
1/12

dmpdump.github.io /posts/AzureFunctionsMalware/

Unknown Malware Using Azure Functions as C2
⋮ 9/6/2025

Posted Sep 6, 2025 Updated Sep 9, 2025
By dmpdump

6 min read

On August 28, 2025, an ISO named Servicenow-BNM-Verify.iso was uploaded to VirusTotal from
Malaysia with very low detections:

The ISO image contains 4 files, two of them hidden.

servicenow-bnm-verify.lnk, a shortcut file that simply executes PanGpHip.exe
PanGpHip.exe, a legitimate Palo Alto Networks executable
libeay32.dll, a legitimate OpenSSL library (hidden)
libwaapi.dll, a malicious library (hidden)

servicenow-bnm-verify.lnk only executes the legitimate Palo Alto executable. The metadata of the
LNK file reveals the machine used to create the link (desktop-rbg1pik), the user (john.GIB), and the
creation date (08/25/2025 (04:39:00.540) [UTC]), 3 days before the LNK ISO was uploaded to
VirusTotal. The target path of the LNK points to the executable in the excluded folder. This is likely a
location in the threat actor’s development environment. Even though that path does not exist on the victim’s
device, the LNK falls back to its same directory, where PanGpHip.exe also resides.

LNK metadata:

https://dmpdump.github.io/posts/AzureFunctionsMalware/
https://github.com/dmpdump
https://undefined/assets/images/azfunctionsmw/vt1.png
https://undefined/assets/images/azfunctionsmw/vt2.png

2/12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

[Link Info]

Location flags: 0x00000001 (VolumeIDAndLocalBasePath)

Drive type: 3 (DRIVE_FIXED)

Drive serial number: fa5a-f20e

Volume label (ASCII):

Local path (ASCII):

C:\Users\john.GIB\Desktop\excluded\paloalto\PanGpHip.exe

[Distributed Link Tracker Properties]

Version: 0

NetBIOS name: desktop-rbg1pik

Droid volume identifier: 711034a2-0123-44ae-ae6c-462a77afcd54

Droid file identifier: 6b9dc172-816d-11f0-a497-7c214a295e9f

Birth droid volume identifier: 711034a2-0123-44ae-ae6c-462a77afcd54

Birth droid file identifier: 6b9dc172-816d-11f0-a497-7c214a295e9f

MAC address: 7c:21:4a:29:5e:9f

UUID timestamp: 08/25/2025 (04:39:00.540) [UTC]

UUID sequence number: 9367

Payload Injection
The presence of hidden DLLs and a legitimate executable is typically indicative of DLL side-loading. The
libwaapi.dll library contains malicious logic that is executed when it is dynamically loaded by the
legitimate PanGpHip.exe executable using LoadLibraryW.

3/12

This DLL, although malicious, has almost no detection in VirusTotal:

The only exported function in libwaapi.dll that implements code is wa_api_setup. The rest of the
exports do not have any code.

https://undefined/assets/images/azfunctionsmw/libwaapload.png
https://undefined/assets/images/azfunctionsmw/libwaapi_nodetect.png

4/12

The wa_api_setup export:

Uses an array of function pointers to call GetConsoleWindow, SetForegroundWindow,
GetForegroundWindow, and ShowWindow with its second argument set to 0, which is SW_HIDE
according to the API documentation. This is a common technique to hide the console from the victim
It then creates/checks mutex 47c32025 via the CreateMutexExW API
If the mutex does not exist, it executes a payload injection function that I renamed to
fn_payload_injection

The fn_payload_injection function implements logic to inject payload in memory. This function starts
by computing the SHA-256 hash of string rdfY*&689uuaijs. This hash
(B639D4DC948B66A2AAB5B59D0B4114B4B11229E9DED0F415B594B8ADE11F8180) is subsequently
used as the RC4 key for payload decryption.

https://undefined/assets/images/azfunctionsmw/exports.png
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow
https://undefined/assets/images/azfunctionsmw/libwaapi1.png
https://undefined/assets/images/azfunctionsmw/sha2.png

5/12

If the SHA2 computation is successful, it proceeds to deobfuscate the string chakra.dll with a simple
algorithm that resembles a Caesar cipher.

The legitimate chakra.dll is loaded from the C:\Windows\System32\ folder and a loop is implemented
to find the first readable + executable section in the DLL.

https://undefined/assets/images/azfunctionsmw/caesar.png
https://undefined/assets/images/azfunctionsmw/rxsection.png

6/12

When that section is found, its memory permissions are set to writable (PAGE_READWRITE) via the
ZwProtectVirtualMemory API and the content is zeroed out. The injector then proceeds to base64-
decode a payload stored in the .data section of the DLL to the target section in the loaded chakra.dll.
After decoding the payload, it is RC4 decrypted with the previously computed key
(B639D4DC948B66A2AAB5B59D0B4114B4B11229E9DED0F415B594B8ADE11F8180).

Once the deobfuscated/decrypted payload is written to the DLL, an integrity check is implemented by
comparing the SHA2 hash of the injected payload to a hard-coded SHA2 value
(550c27fd8dc810df2056f1ec4a749a94ab4befc8843ba913c5f1197ef381a0a5). If the integrity
check passes, memory permission is restored to PAGE_EXECUTE_READ and it proceeds to execute the
injected payload.

Injected Payload

The injected payload is an obfuscated shellcode that loads an embedded DLL. We can quickly find the
embedded payload by loading the shellcode in a hex editor. However, we can see that the embedded

https://undefined/assets/images/azfunctionsmw/rxsection.png
https://undefined/assets/images/azfunctionsmw/deobdecrypt.png
https://undefined/assets/images/azfunctionsmw/pload_exec.png

7/12

payload needs to be processed before execution. It is not a clean PE.

Reviewing the shellcode, we can see that the buffer with the embedded portable executable is processed by
the RtlDecompressBuffer API using 0x102 as the first argument.

https://undefined/assets/images/azfunctionsmw/sc1.png
https://undefined/assets/images/azfunctionsmw/decompress.png

8/12

Looking at the prototype of RtlDecompressBuffer, we can see that the first argument is the compression
format:

1

2

3

4

5

6

7

8

NT_RTL_COMPRESS_API NTSTATUS RtlDecompressBuffer(

 [in] USHORT CompressionFormat,

 [out] PUCHAR UncompressedBuffer,

 [in] ULONG UncompressedBufferSize,

 [in] PUCHAR CompressedBuffer,

 [in] ULONG CompressedBufferSize,

 [out] PULONG FinalUncompressedSize

);

In order to understand what the 0x102 means, we can check the ReactOS documentation. Here we can see
that macro definitions indicate that 0x0100 is COMPRESSION_ENGINE_MAXIMUM and 0x0002 is
COMPRESSION_FORMAT_LZNT1. So, essentially, the embedded payload has maximum compression for
LZNT1.

We can then decompress the final payload embedded within the shellcode. The decompressed payload is
an obfuscated DLL (SHA2: c0fc5ec77d0aa03516048349dddb3aa74f92cfe20d4bca46205f40ab0e728645)
which I could not correlate to any payload I’ve seen before - possibly due to the obfuscation. I am still
working on deobfuscating this payload, but here are some initial observations. The DLL timestamp is May 5,
1984, which was likely modified. The malicious functionality is implemented in the DllUnload exported
function.

https://doxygen.reactos.org/d1/d4f/ntifs_8template_8h.html#ab965965a83e40e5272e13c7810480129
https://undefined/assets/images/azfunctionsmw/compression.png
https://undefined/assets/images/azfunctionsmw/meta.png

9/12

A quick string review via emulation suggests that the DLL implements module unhooking to avoid detection.

This final payload implements a loop to the C2, sending a POST request with victim profile data to
logsapi.azurewebsites[.]net/api/logs. The data is sent encoded/encrypted in a POST request.

https://undefined/assets/images/azfunctionsmw/unhook.png

10/12

The Azure websites C2 hosts Azure Functions. Azure Functions is a serverless solution that operates with
event-driven triggers and bindings.

https://undefined/assets/images/azfunctionsmw/loopc2.png
https://undefined/assets/images/azfunctionsmw/post.png
https://learn.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=isolated-process%2Cnode-v4%2Cpython-v2&pivots=programming-language-csharp

11/12

The encrypted data sent to the C2 can be captured before it is encrypted. We can see that it is an XML
containing the computer name, user name, the OS uptime, protocol, process running the malware, parent
process, and other values that I am still reviewing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<?xml version="1.0" encoding="utf-8"?>

<root>

 <c331219780 type="int">64</c331219780> // likely architecture

 <c693503181 type="int">3</c693503181>

 <c278266627 type="int">3916</c278266627>

 <c335283027 type="int">3380</c335283027>

 <c375980915 type="int">60</c375980915>

 <c446104534 type="int">30</c446104534>

 <c581502030 type="int">1759243228</c581502030>

 <c660735130 type="int">805074430</c660735130>

 <c1666058129 type="bool">false</c1666058129>

 <c269419238 type="str">%random string%</c269419238>

 <c327025478 type="str">v2.17.3</c327025478> //unknown version

 <c589169778 type="str">HTTP_HTTPS</c589169778>

 <c441910204 type="str">SUE48</c441910204>

 <c671024323 type="str"></c671024323>

 <c228262600 type="str">Windows 10.0 (OS Build 1337)</c228262600> // OS build (1337 is

an interesting value...)

 <c610731141 type="str">%COMPUTERNAME%</c610731141>

 <c467272698 type="str">0d 6h 43m</c467272698> //uptime

 <c613221510 type="str">%COMPUTERNAME%\%USER%</c613221510> // computer name and user

name

 <c869336422 type="str">%PROCESS%</c869336422> //process the malware is executing from

 <c968295862 type="str">%PARENTPROCESS%</c968295862> //parent process

</root>

I am still deobfuscating this final payload to understand all the details, and I may post a follow up blog post
once I am done. This sample seems to be quite unique, but @L3hu3s0 found another DLL (SHA2:

https://undefined/assets/images/azfunctionsmw/azfunctions.png
https://x.com/L3hu3s0

12/12

28e85fd3546c8ad6fb2aef37b4372cc4775ea8435687b4e6879e96da5009d60a) with the same
imphash (B74596632C4C9B3A853E51964E96FC32) uploaded from Singapore on September 5, 2025. I
reviewed that DLL and it is pretty much the same thing, with some minor differences.

IOCs
Servicenow-BNM-Verify.iso:
0ba328aeb0867def650694c5a43fdd47d719c6b3c55a845903646ccdbf3ec239
servicenow-bnm-verify.lnk:
9e312214b44230c1cb5b6ec591245fd433c7030cb269a9b31f0ff4de621ff517
libeay32.dll: 1fa3e14681bf7f695a424c64927acfc26053ebaa54c4a2a6e30fe1e24b4c20a8
libwaapi.dll: b03a2c0d282cbbddfcf6e7dda0b4b55494f4a5c0b17c30cd586f5480efca2c17
PanGpHip.exe: b778d76671b95df29e15a0af4d604917bfba085f7b04e0ce5d6d0615017e79db
Decrypted shellcode: 550c27fd8dc810df2056f1ec4a749a94ab4befc8843ba913c5f1197ef381a0a5
Decompressed DLL: c0fc5ec77d0aa03516048349dddb3aa74f92cfe20d4bca46205f40ab0e728645
Related DLL: 28e85fd3546c8ad6fb2aef37b4372cc4775ea8435687b4e6879e96da5009d60a
C2: logsapi.azurewebsites[.]net

https://undefined/assets/images/azfunctionsmw/huesofind.png

