intezer.com /blog/frankenstein-variant-of-the-toneshell-backdoor-targeting-myanmar/

Frankenstein Variant of the ToneShell Backdoor Targeting
Myanmar

: 9/10/2025

Threat Bulletin

g

ToneShell is a lightweight backdoor tied to the China-nexus group Mustang Panda. Typically delivered via
DLL sideloading inside compressed archives with legitimate signed executables and often spread through
cloud-hosted lures. Zscaler’s 2025 analysis described updates to its FakeTLS C2 (shifting from TLS 1.2- to
1.3-style headers), use of GUID-based host IDs, a rolling-XOR scheme, and a minimal command set for file
staging and interactive shell access. Notably, some of this activity was observed in Myanmar, a region of
strategic importance to China. Targeting Myanmar is particularly interesting as it reflects China’s broader
geopolitical interests, spanning border security, infrastructure projects, and political developments, and
highlights how cyber operations are leveraged to maintain influence in neighboring states.

This blog is a technical analysis of another variant of the backdoor. While this variant does not introduce
major new features, it is worth highlighting the anti-analysis techniques it employs and the new indicators
that can support threat hunting and detection. In addition, the continued targeting of Myanmar underscores
China’s sustained use of cyber operations to maintain its interests abroad.

Technical Analysis

1/10

https://intezer.com/blog/frankenstein-variant-of-the-toneshell-backdoor-targeting-myanmar/
https://www.zscaler.com/blogs/security-research/latest-mustang-panda-arsenal-toneshell-and-starproxy-p1

As previously documented, ToneShell is a dll that is sideloded by a legitimate executable, usually bundled in
the archive file. In this case it is a ZIP file ,named: TNLA 101000 OO O OO0 0000000000000
T1000]. Which translate to: TNLA and other revolutionary forces.

sha256: 1272a0853651069ed4dc505007e8525£99e1454£9e033bcc2e58d60fdatfadtl

The backdoor is a DLL named: SkinH.dll, compiled on 2025-07-14 22:38:08.

sha256:e7b29611c789%a6225aebbc9fee3710a57b51537693cb2ecl6e2177¢c22392b546

gs e7b29611c788a6225aebbeSfee3T10a57051537693ch2ec1Be2 17 7c22392. .

Code reuse with ToneShell

The backdoor first checks the current module path for the string Google\DriveFS\Scratch. If not found, it
enumerates processes to identify the parent process, retrieves its image path, and verifies whether it
contains GoogleDrive. If found, the backdoor will terminate its execution. This check might be an attempt by
the threat actor to prevent infecting themselves. If this validation fails, the code enforces a single-instance
policy using a named mutex, Global\SingleCorporation12AD8B. It attempts to create the mutex, storing
the handle globally and setting a flag to indicate success or failure. If creation fails or the mutex already
exists, it releases any handles and marks it as not created.

Next, the backdoor checks its persistence location. It compares its module path with the user profile directory
(CSIDL_APPDATA, 0x1A). If the binary is not under the user profile, it copies itself and the following files:
msvcr100.dll, msvep100.dll, mfc100.dll to a new folder it creates. The new directory name consists of a 6-
character random uppercase folder name (e.g., C:\Users\<user>\AppData\<random-6-chars>).

2/10

https://analyze.intezer.com/files/e7b29611c789a6225aebbc9fee3710a57b51537693cb2ec16e2177c22392b546

18886235

18886255 for (int32_t i =8; 1 < 6; 1 += 1)

18088624d // Generate random uppercase directory name.

18886247 random_dir_name[i] = (inti16_t)((inté4_t)_rand() % Bxl1a) + Bx41;
18886247

18086261 random_dir_name[6] = 8;

180886265 // Copy random directory name to global buffer.

180886265 _wcscpy_s(&g_AppDataFolderName, 7, random_dir_name) ;
180886261 PWSTR random_dir_name_2 = _malloc(8x268);

18886279 wchar16* random_dir_name_1 = random_dir_name;

18886279

1888627C // Format full path for new directory.

1888627C if (random_dir_name_2)

1888627c {

180886291 wsprintfW(random_dir_name_2, %s\%s", &appdata_path, random_dir_name_1);
180886294 _free(random_dir_name);

18886294

1808862a7 /! Create directory and set as hidden if successful.
1808862a7 if (CreateDirectoryW(random_dir_name_2, nullptr))
188862a7 {

188862c8 SetFileAttributesW(random_dir_name_2, FILE_ATTRIBUTE_HIDDEN);
1880862d3 PWSTR eax_8 = _malloc(8x268);

1880862d3

100862df if (eax_8)

1eeee2df {

188862e9 // Get current executable's directory.
188862e9 GetModuleFileNameW(nullptr, eax_8, ©x184);
1880628 PathRemoveFileSpecW(eax_8);

1008626 wchar16 const* const i_1 = u"SkinH.d11";
108062fb wchar16 const* const dll_names[@x4];

108062fb dll_names[@] = u"SkinH.d1l";

18806305 dll_names[1] = u"msvcriee.dll";

1000638f dll_names[2] = u"msvcp18@.dll”;

18886319 = u"mfc1e8.d11";

10086323 32

18688632d C =

10086337 i _t var_628 = 8;

10086341 wchar16 const* const i_2 = u"SkinH.d11l";
10086341

188863ab do

1808863ab {

180886355 // Copy DLLs from original directory to
180886355 // new directory.

18886355 void var_418;

180886355 wsprintfW(&var_418, u"%s\%s", eax_8, i_1);
18088636a wsprintfW(&appdata_path, u"%s\%s", random_dir_name_2, i_2);

The function that copies the DLLs to a new folder in AppData

Once installed, it attempts to spin up the Task Scheduler COM service, connect to the local scheduler, open
the root folder (“\”) and obtain an IRegisteredTask for a task named dokanctl. If the task doesn’t exist, it will
create it using RegisterTaskDefinition. The task is set to execute every minute, it sets the execution path to
the folder in AppData created earlier: %APPDATA%\<random-6-chars>\svchosts.exe, and sets it as the
action Path. The task is registered in the root folder with the name dokanctl.

3/10

10806af7 if (ITaskServiceVtbl->NewTask(ppFolder, flags, ppDefinition)
10006af7 >=)

16886af7 {

18086b37 struct ITaskService* eax_14 = taskDef;
10006b43 struct ITaskService* eax_1 = nullptr;
10806b4d BSTR path = &eax_1;

18606b4e struct ITaskService* eax = eax_14;
16666b4e struct ITaskService** esp_6 = &eax;
10806b4e

18686b56 if (eax_14->vtable->GetFolder(eax, path, ppFolder) >= @)
10806b56 {

10806b63 struct BstrWrapper* rootPathWrap_7 =
10806b63 mw_BSTR_create(@xc) ;

10006b65 esp_3 = &eax;

10806b68 rootPathWrap_1 = rootPathWrap_7;
186086b6e int32_t var_14_7 = 6;

106086b6e

10886b77 if (!rootPathWrap_7)

166006ba8 rootPathWrap_7 = nullptr;

10806b77 else

10806b77 {

166886b7c rootPathWrap_7->str = @;

1808086b7c rootPathWrap_7->aux = @;

10806b806 rootPathWrap_7->refs = @;

10806b87 wchar16 const* const psz = u"dokanctl";
10606b8c rootPathWrap_7->aux = nullptr;
10806b93 rootPathWrap_7->refs = 1;

10886b9%a BSTR eax_18 = SysAllocString(psz);
180086b9%a esp_3 = Reax;

10806b9c rootPathWrap_7->str = eax_18;
10806b9%c

18606bad if (leax_18)

168686bad goto label_ 10607234 ;

10806b77 |

Task creation

If the backdoor is already under the user profile, it performs junk arithmetic before entering its C2 loop,
followed by a bounded timing/zero-check loop that appears to serve as anti-analysis noise without affecting
the main flow.

API Function Hashing

The malware uses a custom API-resolving scheme based on a simple rolling hash, applying it to module and
function names instead of storing them in cleartext. This technique, previously analyzed in previous blogs, is
a common evasion method seen in different malware types. With the HashDB project, resolving these
hashes back to the original imported functions is straightforward, making analysis and detection easier.

4/10

https://github.com/OALabs/hashdb/blob/main/algorithms/tonepipeshell.py

if (eecx)
{
while (true)

{

void* esi 2 = *(uint32_t*)((char*)eax_3 + (edi << 2)) + moduleBase;

if (edx_1 > (char*)esi_2 + Bxdc)
{
void* edx_2 = esi 2;
int32_t eax_3s = 8;
(uintB_t)ecx = *(uintB_t*)edx_2;

while ((uint8_t)ecx)

{
edx_2 += 1;
eax_5 = eax_5 * BxcB5e31 + (int32_t)(uint8_t)ecx;
(uint8_t)ecx = *(uintB_t*)edx_2;

}

if (eax_5 == hash)
return pGetProcAddress(moduleBase, esi_2);

BCX = var_c;

edx_1 = var_18;

}
edi += 1;

if (edi == ecx)
break;

eax_3 = var_14;

Hash calculation

5/10

struct apiHashTable* esi_1 = ppBootstrapHdr;
int32_t dllName:

int32_t* dllName_1 = &dllName;
—_builtin_strncpy(&dllName, "ws2_32.d11", 8xb);
void* eax_16 = esi_1->GetProcAddress(dllName_1);
esi_1->ws2_32_base = eax_16;

int32_t var_18;

if (eax_16)

{
int32_t ws_WSAStartup =

mw_get_proc_by_hash(eax_16, WSAStartup, eax_16, esi_1-=Kernel32Base);

esi_T1->ws_WSAStartup = ws_WSAStartup;

if (ws_WSAStartup)
{

int32_t ws_socket = mw_get_proc_by_hash(ws_WSAStartup, socket,
esi_T1-»>ws2_32_base, esi_1->Kernel32Base);
esi_1->ws_socket = ws_socket;

if (ws_socket)

{

int32_t ws_setscockpot = mw_get_proc_by_hash(ws_socket, setsockopt,

esi_1->ws2_32_base, esi_1->Kernel32Base);
esi_1-»ws_setscockpot = ws_setscockpot;

if (ws_setscockpot)

{

int32_t ws_connect = mw_get_proc_by_hash(ws_setscockpot, connect,

esi_1-»>ws2_32_base, esi_1-=Kernel32Base);
esi_1->ws_connect = ws_connect;

Resolved Windows API functions

Anti-Analysis and Anti-Sandboxing

This ToolShell variant employs several stalling and anti-sandboxing tricks designed to waste time, confuse

automated analysis, and evade lightweight sandboxes. These include:

1. Repeated file churn: creating, writing, closing, and deleting a temporary file in a loop with Sleep(100)

delays, which burns execution time and stresses filesystem emulation.

2. Randomized sleep loops: several loops sleep for pseudo-random intervals ranging from ~800 ms to
over a second per iteration, accumulating 20+ seconds of startup delay before meaningful behavior

begins.

3. Tick count checks: uses GetTickCount64() combined with jittered sleeps, waiting until at least 10

seconds of wall-clock time has elapsed. This ensures that emulators that don’t advance the system

clock realistically can get stuck.

4. Opaque string comparisons: slides across a large embedded wide-string buffer, repeatedly calling
IstrcmpW() between overlapping substrings until a break condition. The comparison results are

discarded; the loop simply consumes cycles and obfuscates control flow.

6/10

5. Nonsense randomization: calculates values like 0OXBABE or OxCAFE via contrived branches using
rand(). These values are not security checks, but serve as junk arithmetic to make the code harder to
follow.

6. Decoy API use: occasionally calls APIs such as OutputDebugStringA and sets LastError to unusual
constants (OxXBADFO0O0D), further muddying behavior without altering core logic.

// Create, write, and close temp file multiple times with
// delays.
for (int32_t i_1 = 8; i_1 < loopCounter; i_1 += 1)
{
HANDLE fileHndl = CreateFileA(&temp_filename, ©xcB8eeeee, FILE_SHARE_READ,
nullptr, @, FILE_ATTRIBUTE_NORMAL, nullptr);

if (fileHndl !'= @xffffffff || !fileHndl)
{
uint32_t numberOfBytesWritten = 8;
WriteFile(fileHndl, &temp_filename, lstrlenA(&temp_filename),
&number0fBytesWritten, nullptr);
CloseHandle(fileHndl) ;
}

Sleep(Bx64) ;
}

DeleteFileA(&temp_filename); // Delete temp file after use.

File creation loops

Notably, the large embedded string buffers used in the comparison loop contain text copied from OpenAl’s
blog on image generation and from Pega Al’'s website. Pega Al refers to the artificial intelligence features
integrated into the Pega platform, a software suite for workflow automation and customer relationship
management. The backdoor does not use this content functionally; instead, it serves as filler to inflate the
binary and supply meaningless strings for comparison.

7/10

https://openai.com/index/introducing-4o-image-generation/#:~:text=From%20the%20first%20cave%20paintings%20to%20modern%20infographics%2C%20humans%20have%20used%20visual%20imagery%20to%20communicate%2C%20persuade%2C%20and%20analyze%E2%80%94not%20just%20to%20decorate.
https://www.pega.com/ai-innovation

18852118 wchar16 junk_string[®x13b@] = "As an AI-powered platform, decisioning is in our DNA. It"
18852118 "\xe2\xBB\x99s small wonder, then, that Pega is the ideal environment for AI to thriv
18852118 "e \xe2\x88\x93 where decisions and workflows live at the center. Silo-free. Solution
18852118 "-ready. And the enterprise-grade experts we look to? Well, they all work here. Here"
188521180 "\'s how they think about practical application today \xe2\x88\x93 and how to drive b"
18852118 "usiness-defining outcomes tomorrow\xB8From the first cave paintings to modern infogr"
18852118 "aphics, humans have used visual imagery to communicate, persuade, and analyze"
18852118 "\xe2\xBB\x%94not just to decorate. Today\'s generative models can conjure surreal, br
18852118 "eathtaking scenes, but struggle with the workhorse imagery people use to share and c
18852118 "reate information. From logos to diagrams, images can convey precise meaning when au
18852118 "gmented with symbols that refer to shared language and experience.GPT\xe2\x88\x9140 "
180852118 "image generation excels at accurately rendering text, precisely following prompts, a
18852118 "nd leveraging 4o\xe2\x88\x99s inherent knowledge base and chat context\xe2\x88\x94in
18852118 "cluding transforming uploaded images or using them as visual inspiration. These capa
18852118 "bilities make it easier to create exactly the image you envision, helping you commun
168521180 "icate more effectively through visuals and advancing image generation into a practic
18852118 "al tool with precision and power.\xB@8From the first cave paintings to modern infogra
18852118 "phics, humans have used visual imagery to communicate, persuade, and analyze"
1608521180 "\xe2\x88\x94not just to decorate. Today\'s generative models can conjure surreal, br
18852118 "eathtaking scenes, but struggle with the workhorse imagery people use to share and c
18852118 "reate information. From logos to diagrams, images can convey precise meaning when au
18852118 "gmented with symbols that refer to shared language and experience.GPT\xe2\x88\x9140
188521180 "image generation excels at accurately rendering text, precisely following prompts, a
18852118 "nd leveraging 4o\xe2\xB88\x99s inherent knowledge base and chat context\xe2\x88\x94in
18852118 "cluding transforming uploaded images or using them as visual inspiration. These capa
18852118 "bilities make it easier to create exactly the image you envision, helping you commun
18852118 "icate more effectively through visuals and advancing image generation into a practic
18852118 "al tool with precision and power.\x88As an AI-powered platform, decisioning is in ou
18852118 "r DNA. It\xe2\x80\x99s small wonder, then, that Pega is the ideal environment for AI
18852118 " to thrive \xe2\x88\x93 where decisions and workflows live at the center. Silo-free.
18852118 " Solution-ready. And the enterprise-grade experts we look to? Well, they all work he
18852118 "re. Here\'s how they think about practical application today \xe2\x88\x93 and how to
18852118 " drive business-defining outcomes tomorrow\x88As an AI-powered platform, decisioning
168521180 " is in our DNA. It\xe2\x88\x99s small wonder, then, that Pega is the ideal environme
or AL to thrive \xe2\x88'x03 where decisi kflow jve he cepnte !

Text taken from PegaAl’s website

1022ef48 wchar16 const data_1022ef48[0x7a] = "From the fir"
1022ef48 "st cave paintings to modern infographics, hu”

1022ef48 "mans have used visual imagery to communicate”
1022ef48 ", persuade, and analyz"

Text taken from OpenAl’s website

Together, these techniques do not detect debuggers directly; instead, they stall execution, pollute control
flow with junk work, and frustrate automated sandboxing systems that expect short-lived, straightforward
malware runs.

GUID Creation

Similar to earlier versions, this variant of ToneShell generates a unique identifier for each infected machine. It
first attempts to check if one was already created by reading 16 bytes from
C:\ProgramData\SystemRuntimeLag.inc. The malware creates a new seed if the file is missing, unreadable,
or does not provide exactly 16 bytes. The primary method is to generate a GUID via CoCreateGuid and use

8/10

it as the seed. If that fails, it falls back to producing 16 bytes using an internal linear congruential generator
(LCG) seeded from the current PRNG state. Once a new seed is generated, it is written back to the
designated file path to ensure persistence across executions.

This logic is similar to Zscelar’s blog about the second backdoor variant.

Networking

The malware sets up a socket with a C2 at the address:

146.70.29[.]1229:443

The malware’s network protocol wraps its messages in a TLS-like record header to blend in with legitimate
traffic. Each packet begins with the fixed bytes 17 03 03 (TLS 1.2 Application Data) followed by a two-byte
length field, but only the low byte is honored, effectively capping payloads at 255 bytes. The 5-byte header is
read into a temporary stack buffer and discarded; only the payload bytes are stored in the context structure’s
receive buffer starting at offset 0.

Once the payload is received, the malware XOR-decodes it in place with a 256-byte rolling key. The first
decoded byte is treated as a “type/status” field, the second as an additional code, and the remainder (len-2
bytes) as the message body. The decoded buffer pointer is then saved in the structure for later use. This
design produces a simple packet format: [TLS-like header][XOR-obfuscated type | code | body...], with the
header stripped before the data is available to the rest of the malware.

Interestingly, while the GUID generation logic in this sample aligns with the first version of ToneShell
described by Zscaler, the communication protocol remains identical to the second version. Combined with
the anti-analysis techniques and the use of text copied from Al platforms, this sample stands out as a hybrid
variant.

Pivoting on The C2 Address

Pivoting on the C2 address, we were also able to find another variant:

sha256: a58868b3d50b775de99278eebl4da8b7409b165aa45313c6d9fa3bac30d2cdaz

This variant was compiled on 2025-03-23 22:42:42, named node.dll. It was part of an archive named:
update.zip with the sha256:

543024edc9fl160cclcedcffc3deb2bfacb6daalec9ed351331d97faaa67d0d99

This variant reuses the same C2 commands and anti-analysis techniques described above, and it stores the
GUID under the same file name.

Conclusion

9/10

In summary, this analysis of a new ToneShell backdoor variant highlights the evolving tactics of the Mustang
Panda group, particularly their sustained targeting of Myanmar. While not introducing revolutionary features,
this variant employs anti-analysis techniques, including elaborate stalling mechanisms and obfuscated code.
The blend of old and new elements, such as the consistent communication protocol alongside updated GUID
generation and the use of seemingly random, copied text for filler, underscores the adaptive nature of this
threat. The continuous refinement of these evasion methods, coupled with the geopolitical significance of the
targeted region, reinforces the need for ongoing research and threat hunting to counter cyber operations.

I0OCs

ToneShell variants:
a58868b3d50b775de99278eeb14da8b7409b165aa45313c6d9fa35ac30d2cda2
e7b29611c789a6225aebbc9fee3710a57b51537693cb2ec16e2177c22392b546
Archive files:
543024edc9f160cc1cedcffc3de52bfa656daalec9ed351331d97faaa67d0d99
1272a0853651069ed4dc505007e8525f99e1454f9e033bcc2e58d60fdafa4f0

C2:

146.70.29[.]229:443

Learn more about how Intezer’'s Al SOC platform can help detect threats like this with our unique
combination of battle-tested forensic analysis tools and powerful LLMs

Nicole Fishbein

X

Nicole is a malware analyst and reverse engineer. Prior to Intezer she was an embedded researcher in the
Israel Defense Forces (IDF) Intelligence Corps.

10/10

https://intezer.com/get-a-demo/
https://twitter.com/NicoleFishi19

