www.zscaler.com /blogs/security-research/technical-analysis-kkrat

Technical Analysis of kkRAT

Muhammed Irfan VA @ : 9/9/2025

KKRAT

FatalRAT

ValleyRAT_

Technical Analysis
Attack chain

In early May 2025, ThreatLabz identified a malware campaign delivering multiple RATs as the final payload.
The attack chain for this campaign is shown in the figure below.

1/11

https://www.zscaler.com/blogs/security-research/technical-analysis-kkrat

Second Stage

Circumwvents AV and EDR
systems to avoid
detection and ensure
successful execution.

The user downloads
the installer package,

)) First Stage
unaware it contains
malicious
-1] components. Decrypts
- & executes
The user encounters a Performs sandbox
phishing page that and VM checks to
imitates the installer detect if it is running
pages of popular in an analysis
software. environment.

Third Stage Final Payload kkRAT C2
Network
communication
—_—
Acts as a downloader, Deploys kkRAT, (or
retrieving and ValleyRAT, FatalRAT) to
executing additional execute the intended
malicious payloads malicious activities.

from external sources.

@>zscaler | ThreatLabz

Figure 1: Attack chain for a malware campaign delivering several RATs.

The threat actor uses GitHub Pages to host phishing sites impersonating popular software installers. These
installer packages are ZIP archives that contain a malicious executable file. The figure below highlights an

example phishing page used in the campaign.

2/11

B iTiTitiEsEE

g
DFD

Al 4
Chised

B R TRSSE Fid

A

£THT Linux % i

TRETSTE P

ZWFEW , TAEY)

£EF ¥ 4F HarmonyOS |, Android |, i0S |

T

>

L

-«

£THT Windows % =i £T4T macOs ¥ Fig

HarmonyOS NEYT oy’

ATRRERER & & §T4T XR E& % i

#

iPadO macOS , Windows , Linux ffi#

W

&> zscaler ‘ ThreatLabz

Figure 2: Example phishing page impersonating Ding Talk that ultimately delivers various RATSs.

First stage

During the initial stage of the campaign, the malware employs two distinct methods to identify sandbox

environments and virtual machines (VMs):

Time stability analysis

Using QueryPerformanceCounter, the malware measures the time for a repetitive operation, compares
the average (expected 300 ms) to a threshold (0.0008), and identifies sandboxes/VMs if the deviation

exceeds this limit.

Hardware configuration

3/11

The malware assesses disk space (minimum 50 GB) and CPU cores (minimum two). If these thresholds
aren’t met, the malware initiates evasive actions, including altering the Process Environment Block (PEB)
structure:

e ProcessParameters->ImagePathName and ProcessParameters->CommandLine are altered
to mimic $SWINDIR%\explorer.exe.

e The malware also traverses InlL.oadOrderModulelList. If any entry’s BaseD11Name matches the
current process name, both BaseD11Name and FullD1l1Name are rewritten
to SWINDIR%\explorer.exe.

These modifications corrupt the final process snapshot taken by sandboxes and will result in the malware
terminating execution.

After completing the sandbox and VM checks, the malware performs the following anti-analysis/obfuscation
methods.

¢ API resolution: The malware dynamically loads required Windows API functions by performing single-
byte XOR (key: 0x4) operations on stack strings.

¢ Next-stage file decryption: The malware applies single-byte XOR operations (key: 0x1) to extract
decryption keys for the next-stage files.

Memory is allocated for next-stage shellcodes, which are decrypted, written, and directly executed by the
first stage. All shellcodes utilized in the campaign employ pe_to_shellcode transformation logic.

Second stage

To bypass AV software and EDR systems, the malware employs several techniques. The first technique is
verifying administrator privileges. If the malware does not have sufficient privileges, a message is displayed
in Mandarin prompting the user for elevated access and exits. If the malware has administrator privileges,
the malware enumerates all active network adapters and temporarily disables them, severing AV/EDR
communication with the corresponding vendor’s servers.

Following this, the malware scans the system for the presence of specific AV and EDR processes
predominantly associated with China-based cybersecurity vendors. These vendors include:

e 360 Total Security

QQHNER

HeroBravo System Diagnostics suite
Kingsoft Internet Security

360 Internet Security suite

If targeted processes are detected, the malware uses a known vulnerable driver (RTCore64 . sys) to disable

AV/EDR functionalities. This is achieved by comparing the name of the AV/EDR driver that registered each
callback. The complete list of targeted drivers can be found in the ThreatLabz GitHub repository.

4/11

https://github.com/hasherezade/pe_to_shellcode/
https://nvd.nist.gov/vuln/detail/cve-2019-16098
https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_driver_list.txt

The malware incorporates code borrowed from the RealBlindingEDR project to remove registered system

callbacks, targeting three specific types of callbacks for elimination:

e ObRegister callback: Monitors, blocks, or modifies how the system creates and duplicates handles

using callback routines.
e MiniFilter callback: Allows minifilter drivers to filter specific file Input/Output (I/O) operations.

e CmReqister callback: Monitors, blocks, or modifies Windows registry operations via callback routines.

After disabling callbacks, the malware terminates and deletes files of specific AV/EDR processes at the user
level. The malware also creates a scheduled task to run with SYSTEM privileges to execute a batch script on
every user logon to ensure the processes are repeatedly killed.

Next, the malware modifies registry keys associated with the 360 Total Security program:

e The NetCheck registry value is set to 0 in HKLM\ SOFTWARE\WOW6432Node\360Safe\360Scan
(presumably to disable network checks).

¢ Adds random data to a null value name under the registry key located
at HKU\360SPDM\CC2FCASH\ speedmem2\x\b5e3891842b605bf7917ba84.

Following these registry changes, the malware re-enables the previously disabled network adapters to
restore the system's network connectivity. Thereafter, the first-stage shellcode executes the third-stage
shellcode, which functions as a downloader to facilitate the next phase of the attack.

Third stage

The malware retrieves and executes a shellcode file named 2025.bin from a hardcoded URL by utilizing the
EnumDateFormatsA API callback. The shellcode, heavily obfuscated with junk code, downloads a Base64-
encoded file named output.log, which is decoded to reveal structured data for subsequent attack stages. An
example is shown below.

5/11

https://github.com/myzxcg/RealBlindingEDR
https://github.com/myzxcg/RealBlindingEDR/blob/6307ac7c921275fe90c70caa08cb43ceca46d273/RealBlindingEDR/RealBlindingEDR/RealBlindingEDR.cpp#L492
https://github.com/myzxcg/RealBlindingEDR/blob/6307ac7c921275fe90c70caa08cb43ceca46d273/RealBlindingEDR/RealBlindingEDR/RealBlindingEDR.cpp#L803
https://github.com/myzxcg/RealBlindingEDR/blob/6307ac7c921275fe90c70caa08cb43ceca46d273/RealBlindingEDR/RealBlindingEDR/RealBlindingEDR.cpp#L604

field separator(s) ~ZIP containing EXE and DLL

|

30[a1 Fo|es 74 74 70 3A 2F 2F 6B €5 79 32 B0 32 0;uhttp://key202

35 2E €6F 73 73 2D €3 €E 2D €8 €F €E €7 €B ¢F €E S.oss-cn-hongkon
67 2E 61 ¢ 69 79 75 €EE €3 73 2E ¢ 6F €D 2F 74 g.aliyuncs.com/|t
72 78 33 3 2E 7A €9 70 2C €8 74 74 70 3A 2F 2F Jrx38.zipihttp://
€B €5 79 32 30 32 35 2E €F 73 73 2D €3 €E 2D €8 key2025.0ss-cn-h
€F 6E €7 €B €F €E €7 2E €1 €C €9 79 75 €E €3 7 ongkong.aliyuncs
2E 63 6F €D 2F 61 2E 7A 69 70[Al F9]Al C .com/{a . Zip i
1Al (74 72 7 33 2E 7A €9 70 2C €1 2E 7TA ajutrx38.zip,a.z
63 6B 61 €7 €5 2C €3 6E €D[Al| ip;upackage,cnm;
F?‘ﬁ' 3A 5C 50 72 6F €7 72 &1 6D 44 €1 74 61 5C uC:\ProgramData\
Al ?a|3u Al Fé Al FS €68 74 74 70 3A 2F 2F ¢t iu0;ol;uhttp://k

ZIP containing final payload-

field separator(s)
record terminator @>zscaler ‘ ThreatLabz

Figure 3: Hexdump of the decoded data used to download various RATSs.

The decoded data is structured using the delimiters 0xA1 0xF9 that act as a field separator, dividing
individual fields within a record, while 0xA1 0xF6 serves as a record terminator, marking the end of each

record. The decoded data consists of 62 records, each record starts with an index ranging from 0 to 61. In
each record, the second field contains two URLs, and these URLs are used to download two archive files:

o trx38.zip: When unzipped, trx38.zip includes a legitimate executable file and a malicious DLL.
o *.zip: (Where * represents a wildcard) This ZIP archive contains a file named longlq.cl, which holds the

encrypted final payload.

The malware selects a record based on the last letter of the current process's filename. For example, if the
filename was setup.exe, the file p.zip would be downloaded. The malware then will create a shortcut for the
legitimate executable extracted from trx38.zip, add this shortcut to the startup folder for persistence, and
execute the legitimate executable to sideload the malicious DLL.

The malicious DLL decrypts and executes the final payload from the file longlqg.cl using a 6-byte XOR key at
offset 0xD3000, with encrypted data at 0xD3006. The final payload of the campaign varies based on the
second ZIP archive that is downloaded. This campaign delivers three different RATs: ValleyRAT, FatalRAT,

and kkRAT.

Final payload

6/11

Since ValleyRAT and FatalRAT are already extensively documented, they will not be analyzed in this section.

However, KkRAT is a previously unknown malware family that incorporates elements from both Ghost RAT
and Big Bad Wolf. These shared similarities are outlined below:

¢ Ghost RAT: kkRAT shares similarities with Ghost RAT’s network communication protocols, but
introduces an added layer of encryption applied after data compression. kkRAT also borrows several
network commands from Ghost RAT, such as COMMAND_ACTIVED, COMMAND_KEYBOARD, and
COMMAND_LIST_DRIVE.

e Big Bad Wolf: kkRAT adopts specific DLL exports from Big Bad Wolf’s primary plugin DLL, including
DlIShell and DIIScreen.

Encrypted configuration

kkRAT’s configuration, such as the C2 server IP and port, version, and group identifier, are stored as
encrypted strings and sent in the registration message. A Python script for decrypting this configuration is
available in the ThreatLabz GitHub repository.

Device fingerprinting

After establishing a socket connection, kkRAT gathers system information for device fingerprinting. The
collected data is sent to the C2 server in a registration message with the structure below.

struct REGISTRATIONINEFO

{

BYTE Token; // 0x66 hardcoded value

OSVERSIONINFOEXA OsVerInfoEx; // OS version information
DWORD CPUClockMhz; // CPU frequency

int CPUNumber; // Number of processors

IN ADDR IPAddress; // Host local IP

char HostName[50]; // Host name

bool IsWebCam; // Is there a web camera connected?
DWORD socketTime; // Time since the socket was established
DWORD Speed; // Internet speed in mbps

DWORD MemSize; // Total physical memory size

DWORD DriverSize; // Hard disk capacity

char Group[50]; // RAT Group - set to Default

char UpTime[32]; // System uptime

char Version[32]; // RAT Version - set to Enterprise
BOOL Is64; // 32-bit or 64-bit; 1 is 64 while 0 is 32
char AV[80]; // List of AV's installed

DWORD isIdle; // Is idle for more than 3 min?

char TG[40]; // Is Telegram present on the system?

7/11

https://undefined/blogs/security-research/technical-analysis-latest-variant-valleyrat
https://ics-cert.kaspersky.com/publications/reports/2025/02/24/fatalrat-attacks-in-apac-backdoor-delivered-via-an-overly-long-infection-chain-to-chinese-speaking-targets/
https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_config_extractor.py

char
char
BOOL
char

) g

Network communication protocol

WC[40];
Q0[80];

// Account username

// Is WeChat present on the system?
// QQ number
IsAdmin;// Is Administrator

UserName [50] ;

kkRAT's network communication protocol closely resembles that of Ghost RAT, with an added layer of

encryption applied after data compression. Each packet exchanged between kkRAT and the C2 server is

sent via TCP and follows a specific structure, as illustrated in the figure below.

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
clelalelele le)
00000090
000000A0
00000080
0oee0aCo
00000000
000000ED
00000OFO
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190

TOTAL
MAGIC PACKET SIZE pATA SIZE

ORIGINAL

46

20

66

20][z0

01

00

00

DATA

520206 o] 72 ea 73 cb)

94 02 00 00| f2 e4 73 cb

8d
81
db
b3
a9
79
30
d2
50
1d
18
a0
e9
eb
83
53
23
88
d2
62
06
c9
58
b8

65
b8
32
fo
00
88
43
66
87
86
81
9
74
co
53
22
43
k.
05
3e
8c
44
32

cC

90
03
da
d4
05
+F
cb
08
75
al
94
62
17
fd
35
79
a8
05
84
29
eb
01
6b
fd

37
fb
b8
47
94
61
eb
b3
05
3e
cf
b7
bc
3e
c5
25
cl
58
a3
Qe
bl
5a
dé
36

81 _do 95 14

df
77
ae
2¢c
89
02
9d
el
8e
67
79
f5
c3
08
79
98
13
43
1c
11
6e
53
e8
64
c/

f2
o
63
75
B
00
8b
aa
93
68
10
30
79
2f
a3
9b
4d
d2
7
c4
%e
9¢
69
4e
3d

el
01
dé
95
75
fc
ao
83
36
cf
87
cb
fc
ee
4a
c3
43
bd
6¢c
1d
ac
07
58
09
cb

4a
ab
44
82
95
30
40
o1
4b
90
a8
e
24
dl
47
b7
88
f2
94
f1
66
a9
12
65
03

2e
9d
3f
4c
ed
3a
of
cf
2e
35
9a
bc
26
b4
ba
54
2e
dd
9d
df
75
39
4a
od
15

a9
82
8f
Se
ff
42
Oc
c2
S5a
22
66
82
38
04
eb
33
23
Pe
72
ff
48
21
19
ds8

28

dc
58
59
5a
5b
53
cb
84
a3
b
e9
b8
1f
3b
9d
db
e8
co
9c
de
66
37
9f
50
86

88
24
79
1f
5d
3
96
70
22
bo
17
82
1f
49
57
df
16
3d
a5
f2
25
73
Oc
93
CC

16
ac
6f
fb
24
75
d8
ba
13
ba
6b
38
5¢
le
64
4b
77
fa4
eb
92
87
ad
3c
35

48

a3
af
6c
de
6d
47
ed
do
72
78
da
el
S5a
b3
ad
be
55
be
5d
e8
b7
14
74
c8
2c

f5
53
77
ae
74
a7
5d
46
9a
49
9d
c8
2b
86
S5a
77
as
77
a7
c4d
b2
65
5¢
91

bd
58
ed
69
05
de
41
40
92
42
9d
7 |
9b
89
do9
ba
bo
c8
5d
09
50
62
16
48

fa b2

YA o
X2k..iX. J...<t\.
...6dN.e ..P.5..}

«s=ee oftaaHa

&> zscaler ’ ThreatLabz

8/11

Figure 4: KkRAT packet structure.

The original data is first compressed using z/ib and then encrypted using an XOR-based algorithm with a key
embedded in the malware binary. The Python script provided in the ThreatLabz GitHub repository can be
used to decrypt the network data captured.

Plugins

kkRAT retrieves its main plugin and saves it on disk in an encrypted format. When a specific command calls
for a plugin export, the encrypted plugin is read from disk, decrypted, loaded into memory, and the requested
export is executed. The Python code in the ThreatLabz GitHub repository can be used to decrypt the
encrypted plugin. The encryption algorithm is similar to the XOR-based algorithm used to protect network
communications.

The table below outlines the plugins and exports for kkRAT.

Plugin Name Export Name Description
Provides basic remote desktop screen management, primarily used
DLLScreen for screen capturing and simulating user inputs such as keyboard and

mouse actions.
An extended version of pLLscreen that includes additional capabilities,
such as retrieving and modifying clipboard data.

Enables concealed remote management through virtual desktops,
DLLScreeh with added functionalities such as launching web browsers and
terminating active processes.
Functions as a view-only screen monitor, supporting only screen
monitoring without features such as input simulation.

D11Shell Facilitates remote command execution via a shell interface.

Enables management of windows on the screen, offering features
such as listing, enabling, disabling, or closing windows.

(Plugin32.d11) Provides process management capabilities, including listing active
Dl1Progress . .
processes and terminating them as needed.

Generates a list of active network connections (similar to netstat),
DllGetNetState along with their associated processes, and allows for the termination
of processes based on this data.

Offers application management functionalities, including listing
installed software and uninstalling selected programs.

Enumerates and retrieves the list of values stored in the autorun
D11QDXGL registry key located
at HXKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\Run.

Serves as a proxy, facilitating communication between a client and a

DLLScreee

Dl1lScreer

Main Plugin

Dl11lWindows

D11App

fFroxy server by relaying the data.
Functions as a proxy between a client and server, utilizing a Go
PlugProxy.dll ConnSocks binary. It implements the SOCKS5 protocol using the go-socks5

library.

9/11

https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_network_decryptor.py
https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_plugin_decryptor.py
https://github.com/armon/go-socks5

Table 1: Plugins supported by kkRAT.

Note that kkRAT's main plugin, Plugin32.dll, was uncovered alongside the source code of an older version
on VirusTotal, which served as the basis for the RAT's name.

After receiving the registration message, the C2 server issues a series of commands for kkRAT to execute.
kkRAT supports an extensive range of commands, integrating functionality from its plugin DLL exports. While
the known command IDs associated with Ghost RAT are excluded, the table below provides the command
IDs for the plugin DLL exports discussed earlier and the new commands introduced in kkRAT.

Command D oy
ID escription

0x4 Downloads the main plugin DLL (p1ugin32.d11).

0x8 Removes Internet Explorer browsing data.

0x9 Removes Skype local storage data.

0xA Removes Telegram tdata.

0xB Removes QQ browser user data.

0xC Removes Firefox profiles data.

0xD Removes Google Chrome user data.

OXE Removes Sogou Explorer cache data.

OxF Removes 360 Speed Browser user data.

0x10 Removes 360 Secure Browser user data.

0x15 Calls DIIScreen export from pilugin32.d11.

0x1F Calls DIlIScreee export from piugin32.d11.

0x29 Calls DIScreeh export from piugin32.d11.

0x2A Calls DlIScreer export from p1ugin32.d11.

0x34 Calls DIIWindows export from piugin32.d11.

0x35 Calls DlIProgress export from p1ugin32.d11.

0x36 Calls DliGetNetState export from p1ugin32.4d11.

0x37 Calls DIlIApp export from piugin32.d11.

0x38 Calls DIIQDXGL export from p1ugin32.d11.

Establishes persistence on the victim's system. The RAT server provides the sub-
command ID and name needed for key/task as parameters to specify the method for
persistence. The sub-commands are listed below:

Achieve persistence using the startup folder.
Achieve persistence using autorun key.
Achieve persistence using logon script
(HKCU\Environment\UserInitMprLogonScript)
Achieve persistence using scheduled tasks.

Ox4A

Checks for the presence of the GotoHTTP remote monitoring and management (RMM)
tool on the victim's system. If GotoHTTP is detected, the command retrieves the name

0x4B and tmp values from the gotohttp.ini configuration file. If GotoHTTP is not present, the
command installs the tool on the system. The GotoHTTP tool (file content) is provided by
the C2 as a parameter for the command.

10/11

https://www.virustotal.com/gui/file/c20c0c957ff42158d08053b5ce3ee4a6bbbc5eeb905f901336ed5c04d34910b5

Command
ID

0x4cC

0x4D

0x4E
Ox4F
0x51

0x55

0x5C

0x5D

Description

Verifies whether the Sunlogin RMM tool is installed on the victim's system. If Sunlogin is
present, the command retrieves the fastcode and password values from the config.ini file.
If Sunlogin is not found, the command installs the tool on the system. The Sunlogin RMM
tool (file content) is provided by the C2 as a parameter for the command.

Scans the clipboard for cryptocurrency wallet addresses associated with Tether, Bitcoin,
or Ethereum. Identified wallet addresses are replaced with the attacker’s wallet
addresses. The attacker’s wallet addresses are provided as parameters for this
command.

Same as 0x4p.

Stops the replacement of Tether, Bitcoin, and Ethereum wallet addresses in the clipboard
with the attacker’s wallet addresses, effectively disabling the crypto hijacking behavior.

Attempts to elevate privileges on the victim's system using the runas verb once.

Invokes the p11she11 export from the r1ugin32.d11 plugin to execute its associated
functionality.

Calls the fnprroxy export from the r1ugin32.4d11 plugin. This command supports multiple
sub-commands, with the first parameter determining the specific operation to be
executed. The sub-commands are listed below:

o Ox5E: Establishes a TCP connection to a remote IP and port specified by the
attacker. Additional parameters include a unique ID to identify the TCP socket, the
target remote IP address, and the target remote port number.

+ 0x5F: Terminates the TCP connection associated with the specified ID, which is
provided as an additional parameter.

* 0x60: Sends data through the proxy. Additional parameters include the ID of the
associated TCP socket and the data to be transmitted.

Calls the connsocks export from the p1ugproxy.di1 plugin. Along with this command, the
DLL content of p1ugproxy.di1 is provided as a parameter for this command.

Table 2: Commands implemented by kkRAT.

11/11

