
1/8

Scavenger Malware Distributed via eslint-config-prettier
NPM Package Supply Chain Compromise

invokere.com/posts/2025/07/scavenger-malware-distributed-via-eslint-config-prettier-npm-package-supply-chain-
compromise/

Overview

This blog was written in collaboration with Cedric Brisson. Big thanks to Cedric for staying
up throughout the weekend to complete this analysis with us. Go check out his sister blog
here.

On Friday July 18th, a number of Github users reported a popular NPM package es-lint-
config-prettier having releases published despite code changes not being reflected
within their Github repository. The maintainer later stated that their NPM account had been
compromised via a phishing email:

They then acknowledged that the following NPM packages had been affected:

eslint-config-prettier versions: 8.10.1, 9.1.1, 10.1.6, 10.1.7

https://invokere.com/posts/2025/07/scavenger-malware-distributed-via-eslint-config-prettier-npm-package-supply-chain-compromise/
https://x.com/cyb3rjerry
https://c-b.io/2025-07-20+-+Install+Linters%2C+Get+Malware+-+DevSecOps+Speedrun+Edition

2/8

eslint-plugin-prettier versions: 4.2.2, 4.2.3
snyckit versions: 0.11.9
@pkgr/core versions: 0.2.8
napi-postinstall versions: 0.3.1

This blog covers the infection vector used with the compromised package eslint-config-
prettier to execute the Scavenger Loader on infected systems, an overview of the
loader’s functionality and its follow-on Stealer payloads.

Infection Vector

The eslint-config-prettier package shipped a post install script install.js that
contains the function logDiskSpace() that is executed upon the NPM package’s
installation:

The logDiskSpace function checks if the platform is win32 (Microsoft Windows) and if it is,
then it creates a child process to execute a shipped DLL node-gyp.dll with rundll32.exe.

Scavenger Loader

The DLL is a loader malware variant written in Microsoft Visual Studio C++ that was
compiled on 2025-07-18 08:59:38 (the same day that the malicious package was
distributed) and contains the export name loader.dll. Once executed with rundll32.exe,
the DLL entry point starts a separate thread to execute the core loader functionality. The
functionality is largely within a monolithic function that contains a number of anti-analysis
techniques, including anti-VM detection, antivirus detection, dynamically resolved runtime
functions, XOR string decryption and hook patching to bypass antivirus and endpoint
detection and response (EDR) technologies.

3/8

Anti-VM Detection

The loader attempts to detect if it is within a virtual environment by calling
GetSystemFirmwareTable with the FirmwareTableProviderSignature set to RSMB to
retrieve the raw SMBIOS firmware table provider. This provider is used to enumerate the
SMBIOSTableData for common virtual machine BIOS names, including:

VMware

qemu

QEMU

Analysis Tool and Antivirus Detection

The loader also enumerates its process space for the following DLLs:

snxhk.dll (Avast’s hook library)
Sf2.dll (Avast related)
SxIn.dll (Qihu 360)
SbieDll.dll (Sandboxie)
cmdvrt32.dll (Comodo Antivirus)
winsdk.dll

winsrv_x86.dll

Harmony0.dll (likely related to the lib.harmony patching project)
Dumper.dll (likely related to memory dumping)
vehdebug-x86_64.dll (CheatEngine related)

In addition, Scavenger Loader will attempt to identify userland hooks (commonly set in
place by Anti-virus and EDR to track API calls) for the functions IsDebuggerPresent and
NtClose by checking that the first byte of each function for the value 0x4c (the expected
value of a non-hooked function).

Other Anti-Analysis Checks

The number of processors is identified by acquiring the BASIC_SYSTEM_INFORMATION
structure from NtQuerySystemInformation and checking the NumberOfProcessors
member to ensure the number of processors is above 3
Checks if it can use WriteConsoleW to determine if it’s being ran in a console by
writing “0 bytes” and checking the success status
Checks if the %TEMP%\SCVNGR_VM directory already exists (if the malware is already
present on the machine)

If any of these checks succeed, then the loader will purposefully cause a null-pointer
exception that will cause the loader to crash.

4/8

Function Hash Resolution, Hook Identification & Unhooking

In addition to the anti-analysis functionality described above, the sample makes use of
dynamic function resolution with CRC32 and a custom value table. This is used to resolve
all functions needed for the sample to execute at runtime. Interestingly, each function is
resolved every time that it is needed, unlike typical malware functionality that will resolve a
function table at the beginning of its execution to be used throughout its execution.

Scavenger Loader will perform indirect syscalls for the following functions:

NtSetInformationThread: Used to set ThreadHideFromDebugger
NtQuerySystemInformation: Gather information on the number of processors
(discussed above)

Indirect syscall resolution is done with the following steps:

1. The targeted function is dynamically resolved in ntdll.dll
2. A new allocation is made with NtAllocateVirtualMemory. The first offset of the new

allocation is set to mov r10, rcx
3. The original bytes are copied starting at the second offset within the newly allocated

buffer up to the syscall instruction to acquire its syscall number
4. The function is finalized by writing the syscall and retn instructions to the buffer

The resulting buffer is then used to call each respective syscall resolved in this manner.

String Decryption

All strings are protected with the https://github.com/JustasMasiulis/xorstr/tree/master
project, that performs compile-time XOR-encryption of strings embedded within the
malware binary. This results in string constants being replaced with XOR decryption
routines where strings are needed throughout the binary. The following Binary Ninja script
can be used to decrypt 64-bit binary strings obfuscated with this project:

https://github.com/JustasMasiulis/xorstr/tree/master

5/8

import struct

import binaryninja

import sys

import json

Let's capture each assignment instruction

def match_LowLevelIL_18002def6_0(insn):

 # rax = 0x17662843e35b915e

 if insn.operation != binaryninja.LowLevelILOperation.LLIL_SET_REG:

 return False

 if insn.dest.name != 'rax':

 return False

 # 0x17662843e35b915e

 if insn.src.operation != binaryninja.LowLevelILOperation.LLIL_CONST:

 return False

 return True

binary = sys.argv[1]

The obfuscator makes these functions huge, so we need to adjust the defaults and
only do basic analysis to get LLIL

bv = binaryninja.load(binary, options={'analysis.mode': 'basic',
'analysis.limits.maxFunctionSize': 100000000, 'pdb.features.parseSymbols': False})

bb_start = set()

Here we capture each assignment from each basic block

that meets our criteria. Limit each "stack' to a basic block

for func in bv.functions:

 #print(f"Function: {hex(func.start)}")

 for bb in func.llil:

 for instr in bb:

 if match_LowLevelIL_18002def6_0(instr):

 bb_start.add(instr.il_basic_block[0].address)

We then filter each "stack" to use only those with high

amount of assignments (encrypted strings)

high_assigns = []

stack = []

for start in bb_start:

 stack = []

 for cbb in bv.get_functions_containing(start)[0].llil:

 if cbb[0].address == start:

 for instr in cbb:

 if match_LowLevelIL_18002def6_0(instr):

 stack.append(instr)

 if len(stack) >= 4:

 high_assigns.append(stack)

result = {}

for stack in high_assigns:

6/8

 # Each captured stack is effectively made up of one half of keys

 # and the other half of ciphertext. So we just need to iterate

 # over each half respectively to cover each string.
 slen = len(stack)//2

 rqs = []

 cts = stack[:slen]

 keys = stack[slen:]

 for i, ct in enumerate(cts):

 rqs.append(ct.src.constant ^ keys[i].src.constant)

 print(f"Result for: {stack[0].address:2x}: {(struct.pack('Q'*len(rqs),
*rqs)).decode('ascii')}")

 result[hex(stack[0].address)] = (struct.pack('Q'*len(rqs),
*rqs)).decode('ascii').split("\x00")[0]

f = open(f'{sys.argv[1]}.json', 'w')

f.write(json.dumps(result))

f.close()

Loader Functionality

Once all anti-analysis checks have passed, the loader will perform an HTTP GET request to
a set of hard-coded C2 addresses with the C++ libcurl library in the following URL format:
https:{C2 Domain}/c/k2/. If any of the requests fail, it will continue to the next C2 domain
within its list until it receives a valid response. The response is expected to be a Base64-
encoded key that is decoded and appended to a hard-coded value N63r2SLz to create a
session key that is used to encrypt and decrypt command-and-control (C2) communications
with the XXTEA block cipher.

The loader then proceeds to make a second C2 request in the format of https[:]//{C2
Domain}/c/v?v={Pseudo-Random Value} which the C2 provides a response to containing
the provided value encrypted with the given session key. The value is then decrypted by the
loader using XXTEA and checked to match the provided value. If they do not match, then
the loader performs the same crash mechanism used during the anti-analysis checks.

The loader then performs a GET request in the format: https[:]/{C2 Domain}/pl?=-&t=
{Epoch Time Integer}&s={XXTEA Encrypted Epoch Time Integer}. This request
provides a number of available payloads to the loader in response containing a Base64-
encoded XXTEA encrypted blob. The decrypted payload provides the following JSON:

[{"enabled": true, "identifier": "shiny", "drop_name": "version.dll",

"next_to_match": "notification_helper.exe", "next_to_extra_nav":
"\\\\..\\\\..\\\\", "next_to_extra_nav_confirmation": "anifest.xml"},

{"enabled": true, "identifier": "electric", "drop_name": "umpdc.dll",

"next_to_match": "electrum\\\\servers.json", "next_to_extra_nav":
"\\\\..\\\\..\\\\", "next_to_extra_nav_confirmation": ""}, {"enabled": true,

7/8

"identifier": "exodus", "drop_name": "profapi.dll", "next_to_match":

"\\\\Exodus.exe", "next_to_extra_nav": "\\\\..",
"next_to_extra_nav_confirmation": "v8_context_snapshot.bin"}]

This JSON configuration provides various payload options that are likely selected based on
the system environment that the loader has infected. From what we’ve observed thus far,
each payload is a stealer module that will collect information based on the environment in
which it is executing. The loader can then download a module using the following URL
format: https://{C2 Domain}/pdl?p={Identifier Name}&t={Epoch Time Integer}&s=
{XXTEA Encrypted Epoch Time Integer}. This results in a module encrypted with the
XOR key FuckOff that is written to %TEMP% with a filename generated with
GetTempFileNameA. The temporary file is then read into memory, decrypted using the hard-
coded XOR key FuckOff, and is written to its respective configured location for DLL side
loading, or execution by a third-party application.

Stealer Functionality

Once the loader functionality is complete, Scavenger Loader will also read the npmrc file
from a user’s system and send this to the C2 server in a GET request with the format:
https:{C2 Domain}/c/a?={npmrc Base64-Encoded XXTEA Encrypted Data}. These
configuration files often contain authentication tokens that can lead to further compromises.

Related Activity

We were told about related activity (thanks @struppigel) that involved a supply chain attack
of a game mod https://lemonyte.com/blog/beamng-malware. This indicates that similar
supply chain compromise activity is being used to distribute Scavenger payloads.

Follow-Up Work

Due to the timeliness of this event and its high impact (this package has 30M+ weekly
downloads) we wanted to get this information to the public as quickly as possible. Due to
this, we will be conducting additional analysis of all of these campaign components,
including the delivered stealer modules.

Indicators of Compromise

All samples and C2 URLs related to Scavenger Loader and stealer modules can be found
here: https://github.com/Invoke-RE/community-malware-
research/blob/main/Research/Loaders/Scavenger/IOCs.md

Special Thanks

https://x.com/struppigel
https://lemonyte.com/blog/beamng-malware
https://github.com/Invoke-RE/community-malware-research/blob/main/Research/Loaders/Scavenger/IOCs.md

8/8

Need help with malware analysis?

Contact us for assistance today

Contact Us

© 2025 Invoke Reversing Inc.
© 2025 Invoke Reversing Inc.

https://invokere.com/contact/

