Coyote in the Wild: First-Ever Malware That Abuses Ul
Automation

(ﬁ akamai.com/blog/security-research/active-exploitation-coyote-malware-first-ui-automation-abuse-in-the-wild

Written by

Tomer Peled

July 22, 2025

1/9

https://www.akamai.com/blog/security-research/active-exploitation-coyote-malware-first-ui-automation-abuse-in-the-wild
https://www.akamai.com/blog?author=tomer-peled

(P
Written by

Tomer Peled

Tomer Peled is a Security Researcher at Akamai. In his daily job, he conducts research
ranging from vulnerability research to OS internals. In his free time, he likes to cook, do Krav
Maga, and game on his PC.

Share

This UIA abuse is the latest of these malicious Coyote tracks in their digital habitat since its
discovery in February 2024.

Executive summary

o Akamai researchers previously outlined the potential for malicious use of UIA.

* Now, Akamai researchers have analyzed a new variant of the Coyote malware that is
the first confirmed case of maliciously using Microsoft’s Ul Automation (UIA)
framework in the wild.

2/9

https://www.akamai.com/blog?author=tomer-peled
https://www.akamai.com/blog/security-research/windows-ui-automation-attack-technique-evades-edr

e The new Coyote variant is targeting Brazilian users, and uses UIA to extract credentials
linked to 75 banking institutes’ web addresses and cryptocurrency exchanges.

» To help prevent Coyote infections and UIA abuse more broadly, we’ve included
indicators of compromise and additional detection measures in this blog post.

Jump to detections

Introduction

In December 2024, we published a blog_post that highlighted how attackers could abuse
Microsoft's UIA framework to steal credentials, execute code, and more. Exploitation was
only a proof of concept (PoC) — until now.

Approximately two months after the publication of that blog post, our concerns were
validated when a variant of the banking trojan malware Coyote was observed abusing UIA in
the wild — marking the first known case of such exploitation.

This UIA abuse is the latest of these malicious Coyote tracks in their digital habitat since its
discovery in February 2024.

In this blog post, we take a closer look at the variant to better understand how UIA is being
leveraged for malicious purposes, and what it means for defenders.

What is Coyote malware?

Coyote is a well-known malware family that was discovered in February 2024 and has
caused significant damage in the Latin America region ever since. Coyote is a trojan
malware that employs various malicious techniques, such as keylogging and phishing
overlays, to steal banking information.

It uses the Squirrel installer to propagate (hence the name “Coyote,” which pays homage to
the coyotes’ nature to hunt squirrels). In one of its most well-known campaigns, Coyote
targeted Brazilian companies in an attempt to deploy an information stealing Remote Access
Trojan within their systems.

After the initial discovery of Coyote, many security researchers uncovered details of its
operations and provided in-depth technical analyses. One such examination, published by
Fortinet in January 2025, shed light on Coyote’s internal workings and attack chain.

UIA abuse

3/9

https://www.akamai.com/blog/security-research/windows-ui-automation-attack-technique-evades-edr
https://www.kaspersky.com/about/press-releases/coyote-ugly-kaspersky-unveils-banking-trojan-targeting-over-60-institutions
https://www.fortinet.com/blog/threat-research/coyote-banking-trojan-a-stealthy-attack-via-lnk-files

We've expanded on those analyses and discovered one new key detail: Coyote now
leverages UIA as part of its operation. Like any other banking trojan, Coyote is hunting
banking information, but what sets Coyote apart is the way it obtains this information,
which involves the (ab)use of UIA.

Coyote gets rabid

During its infection process, Coyote sends the command and control server detailed
information about each victim. This includes the computer name, user name, and various
other system attributes. However, the most notable pieces of information — the one that
Coyote invests significant effort to obtain — are the financial services used by the victim.

Initially, the malware will use a classic, very common approach: Coyote invokes the
GetForegroundWindow() Windows API to obtain a handle to the currently active window.
Once it retrieves the window handle, the malware will compare the window title to a list of
hardcoded web addresses belonging to targeted banks and crypto exchanges.

The interesting UIA logic kicks in when the title doesn’t match any of the addresses Coyote is
looking for. If no match is found Coyote will then use UIA to parse through the Ul child
elements of the window in an attempt to identify browser tabs or address bars. The
content of these Ul elements will then be cross-referenced with the same list of addresses
from the first comparison.

To do this, Coyote creates the UlIAutomation COM object with the foreground window as its
top element (Figure 1).

|cUTIRAutomation cuiautomation = (CUIAutomation)Zctivator.CreateInstance (
Marshal.GetTypeFromCLSID(
new Guid("FF45DBR4-G0EF-4201-RR87-54103EEFS94E™))

)
IUTAutomationElement iuiautomationElement=cuiautomation.ElementFromHandle (ForgroundWindow) ;

Fig. 1: UIA creation
Coyote will then iterate through each sub-element of the foreground application to find the
web address of a tab (Figure 2).

4/9

javascript:void(0);

for (int i = 0; i < iulautomationElementhArray.Length; i++)

{
try
{

IUVIZutomationElement element = iuiautomationElementArray.GetElement (i) ;

if (Malware.<>o_ 127.<>p 0 == null)

{
Malware.<>0_ 127.<>p 0 = CallSite<Func<CallsSite, cbject, IUIRutomationValueP:
IUIRutomationValuePattern), typeof (Malware))):;

}

IUIAutomationValuePattern iuiautcomationValuePattern = Malware.<>o 127.<>p 0.Tar

1)

if (iuiautomationValusePattern != null && !string.IsNullOorEmpty(iuiautomationvValuel

{
text = iuiautomationvValusPattern.CurrentvValue;
if (Regex.IsMatch(text, “(https:\/\/)?[a-zR-Z0-9\-\.1+(\.[a-zR-Z]{2,4}).*S
if (!'text.StartsWith(

Fig. 2: UIA iterates through sub-elements
Once the web address has been found, Coyote will try and match it to its pre-defined list
(Figure 3).

cidadetran.bradesco {
Malware.bank type = 2;
flag = true;
}
else if (Lext3 ==
nelZ.bradesconetempresa.b.br

Malware.bank type = 2;
flag = true;
}
else if (Lext3 ==
binance.com {
Malware.bank type = 3;
flag = true;
}
else if (text3 ==
mercadobitcoin.com.br {
Malware.bank type = 3;
flag = true;
}
else if (Lext3 ==
bitcointrade.com.br {
Malware.bank type = 3;
flag = true;
}
else if (Lext3 ==
electrum {

Fig. 3: Coyote attempting to match bank names to its list

The table shows how Coyote classifies the banks and crypto exchanges using their name or
web address. In each class, Coyote searches for a number of different addresses; according
to our research, there are 75 different addresses.

5/9

javascript:void(0);
javascript:void(0);

Name Type

Banco do Brasil 0
CaixaBank 1
Banco Bradesco 2

Cryptocurrency (Binance, Electrum, bitcoin, Foxbit, and others) 3

Santander 4
Router-app 5
Original bank 6
Sicredi 7
Banco do Nordeste 8
Expanse apps 9

Banks and corresponding number type for Coyote’s attempts at matching

Without UIA, parsing the sub-elements of another application is a nontrivial task. To be able
to effectively read the contents of sub-elements within another application, a developer
would need to have a very good understanding of how the specific target application is
structured.

Coyote can perform checks, regardless of whether the malware is online or operating in an
offline mode. This increases the chances of successfully identifying a victim’s bank or crypto
exchange and stealing their credentials.

UIA provides several things for an attacker, including a simple solution for malware
developers to parse sub-elements of another application.

Additional UIA tactics, techniques, and procedures

6/9

This is the first instance we have seen of a malware using UIA, which indicates how fast
malware developers are adopting new techniques into their creations. Note: This is just one
example of the potential malicious use of UIA.

Figure 4 shows how UIA can be used not only to identify critical Ul components, but also to
extract sensitive data from them.

@, Your Payments x + o

< () https://www.amazon.com/cpe/yourpayments/wallet?ref =ya d_c_pmt_mpo# & A W =

Add a credit or debit card

Card number ‘ Amazon accepts all major credit and debit

cards:

et | e e

Expirationdate 01 v = 2022 v mceve D] @ _":

Add your card Link your card from your bank
Learn more >~

Choose bank v | Link your card

Cancel

Fig. 4: PoC of UIA abuse to extract sensitive information

In Figure 5, we demonstrate how attackers can manipulate Ul components to carry out
stealthy social engineering attacks. The attacker alters the browser’s address bar and
simulates a click, seamlessly redirecting the victim to a malicious server — all with minimal
visual indication.

ol

@ Like this background?

sports «+ [Contentvisible v |es) D

My Feed 8 \War in Ukraine

Gaming

Teééher félls 150 feetito her death while
searching for TikTok site

New York Post

KaliLinux @& KaliTools » KaliDocs 3 Kal

Feedback «

Fig. 5: PoC of abusing UIA for social engineering
For the full details, check out our original UIA blog_post.

7/9

javascript:void(0);
https://www.akamai.com/blog/security-research/windows-ui-automation-attack-technique-evades-edr

Detect anomalous UIA use

As for detection of UIA itself, administrators can monitor the use of the UlAutomationCore.dll.
If it is loaded to a previously unknown process, it should raise legitimate cause for concern.

Similarly, network administrators can monitor the named pipes that are opened on an
endpoint by UIA as another indicator of its use. Figure 6 and Figure 7 are osqueries that can
be used to detect such activity.

SELECT DISTINCT pid, name, proc.path FROM process_memory_map AS pmm JOIN processes
AS proc USING(pid) WHERE pmm.path LIKE '%uiautomationcore.dll'

Fig. 6: Processes that load UlAutomationCore.dll

WITH uia_pipes AS (SELECT name AS pipe_name, SUBSTR(name, 10, INSTR(SUBSTR(name,
10), '_')-1) AS pid FROM pipes WHERE name LIKE 'UIA_PIPE_%') SELECT DISTINCT pid,
name AS process_name, path, pipe_name FROM uia_pipes JOIN processes USING(pid)

Fig. 7: Processes that opened the UIA named pipe

Akamai Hunt, Akamai’'s managed threat hunting service, offers its customers protection in
the form of a large set of anomaly detection techniques that constantly monitor the
environment in an attempt to detect malicious activity. Akamai Hunt customers were scanned
to identify anomalous UIA use, and were alerted to any suspicious activity.

Conclusion

Malware is constantly evolving — and in this ongoing game of cat and mouse (or, in this
case, coyote and squirrel), it's crucial for both defenders and attackers to stay ahead of the
curve by tracking new and emerging threats.

Although UIA may seem like a harmless tool, as we highlighted in our previous blog_post,
abusing its capabilities can lead to serious damage for organizations. By exposing Coyote’s
tactics, we hope defenders will be better equipped with multiple ways to detect and respond
to this threat.

We believe UIA represents a viable and dangerous attack vector that warrants serious
attention — and one we’re likely to see increased abuse of in the future.

Special thanks to @johnk3r for initially bringing this malware to our attention.

Read more research

8/9

https://www.akamai.com/products/akamai-hunt
https://www.akamai.com/blog/security-research/windows-ui-automation-attack-technique-evades-edr
https://x.com/johnk3r
https://www.akamai.com/blog/security-research

Written by
Tomer Peled

July 22, 2025

Written by

Tomer Peled

Tomer Peled is a Security Researcher at Akamai. In his daily job, he conducts research
ranging from vulnerability research to OS internals. In his free time, he likes to cook, do Krav
Maga, and game on his PC.

9/9

https://www.akamai.com/blog?author=tomer-peled
https://www.akamai.com/blog?author=tomer-peled

