovws) System 32y windowsPower Shelfy] . Ofpowershel exe™ -nop -w h =0 eoo] Text . Encoding]: “Unsoode:. Get String S
([Corrvert]: FromBasedaString

'Fig;' bbfuscated Poershell script as an argument

This PowerShell command runs the script by decoding a Base64 encoded string and executing it in the
memory. It uses -nop to avoid loading the user profile, -w hidden to hide the window, and iex (Invoke-
Expression) to run the decoded content.

Deobfuscated Script:

4/13

FENT T PP f S LR
frilows
if{Teat=Fa $rllxwl |
Frqlege([Systen. 0. Fila] 1 :EesdRl iiizan (frllev, [Systan, Taxt .Insadiag] = ' ITTH)
fereash (Bodeyes 16 Fyglogl|
W Ca Y aynn -na e
cryi
Fipdmp)= dywran. Corwsre] 1 FroaSapsdidnoing { fnatoban) L] . Trimii§
§ettahas=[Syween. Tere . [zcoding) 1 :Tniccds . GatSering (§igdmpi)
EesLx Jtinkan
Break

HeavEhy |

1
I
$rycsins fowmi=

Y

Fig: Deobfuscted script

We divided the deobfuscated script into two parts. In first part of the PowerShell script; it is designed to
locate and execute an obfuscated code embedded within a batch file (aoc.bat) located in the current user’s
profile directory. Firstly, It retrieves the username from the environment variables to construct the full path to
aoc.bat. It reads all lines using UTF-8 encoding and iterates through each line, specifically looking for lines
that begin with a triple-colon comment prefix (:::), followed by a Base64-encoded string. Upon finding such a
line, it attempts to decode the Base64 string into a byte array, then converts it into a Unicode string assigned
to the variable $ttzhae. This decoded string ($ttzhae) contains an additional layer of PowerShell script, which
is then executed in memory using Invoke-Expression. This allows the attacker to embed and execute
complex or multi-stage malicious PowerShell logic covertly within a seemingly benign batch file comment,
enabling stealthy and fileless execution.

1 Seansc=3env; USERNANE
2 el lww="C:\Users' Seanschaoc. bat
1F({Test=-FPath Sr1lxv){

4 Svaglzg=[System. I0.File] : :ReadadVILines (5r 1 Txv, [System, Text.Encoding] : :UTFE)
] foreach(Sojzyxz in Syalzad{
E E if(Soizyuz-match ' Azz: 2(.+)5")
7 try{
] $igdmpj=[System. Convert] : :FromBases25tring(Smatches [1]. Trim())
3y fttzhaes=[System. Text. Encoding] : :Unicode. GetString($1gdmp))

10 wWrite-Output Sttzhae

11 break

¥ Jcatch{}

14 1
15 1
Fig: First part of PS script

The script programmatically disables two key Windows security mechanisms AMSI (Antimalware Scan
Interface) and ETW (Event Tracing for Windows) to evade detection. It leverages .NET reflection and
dynamic delegate creation to resolve native functions such as GetProcAddress, GetModuleHandle,
VirtualProtect, and Amsilnitialize. Using these, it locates and patches the AmsiScanBuffer function in memory
with a instructions (mov eax, 0; ret), effectively bypassing AMSI scanning. Similarly, it disables event tracing
by overwriting the beginning of EtwEventWrite with a return instruction. These in-memory modifications allow
malicious PowerShell activity to execute stealthily, without being logged or scanned by endpoint protection
solutions.

5/13

[Parsseter{Porition =)] [Type] SretType = [Void]

=} Defi nelymami cha p ek Ty {Hew-Cbject Systen, Beflection, Asnenblyiane!

1one] Standard, SargTypes), SetTeplene

St Tnp ement ot onf lage { “Runtime, Mansged"

vpe -AssmmblyMeme Syntem, Windoes, Forms

[1] Failed ta Toad reguired tomponents™

stom, Runt ime. Interop

wow "[1] Error getting the od address

Fig: Output of First part of PS script

In the second part of the PowerShell script, it first retrieves the current user’s name from the environment
and constructs the path to a file named aoc.bat located in the user’s profile directory. It proceeds to execute
payloads embedded as encrypted and compressed .NET assemblies hidden within this batch file. The script
specifically searches for a comment line prefixed with ::, which contains a Base64-encoded payload string.
This string is then split into two parts using the backslash (\) as a delimiter. Each part undergoes Base64
decoding, AES decryption using a hardcoded key and IV (in CBC mode with PKCS7 padding), followed by
GZIP decompression as illustrated in the accompanying figures. The result is two separate .NET assemblies,
both loaded and executed directly in memory. The first assembly is invoked without any arguments, while the
second is executed with ‘%* passed as a simulated command-line input.

Subod e Seny | USERKANE

21 Stpzsh = “CriUsers' $xboi e\aoc. bat”
23 function pfosml (Sparss_wvar) {
24 Saes_war = yraphy. Aes] Create()
2% vETography . L1 phertiode] @ 10BC
24 ty. Cryptography. Paddingdode | @ 1 PECST
i W 'FrosBasebdString(dEP 10wl Q20 osminn 1 WE 1 3C TN 11 badRE TWEIMUTHZE0= ")
25 Comvert | FromBasebdStringl c23TsILELEToG W agSiches")
29
L 1e} WP Or v faes_var.Createlecryptor()
AW Sdecryptor_wvar . TransforefimalBlock{Sparas_var, O, Sparss_var.Length)

Sdecrvptor_var. hsposel)

Saes_var.spose()
L1 return Sreturn_va
7 |}
L5}
1] argliparas_var) §
&0 Hew=0bject Systes. I0.H
&1 Hew=0b)ect Syst AT T
&2 Hpw=0b)ect Systes. I0. Compression. GZipStr I, Compression. Compressiontode] & : Decosprass)
a4 Srgtpd. CopyTolSkraos)
a5 3. Disposel)
4 Dispasel)
45 k 5. Dspdsel)
85
50 return Skraos. Todrray()
51 |}

Fig: Second Part of Script_ encryption function

The second payload plays a more critical role. it functions as a loader responsible for executing the final
malware. which is XWorm remote access trojan (RAT).

6/13

2 Set PowerShell window title
Shost.UI. RawlI.windowTitle = ftpzash

Read and parse contents of asc.bat File
Engelkw = [System.I0.File] ::Readad)IText{Stpz=h). Split{ [Environment] : : NewlLine)
foreach (Soejxv in Sngelkw) {
= if (Soejuv.Startswith("]
SThrfp = Sosjxw. substrmafi)
break

3

Split payload string by %,
Errocwgh = [string[]l]$Thrfp. Sp'l-'lt{ L |

® Decrypt and decompress the First payload
Swzecawm = yfarg (pfoeml {([Convert]::FromBase&4String(Srrowgh[0])3)

2 Decrypt and decompresz=s the second payload
S$ddgici = vwfarg (pfoewml ([Convert]::FromBaseGiString(Srrowghl1132)

PALUSE

Load first assembly and inwvoke without arguments PAYLOADL

dbgkoq Swzemesm Inull

Write=-0utput “DONE™

® Load second assembly and invoke waith "%*" as string[] argument PAYLOAD 2
dbgkog Sddglci {,[string[11{ " %= "3

Fig: Second Part of Script_ call to encryption function

Loader

The loader is designed to evade detection, disable event logging, and execute embedded payloads directly
in the memory. It achieves this by either decrypting and running .NET executables via Assembly.Load or
executing decrypted shellcode using VirtualProtect and delegates.

ﬂ Dietect it Eany w310 [Windows 10Werzion 2009] (x86 65 — o o

File narme

1= CAlsersadminiDesktopiie .. adoaddl

Filk by Filt size Adwmnced
PE3E - AT.00 ki

Scan Endianiness Mode Aachitecture Type
Batormstie - LE 32-bat 1385 Cansole
= PE3L

Cparation pyrlon midows (T30, 22-bit, Congole]
Linkes: Mrt-n:nﬂ Lmi.ernl a 5
Lunguuge: MEILACE -4
Library: JNET Framewerk{Legeey, CLRWL0.30319 5
(HeurdCrypton Encrypted or packed data|Assembly irvoke + Aeihanaged + GZipSream = 5

EET T

*8 Sharteuts
£ Options
Tignatures | | Flags * | Database - 0 About
Saan
Drrectony Log » 3P mzec M Bt

Fig: Loader which loads XWorm\

7/13

Fig: Encrypted Resource containing XWorm/remcos
Loader Capabilities:

e Evade detection

e Disable event logging

8/13

BANA W

managementSoope.

B e

e Extract and execute embedded payloads

Here, we identified multiple loaders that utilize in-memory execution techniques to evade detection and
persist stealthily. Some of these loaders contain encrypted .NET executables, which are decrypted at
runtime and executed directly from memory using Assembly.Load followed by .EntryPoint. Invoke, allowing
the loader to run managed code without writing the executable to disk.

In contrast, other variants have encrypted shellcode instead of a binary. These variants decrypt the
shellcode, modify the memory protections using VirtualProtect to make it executable, and then execute it
using a delegate created via Marshal.GetDelegateForFunctionPointer. As shown in below figures,

[] arrays

array5s = ({args.

entryPoint i - (arrayd).

tryfoint. Invoke(null, new object[] { arrays });

entryPoint,

9/13

e Persistence

batPath)

folderfath

[]1 files
text

(folderPath, tex i
(batPath),

(batPath, textl,

= ytion: + textd):

Xworm

We have previously reported on XWorm and Remcos earlier this year, providing an in-depth analysis of its
core functionality, advanced capabilities such as keylogging, remote command execution, data exfiltration,
and its methods of persistence and evasion.

10/13

In addition to XWorm, several variants in the same campaign also utilized Remcos, a widely known
commercial Remote Access Trojan (RAT) that offers a range of capabilities, including remote desktop
access, keylogging, command execution, file manipulation, screenshot capture, and data exfiltration.

Campaign 2:

Campaign 2 introduces a notable shift in malware delivery by leveraging SVG (Scalable Vector Graphics)
files embedded with JavaScript, which are primarily used in phishing attacks. These malicious SVGs are
crafted to appear as legitimate image files and are either rendered in vulnerable software environments
(such as outdated image viewers or email clients) or embedded within phishing web pages designed to lure
unsuspecting users. Now, the embedded JavaScript within the SVG file acts as a trigger mechanism,
initiating the automatic download of a ZIP archive when the SVG is opened or previewed.

This downloaded ZIP archive contains an obfuscated BAT script, which serves as the initial access vector for
the malware. Once the BAT script is executed either manually by the user or through social engineering
tactics, it initiates a multi-stage infection chain similar to that observed in Campaign 1. Specifically, the BAT
script invokes PowerShell commands to decode and execute a loader executable (EXE) directly in memory.
This loader is responsible for decrypting and deploying the final payload, which in this campaign is the
XWorm Remote Access Trojan (RAT).

The use of SVG as a delivery mechanism represents a noteworthy evolution in attack methodology, as
image files are typically considered benign and are often excluded from deep content inspection by
traditional security tools. By exploiting the scripting capabilities of SVGs, threat actors can effectively bypass
perimeter defences and deliver malicious payloads in a fileless, stealthy manner.

Conclusion:

These campaigns highlight a growing trend in the use of obfuscated scripts, fileless malware, and non-
traditional file formats like SVGs to deliver Remote Access Trojans such as XWorm and Remcos. By
embedding payloads in BAT files and executing them via PowerShell, attackers effectively bypass static
defences. The shift from using SVGs in phishing attacks to malware delivery further emphasizes the need for
behavioural detection, content inspection, and improved user awareness to counter such evolving threats.

IOCS:

11/13

MD5 File
EDAO18A9D51F3B09C20E88A15F630DF5 BAT
23E30938E00F89BF345C9C1E58A6CC1D JS
1CE36351D7175E9244209AE0D42759D9 LOADER
EC04BC20CA447556C3BDCFCBF6662C60 XWORM
D439CB98CF44D359C6ABCDDDB6E85454 REMCOS
Detections:

Trojan.LoaderCiR

Trojan.GenericFC.S529960909

MITRE ATTACK TTPs:

Tactic Technique ID & Name Description

T1059.001 — Command and
Execution Scripting Interpreter:

PowerShell
T1106 — Execution Through
API

T1027 — Obfuscated Files or
Information

T1140 — Deobfuscate/Decode
Files or Information

T1055.012 — Process

Injection: .NET Assembly

Injection

T1036 — Masquerading
Persistence T1053 — Scheduled Task/Job

Defense
Evasion

Initial T1204 — User Execution

Access

Command .

and Control T1132 — Data Encoding
T1219 — Remote Access
Software

Credential T1056.001 — Input Capture:

Access Keylogging

Exfiltration T1041 — Exfiltration Over C2
Channel

Author:

Vaibhav Billade

PowerShell is used to interpret commands,
decrypt data, and invoke payloads.

The script uses .NET APls (e.g.,
Assembly.Load, Invoke) to execute payloads
in memory.

Payloads are Base64 encoded, AES-
encrypted, and compressed to bypass static
detections.

The script decodes and decompresses
payloads before execution.

Payloads are loaded into memory

The malicious content is hidden in batch file.

Establish persistence through strartup menu.

Execution depends on a user manually
running the batch file

Base64 and encryption are used to encode
commands or payloads.

Xworm provides full remote access and
control over the infected host.

XWorm includes keylogging functionality to
steal user input and credentials.

Stolen data is exfiltrated via the same C2
channel used by Xworm.

12/13

Rumana Siddiqui

13/13

