
1/11

www.zscaler.com /blogs/security-research/technical-analysis-kkrat

Technical Analysis of kkRAT
Muhammed Irfan V A ⋮ ⋮ 9/9/2025

Technical Analysis
Attack chain

In early May 2025, ThreatLabz identified a malware campaign delivering multiple RATs as the final payload.
The attack chain for this campaign is shown in the figure below. 

https://www.zscaler.com/blogs/security-research/technical-analysis-kkrat


2/11

Figure 1: Attack chain for a malware campaign delivering several RATs.

The threat actor uses GitHub Pages to host phishing sites impersonating popular software installers. These
installer packages are ZIP archives that contain a malicious executable file. The figure below highlights an
example phishing page used in the campaign.



3/11

Figure 2: Example phishing page impersonating Ding Talk that ultimately delivers various RATs.

First stage

During the initial stage of the campaign, the malware employs two distinct methods to identify sandbox
environments and virtual machines (VMs):

Time stability analysis 

Using QueryPerformanceCounter, the malware measures the time for a repetitive operation, compares
the average (expected 300 ms) to a threshold (0.0008), and identifies sandboxes/VMs if the deviation
exceeds this limit.

Hardware configuration 



4/11

The malware assesses disk space (minimum 50 GB) and CPU cores (minimum two). If these thresholds
aren’t met, the malware initiates evasive actions, including altering the Process Environment Block (PEB)
structure:

ProcessParameters->ImagePathName and ProcessParameters->CommandLine are altered
to mimic %WINDIR%\explorer.exe.
The malware also traverses InLoadOrderModuleList. If any entry’s BaseDllName matches the
current process name, both BaseDllName and FullDllName are rewritten
to %WINDIR%\explorer.exe.

These modifications corrupt the final process snapshot taken by sandboxes and will result in the malware
terminating execution.

After completing the sandbox and VM checks, the malware performs the following anti-analysis/obfuscation
methods.

API resolution: The malware dynamically loads required Windows API functions by performing single-
byte XOR (key: 0x4) operations on stack strings.
Next-stage file decryption: The malware applies single-byte XOR operations (key: 0x1) to extract
decryption keys for the next-stage files.

Memory is allocated for next-stage shellcodes, which are decrypted, written, and directly executed by the
first stage. All shellcodes utilized in the campaign employ pe_to_shellcode transformation logic. 

Second stage

To bypass AV software and EDR systems, the malware employs several techniques. The first technique is
verifying administrator privileges. If the malware does not have sufficient privileges, a message is displayed
in Mandarin prompting the user for elevated access and exits. If the malware has administrator privileges,
the malware enumerates all active network adapters and temporarily disables them, severing AV/EDR
communication with the corresponding vendor’s servers.

Following this, the malware scans the system for the presence of specific AV and EDR processes
predominantly associated with China-based cybersecurity vendors. These vendors include:

360 Total Security
QQ电脑管家
HeroBravo System Diagnostics suite
Kingsoft Internet Security
360 Internet Security suite

If targeted processes are detected, the malware uses a known vulnerable driver (RTCore64.sys) to disable
AV/EDR functionalities. This is achieved by comparing the name of the AV/EDR driver that registered each
callback. The complete list of targeted drivers can be found in the ThreatLabz GitHub repository.

https://github.com/hasherezade/pe_to_shellcode/
https://nvd.nist.gov/vuln/detail/cve-2019-16098
https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_driver_list.txt


5/11

The malware incorporates code borrowed from the RealBlindingEDR project to remove registered system
callbacks, targeting three specific types of callbacks for elimination:

ObRegister callback: Monitors, blocks, or modifies how the system creates and duplicates handles
using callback routines.
MiniFilter callback: Allows minifilter drivers to filter specific file Input/Output (I/O) operations.
CmRegister callback: Monitors, blocks, or modifies Windows registry operations via callback routines.

After disabling callbacks, the malware terminates and deletes files of specific AV/EDR processes at the user
level. The malware also creates a scheduled task to run with SYSTEM privileges to execute a batch script on
every user logon to ensure the processes are repeatedly killed.

Next, the malware modifies registry keys associated with the 360 Total Security program:

The NetCheck registry value is set to 0 in HKLM\SOFTWARE\WOW6432Node\360Safe\360Scan
(presumably to disable network checks).
Adds random data to a null value name under the registry key located
at HKU\360SPDM\CC2FCASH\speedmem2\x\b5e3891842b605bf7917ba84.

Following these registry changes, the malware re-enables the previously disabled network adapters to
restore the system's network connectivity. Thereafter, the first-stage shellcode executes the third-stage
shellcode, which functions as a downloader to facilitate the next phase of the attack.

Third stage

The malware retrieves and executes a shellcode file named 2025.bin from a hardcoded URL by utilizing the
EnumDateFormatsA API callback. The shellcode, heavily obfuscated with junk code, downloads a Base64-
encoded file named output.log, which is decoded to reveal structured data for subsequent attack stages. An
example is shown below.

https://github.com/myzxcg/RealBlindingEDR
https://github.com/myzxcg/RealBlindingEDR/blob/6307ac7c921275fe90c70caa08cb43ceca46d273/RealBlindingEDR/RealBlindingEDR/RealBlindingEDR.cpp#L492
https://github.com/myzxcg/RealBlindingEDR/blob/6307ac7c921275fe90c70caa08cb43ceca46d273/RealBlindingEDR/RealBlindingEDR/RealBlindingEDR.cpp#L803
https://github.com/myzxcg/RealBlindingEDR/blob/6307ac7c921275fe90c70caa08cb43ceca46d273/RealBlindingEDR/RealBlindingEDR/RealBlindingEDR.cpp#L604


6/11

Figure 3: Hexdump of the decoded data used to download various RATs. 

The decoded data is structured using the delimiters 0xA1 0xF9 that act as a field separator, dividing
individual fields within a record, while 0xA1 0xF6 serves as a record terminator, marking the end of each
record. The decoded data consists of 62 records, each record starts with an index ranging from 0 to 61. In
each record, the second field contains two URLs, and these URLs are used to download two archive files:

trx38.zip: When unzipped, trx38.zip includes a legitimate executable file and a malicious DLL.
*.zip: (Where * represents a wildcard) This ZIP archive contains a file named longlq.cl, which holds the
encrypted final payload.

The malware selects a record based on the last letter of the current process's filename. For example, if the
filename was setup.exe, the file p.zip would be downloaded. The malware then will create a shortcut for the
legitimate executable extracted from trx38.zip, add this shortcut to the startup folder for persistence, and
execute the legitimate executable to sideload the malicious DLL.

The malicious DLL decrypts and executes the final payload from the file longlq.cl using a 6-byte XOR key at
offset 0xD3000, with encrypted data at 0xD3006. The final payload of the campaign varies based on the
second ZIP archive that is downloaded. This campaign delivers three different RATs: ValleyRAT, FatalRAT,
and kkRAT. 

Final payload



7/11

Since ValleyRAT and FatalRAT are already extensively documented, they will not be analyzed in this section.
However, kkRAT is a previously unknown malware family that incorporates elements from both Ghost RAT
and Big Bad Wolf. These shared similarities are outlined below:

Ghost RAT: kkRAT shares similarities with Ghost RAT’s network communication protocols, but
introduces an added layer of encryption applied after data compression. kkRAT also borrows several
network commands from Ghost RAT, such as COMMAND_ACTIVED, COMMAND_KEYBOARD, and
COMMAND_LIST_DRIVE.
Big Bad Wolf: kkRAT adopts specific DLL exports from Big Bad Wolf’s primary plugin DLL, including
DllShell and DllScreen.

Encrypted configuration

kkRAT’s configuration, such as the C2 server IP and port, version, and group identifier, are stored as
encrypted strings and sent in the registration message. A Python script for decrypting this configuration is
available in the ThreatLabz GitHub repository.

Device fingerprinting

After establishing a socket connection, kkRAT gathers system information for device fingerprinting. The
collected data is sent to the C2 server in a registration message with the structure below.

struct REGISTRATIONINFO

{

BYTE Token; // 0x66 hardcoded value

OSVERSIONINFOEXA OsVerInfoEx; // OS version information

DWORD CPUClockMhz; // CPU frequency

int CPUNumber; // Number of processors

IN_ADDR IPAddress; // Host local IP

char HostName[50]; // Host name

bool IsWebCam; // Is there a web camera connected?

DWORD socketTime; // Time since the socket was established

DWORD Speed; // Internet speed in mbps

DWORD MemSize; // Total physical memory size

DWORD DriverSize; // Hard disk capacity

char Group[50]; // RAT Group - set to Default

char UpTime[32]; // System uptime

char Version[32]; // RAT Version - set to Enterprise

BOOL Is64; // 32-bit or 64-bit; 1 is 64 while 0 is 32

char AV[80]; // List of AV's installed

DWORD isIdle; // Is idle for more than 3 min?

char TG[40]; // Is Telegram present on the system?

https://undefined/blogs/security-research/technical-analysis-latest-variant-valleyrat
https://ics-cert.kaspersky.com/publications/reports/2025/02/24/fatalrat-attacks-in-apac-backdoor-delivered-via-an-overly-long-infection-chain-to-chinese-speaking-targets/
https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_config_extractor.py


8/11

char WC[40]; // Is WeChat present on the system?

char QQ[80]; // QQ number

BOOL IsAdmin;// Is Administrator

char UserName[50]; // Account username

};

Network communication protocol

kkRAT's network communication protocol closely resembles that of Ghost RAT, with an added layer of
encryption applied after data compression. Each packet exchanged between kkRAT and the C2 server is
sent via TCP and follows a specific structure, as illustrated in the figure below.



9/11

Figure 4: kkRAT packet structure.

The original data is first compressed using zlib and then encrypted using an XOR-based algorithm with a key
embedded in the malware binary. The Python script provided in the ThreatLabz GitHub repository can be
used to decrypt the network data captured.

Plugins

kkRAT retrieves its main plugin and saves it on disk in an encrypted format. When a specific command calls
for a plugin export, the encrypted plugin is read from disk, decrypted, loaded into memory, and the requested
export is executed. The Python code in the ThreatLabz GitHub repository can be used to decrypt the
encrypted plugin. The encryption algorithm is similar to the XOR-based algorithm used to protect network
communications. 

The table below outlines the plugins and exports for kkRAT.

Plugin Name Export Name Description

 Main Plugin

(Plugin32.dll)

DLLScreen

Provides basic remote desktop screen management, primarily used
for screen capturing and simulating user inputs such as keyboard and
mouse actions.

DLLScreee
An extended version of DLLScreen that includes additional capabilities,
such as retrieving and modifying clipboard data.

DLLScreeh

Enables concealed remote management through virtual desktops,
with added functionalities such as launching web browsers and
terminating active processes.

DllScreer 
Functions as a view-only screen monitor, supporting only screen
monitoring without features such as input simulation.

DllShell Facilitates remote command execution via a shell interface.

DllWindows
Enables management of windows on the screen, offering features
such as listing, enabling, disabling, or closing windows.

DllProgress
Provides process management capabilities, including listing active
processes and terminating them as needed.

DllGetNetState

Generates a list of active network connections (similar to netstat),
along with their associated processes, and allows for the termination
of processes based on this data.

DllApp
Offers application management functionalities, including listing
installed software and uninstalling selected programs.

DllQDXGL

Enumerates and retrieves the list of values stored in the autorun
registry key located
at HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run.

fnProxy
Serves as a proxy, facilitating communication between a client and a
server by relaying the data.

PlugProxy.dll ConnSocks

Functions as a proxy between a client and server, utilizing a Go
binary. It implements the SOCKS5 protocol using the go-socks5
library.

https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_network_decryptor.py
https://github.com/ThreatLabz/tools/blob/main/kkrat/kkrat_plugin_decryptor.py
https://github.com/armon/go-socks5


10/11

Table 1: Plugins supported by kkRAT.

Note that kkRAT's main plugin, Plugin32.dll, was uncovered alongside the source code of an older version
on VirusTotal, which served as the basis for the RAT's name.

After receiving the registration message, the C2 server issues a series of commands for kkRAT to execute.
kkRAT supports an extensive range of commands, integrating functionality from its plugin DLL exports. While
the known command IDs associated with Ghost RAT are excluded, the table below provides the command
IDs for the plugin DLL exports discussed earlier and the new commands introduced in kkRAT.

Command
ID Description

0x4 Downloads the main plugin DLL (Plugin32.dll).
0x8 Removes Internet Explorer browsing data.
0x9 Removes Skype local storage data.
0xA Removes Telegram tdata.
0xB Removes QQ browser user data.
0xC Removes Firefox profiles data.
0xD Removes Google Chrome user data.
0xE Removes Sogou Explorer cache data.
0xF Removes 360 Speed Browser user data.
0x10 Removes 360 Secure Browser user data.
0x15 Calls DllScreen export from Plugin32.dll.
0x1F Calls DllScreee export from Plugin32.dll.
0x29 Calls DlScreeh export from Plugin32.dll.
0x2A Calls DllScreer export from Plugin32.dll.
0x34 Calls DllWindows export from Plugin32.dll.
0x35 Calls DllProgress export from Plugin32.dll.
0x36 Calls DllGetNetState export from Plugin32.dll.
0x37 Calls DllApp export from Plugin32.dll.
0x38 Calls DllQDXGL export from Plugin32.dll.

0x4A

Establishes persistence on the victim's system. The RAT server provides the sub-
command ID and name needed for key/task as parameters to specify the method for
persistence. The sub-commands are listed below:

Achieve persistence using the startup folder.
Achieve persistence using autorun key.
Achieve persistence using logon script
(HKCU\Environment\UserInitMprLogonScript).
Achieve persistence using scheduled tasks.

0x4B

Checks for the presence of the GotoHTTP remote monitoring and management (RMM)
tool on the victim's system. If GotoHTTP is detected, the command retrieves the name
and tmp values from the gotohttp.ini configuration file. If GotoHTTP is not present, the
command installs the tool on the system. The GotoHTTP tool (file content) is provided by
the C2 as a parameter for the command.

https://www.virustotal.com/gui/file/c20c0c957ff42158d08053b5ce3ee4a6bbbc5eeb905f901336ed5c04d34910b5


11/11

Command
ID Description

0x4C

Verifies whether the Sunlogin RMM tool is installed on the victim's system. If Sunlogin is
present, the command retrieves the fastcode and password values from the config.ini file.
If Sunlogin is not found, the command installs the tool on the system. The Sunlogin RMM
tool (file content) is provided by the C2 as a parameter for the command.

0x4D

Scans the clipboard for cryptocurrency wallet addresses associated with Tether, Bitcoin,
or Ethereum. Identified wallet addresses are replaced with the attacker’s wallet
addresses. The attacker’s wallet addresses are provided as parameters for this
command.

0x4E Same as 0x4D.

0x4F
Stops the replacement of Tether, Bitcoin, and Ethereum wallet addresses in the clipboard
with the attacker’s wallet addresses, effectively disabling the crypto hijacking behavior.

0x51 Attempts to elevate privileges on the victim's system using the runas verb once.

0x55
Invokes the DllShell export from the Plugin32.dll plugin to execute its associated
functionality.

0x5C

Calls the fnProxy export from the Plugin32.dll plugin. This command supports multiple
sub-commands, with the first parameter determining the specific operation to be
executed. The sub-commands are listed below:

0x5E: Establishes a TCP connection to a remote IP and port specified by the
attacker. Additional parameters include a unique ID to identify the TCP socket, the
target remote IP address, and the target remote port number.
0x5F: Terminates the TCP connection associated with the specified ID, which is
provided as an additional parameter.
0x60: Sends data through the proxy. Additional parameters include the ID of the
associated TCP socket and the data to be transmitted.

0x5D
Calls the ConnSocks export from the PlugProxy.dll plugin. Along with this command, the
DLL content of PlugProxy.dll is provided as a parameter for this command.

Table 2: Commands implemented by kkRAT.


