
1/8

www.huntress.com /blog/obscura-ransomware-variant

Obscura, an Obscure New Ransomware Variant
Harlan Carvey, Lindsey O'Donnell-Welch, Alden Schmidt, Anna Pham ⋮

On 29 August 2025, Huntress analysts encountered a previously unseen ransomware variant called “Obscura.” This
name was taken from the ransom note (README_Obscura.txt), which also made several references to Obscura in its
contents.

While researching this ransomware variant, analysts did not find any public references to a ransomware variant
named Obscura. 

The ransomware executable was first seen being executed across multiple hosts on the victim organization. This
network had a limited deployment of the Huntress agent, which impacted both detection and response, inhibiting the
SOC’s ability to respond effectively. This also limited our visibility into certain aspects of the attack, including the initial
access vector. 

However, what we were able to see was that the ransomware executable was found on the domain controller, in the
path:

C:\WINDOWS\sysvol\sysvol\[domain].local\scripts\

https://www.huntress.com/blog/obscura-ransomware-variant


2/8

In the incident observed by the Huntress SOC, the ransomware executable file was named for the domain in which it
was found, in an apparent attempt to blend in (for this reason, we are not publicly identifying the name of this
executable). The executable is a Go binary (including a Go build ID), and contains a number of file paths, such as:

/run/media/veracrypt1/Backups/Obscura/Locker/windows/locker/

/run/media/veracrypt1/Locker Deps/go1.15.linux-amd64/go/src/os/exec

The location of the binary on the domain controller was shared as the NETLOGON folder, which makes scripts and
group policy objects (GPOs) available to users. In addition, the folder contents are automatically replicated across all
domain controllers to maintain consistency. However, this also meant that the ransomware executable was
automatically deployed throughout the infrastructure.

A scheduled task named SystemUpdate was created on multiple hosts throughout the network, including the domain
controller, to execute the ransomware binary from the NETLOGON share.

On one of the user's machines, the threat actor created a scheduled task named "iJHcEkAG". The task runs the
command cmd.exe /C netsh firewall set service type = remotedesktop mode = enable > \Windows\Temp\SJYfXB
2>&1 to enable Remote Desktop Protocol access through the Windows firewall.

When launched, the ransomware executable runs the following embedded command in an attempt to disable
recovery on the endpoint:

cmd.exe /c vssadmin delete shadows /all /quiet

The ransom note itself is contained in the ransomware binary as a base64-encoded string.

Ransomware note contents

Good day! Your company has failed a simple penetration test.
>> Your network has been completely encrypted by our software.
Our ransomware virus uses advanced cryptography technology that will make it very difficult for you to
recover your information.
>> All information has been stolen.
We have stolen all information from all devices on your network, including NAS. The data includes but is not
limited to: employee passport details, internal documentation, financial documents, and so on.
>> You have about 240 hours to respond.
If there is no response, all stolen information will be distributed.
We are waiting for you to decide to write to us, and we will be happy to negotiate a ransom price with you. By
paying the ransom, you will also receive:
1) a report on how we infiltrated your network
2) instructions + software that decrypts all files
3) our assistance in recovery, if needed.
>> They will not help you; they are your enemies.
Recovery agencies, the police, and other services will NOT HELP you. Agencies want your money, but they
do not know how to negotiate.
If you think you can restore your infrastructure from external backups that we did not access, we warn you:



3/8

1) The laws of any country impose huge fines on companies for information leaks.
2) Playing against us will not work in your favor. We will gladly wipe every one of your servers and
computers.
When you write to us, we expect to hear from you who you are and what your relationship to the company is.
Your ID: [REDACTED]
TOX: [REDACTED]
Blog: http://obscurad3aphckihv7wptdxvdnl5emma6t3vikcf3c5oiiqndq6y6xad.onion/
Obscura. 2025.

view raw README_Obscura.txt hosted with ❤ by GitHub

Technical analysis

When the binary is launched, it will check the status of an environment variable called DAEMON. If the value is 1, the
binary will drop the ransom note and continue with encryption. If it’s not present or has the value 0, it will run a series
of functions to prepare the box for encryption. The main_run() function executes in daemon mode with DAEMON=1
set. It retrieves the threat actor's 32-byte public key by decoding a hardcoded base64 string embedded within the
executable, then performs system reconnaissance by enumerating all storage devices and calculating their capacities
to create a comprehensive map of all available drives and their storage sizes for encryption.

The ransomware decodes a base64 encoded ransom note from the embedded data and writes it to
C:\README-OBSCURA.txt. If decoding fails, it prints “failed to decode note: %s” and exits.

Figure 1: Base64’d ransom note being decoded

The main_windows_api_IsRunAsAdmin() function performs a Windows privilege check using two sequential
Windows API calls to determine if the current process possesses administrative rights. The function first calls
AllocateAndInitializeSid() to create a Security Identifier for the local Administrators group using
SECURITY_BUILTIN_DOMAIN_RID (32) as the authority, DOMAIN_ALIAS_RID_ADMINS (544) as the subauthority,
and an authority count of 2. Following successful SID creation, the function calls CheckTokenMembership() to verify if
the current process token belongs to the Administrators group, returning a boolean value indicating administrative
status. If either API call fails, the function returns descriptive error messages such as "AllocateAndInitializeSid failed:

https://gist.github.com/gleeda/1781b0db8cbc78b4ef39dbe2aed77f38/raw/e3526be6bb47c1ecbf459a63e40a787f1e8c0e70/README_Obscura.txt
https://gist.github.com/gleeda/1781b0db8cbc78b4ef39dbe2aed77f38#file-readme_obscura-txt
https://github.com/


4/8

%v" or "CheckTokenMembership failed: %v". When the privilege check determines the process lacks administrative
rights, the ransomware prints "[!!!] user not admin. exit [!!!]" and immediately terminates execution. This represents a
hard requirement with no bypass mechanism, as the ransomware requires administrative privileges to terminate
system processes, delete volume shadow copies cmd.exe /c vssadmin delete shadows /all /quiet, and access system
APIs necessary for domain detection and daemon process creation.

Figure 2: Snippet of main_windows_api_IsRunAsAdmin that configures Windows security constants (2, 32, 544) to
create Administrators group SID for privilege checking

After confirming administrative privileges, the ransomware gathers critical system information by calling
GetSystemInfo() through the Windows API. It specifically extracts the dwNumberOfProcessors value, which indicates
the number of CPU cores available on the system and is used for optimizing the threading strategy during the
encryption phase. The system preparation phase continues with aggressive process termination targeting security
and database applications that might interfere with the encryption process. The ransomware calls
main_windows_api_KillProcesses(), which iterates through a predefined list of 120 target processes. The ‘*’ found in
some process names is used to indicate a wildcard for the string matching.

WinDefend MsMpEng MpCmdRun CSFalconService SentinelAgent
bdagent McAfee Avp SymCorpUI ccSvcHst
AMService Emsisoft* csrss_guard traps* cyserver
cytray esensor* elastic-endpoint* f-secure* fsav*
360tray 360sd ksafe avguard avgnt
avast* Crowdstrike* falcon-sensor glasswire* ZoneAlarm
comodo* Veeam* VeeamTransportSvc VeeamBackupSvc AcrSch2Svc
Afcdpsrv AcronisAgent AcronsiBackupAgent Altaro* Nakivo*
Iperius* MacriumService EaseUS* CrashPlanService veritas*
NetBackup* BackupExec BEDatabase BETracker CommVault*
Cvd Galaxy* Snapman StorageCraft* druva*
rubrik* synmedia* cloudberry* Dbagent Datto*
SIRAgent MSSQL* SQLSERVERAGENT SQLWriter SQLBrowser
OracleService* OracleVSSWriter OracleXETNSListener postgresql* pg_ctl



5/8

mysql mysqld MariaDB mariadb percona*
ccbackup* cbrestore* ABBService Splunkd SplunkForwarder
ossec* wazuh* agent_m* Zabbix* nagios
Nrpe prtg* SolarWinds* greylog* Nxlog
Winlogon EventLog Sysmon* VMwareHostd VMwareAuthdServic
VMwareNatService VMwareUSBArbZService vmware-hostd VBoxSDS VBoxHeadless
VBox* vmms Vmicheartbeat Vmickvpexchange Vmicrdv
vmicshutdown com.docker.service gitlab-runner jenkins* TeamCity*
bamboo* octopus* rundeck* ansible* salt-minion
ActiveBackup* Syno* SynologyDrive SynologyQuickConnect

When a process name matches the target pattern above, the function executes the termination sequence by calling
OpenProcess(PROCESS_TERMINATE, FALSE, processID) to obtain a handle to the target process with termination
privileges. If the handle is successfully obtained, it calls TerminateProcess(process_handle, 1) to forcefully terminate
the process with exit code 1 and prints a success message showing the process ID and name in the format “[+] killed
pid %d (%s)”. If termination fails, the function returns an error message stating “failed to terminate process” but
continues to kill other target processes.

The ransomware uses the Windows API DsRoleGetPrimaryDomainInformation to determine the computer's role in a
domain. This is done in the main_windows_api_GetPCRole() function, which maps Windows domain roles to internal
values.

Regardless of the detected domain role, each branch executes the same sequence of loading a role-specific string
message and displaying corresponding status messages before immediately proceeding to the daemon creation
phase. These messages suggest intended network propagation capabilities that were either never fully implemented
or represent incomplete development, as the actual code contains no lateral movement functionality beyond the local
encryption routine.

Standalone PC: displays [+] detect standalone pc. indicating the system is not connected to a domain

PC in Domain: shows [+] detect pc in domain. run transfer to dc. suggesting transfer to domain controllers

Backup Domain Controller: shows [+] detect BDC. run transfer to PDC., implying propagation to the primary
domain controller

Primary Domain Controller: displays [+] detect PDC. run transfer to all pc in domain. indicating spread to all
domain computers

There are a few encryption strategies the binary chooses from: EncryptFull or EncryptPart. Both of those functions
make use of the encryptFileRange() function with different arguments.

They have a peer public key (Curve25519) and during encryption will generate an ephemeral private key using
main_windows_api_generateEphemeralKeyPair(). These are used to generate the XChaCha20 key which is later
used for file encryption. To accomplish this they use scalar multiplication (X25519) between the private key and their
public key to generate a 32 byte shared secret. That shared secret along with a 24 byte random nonce are used as
the parameters for the ChaCha file encryption. Before writing the encrypted file back to disk they append a 64 byte
footer which is comprised of:

OBSCURA!

https://learn.microsoft.com/en-us/windows/win32/api/dsrole/nf-dsrole-dsrolegetprimarydomaininformation


6/8

32 byte public key

24 byte nonce

Figure 3: Sample of the encrypted file

Since they have the peer private key, they can use this footer to rederive the ChaCha20 key that was used to encrypt
the file.

The Obscura ransomware implements a file filtering mechanism designed to maximize damage to user data while
preserving system functionality. 

The filtering system operates through the main_hasExcludedExtension() function, which performs case-insensitive
extension matching against a hardcoded exclusion list. The function extracts file extension and compares against 15
predefined extensions:

System Executables and Libraries:

.exe - Executable applications

.dll - Dynamic Link Libraries

.msi - Microsoft Installer packages

.sys - System driver files

Boot and firmware components:

.efi - UEFI firmware files

.boot - Boot configuration files

.iso - ISO disc image files



7/8

.rom - ROM firmware files

.bin - Binary system files

System configuration and utilities:

.ini - Configuration files

.cfg - Configuration files

.lnk - Windows shortcut files

.hosts - Network configuration files

.swapfile - Windows virtual memory files

Ransomware self-protection:

.obscura - encrypted files with ransomware extension

Obscura and other new ransomware variants

Obscura is one of several newer ransomware variants that Huntress has seen popping up in recent months, including
Crux ransomware and Cephalus ransomware. This could be due to several factors. Threat actors continually rebrand
and roll out new ransomware variants after law enforcement disruptions impact the ecosystem. Additionally, as our
customer base continues to grow, we continue to gain more visibility into more ransomware variants.

Regardless, what was presented in this post is just one means for deploying ransomware. Organizations should
monitor their domain controllers closely and look for the addition of new files, as well as the modification of existing
files, including GPOs. Administrators should also monitor domain controllers, as well as other endpoints (servers,
workstations) for unusual or suspicious access. 

IOCs

Indicator Description
[company name].exe

sha256:

c00a2d757349bfff4d7e0665446101d2ab46a1734308cb3704f93d20dc7aac23

Ransomware executable 

README_Obscura.txt Ransom note (contents below)
C:\WINDOWS\sysvol\sysvol\[domain].local\scripts\ Threat actor ops folder

DESKTOP-XNBSHKJ2 Possible threat actor
workstation name

Sign Up for Huntress Updates

https://www.huntress.com/blog/crux-ransomware
https://www.huntress.com/blog/cephalus-ransomware


8/8

Get insider access to Huntress tradecraft, killer events, and the freshest blog updates.

Privacy • Terms
By submitting this form, you accept our Terms of Service & Privacy Policy

Thank you! Your submission has been received!

Oops! Something went wrong while submitting the form.

https://www.cloudflare.com/privacypolicy/
https://www.cloudflare.com/website-terms/
https://undefined/terms-of-use
https://undefined/privacy-policy

