
t0asts.com /2025/07/12/global-ransomware.html

Global Group: Ransomware-as-a-Service with AI-powered

Negotiation

t0asts ⋮ ⋮ 7/11/2025

Jul 12, 2025

Overview

In this post, I’m going over my analysis of a recent Global ransomware sample, a group that I only

discovered when someone shared a promotional video they created with me. The video is oddly polished

and visually almost resembles an advertisement Apple would release during a new product launch. They

also boast about having support for ESXi systems and networked storage devices. There are some other

bold claims, such as, one-click propagation across networks, “mount mode” (encrypting remote disks

locally), “new attacks every single day”, 85% revenue share, AI-powered negotiation support, and access to

their platform on mobile devices. Affiliate groups are supposedly allowed to post on their leak site without

intervention. The video alone made me curious about the capabilities of their “product” so that is how we

arrived here.

Post Analysis Note: The Global ransomware group operates utilizing the leaked Mamona ransomware

builder (can be confirmed by the created mutex), which has ties to the Blacklock ransomware group also

referred to “El Dorado” (before they were shut down by the DragonForce group). The DragonForce group

utilizes the leaked Lockbit3.0 and ContiV3 variants (very original).

IOCs

The sample analyzed in this post is a 32-bit Windows executable.

Group Site: hxxp://vg6xwkmfyirv3l6qtqus7jykcuvgx6imegb73hqny2avxccnmqt5m2id[.]onion

1/37

https://t0asts.com/2025/07/12/global-ransomware.html
https://xcancel.com/DarkWebInformer/status/1930273939025973744
https://any.run/cybersecurity-blog/mamona-ransomware-analysis/
https://www.virustotal.com/gui/domain/vg6xwkmfyirv3l6qtqus7jykcuvgx6imegb73hqny2avxccnmqt5m2id.onion

MD5: c5a8d4c07e1dca5e9cfbbaadfc402063

SHA-1: c95056c8682373d0512aea2ed72c18f79c854308

SHA-256: 13b82f4ac62faf87a105be355c82bacfcbdd383050860dfa93dfbb7bb2e6c9ba

Initial Inspection

Before opening the sample in IDA, I dropped it into DIE (Detect It Easy) to get an idea if I was going to be

spending most of my time unpacking or deobfuscating the sample. This was NOT the case at all, as the

affiliates behind this sample shipped a clean release build out the door.

Figure 1: Detect It Easy

There was no obvious obfuscation, and it was unpacked. Loading the file in IDA and heading straight to the

entry point, we see all the usual C runtime setup. We can skip past all of these to the actual main function.

2/37

https://www.virustotal.com/gui/file/c5a8d4c07e1dca5e9cfbbaadfc402063
https://www.virustotal.com/gui/file/c95056c8682373d0512aea2ed72c18f79c854308
https://www.virustotal.com/gui/file/13b82f4ac62faf87a105be355c82bacfcbdd383050860dfa93dfbb7bb2e6c9ba
https://github.com/horsicq/Detect-It-Easy
https://hex-rays.com/

Figure 2: Entry Point

Here is where the actual important execution starts.

3/37

Figure 3: Main Function

There are a handful of interesting flags that can be set on execution, -log can be passed to view the

verbose event logging, -detached will forcibly detach the console window if the encryptor is run

interactively, -force will bypass the mutex check which prevents multiple instances of the encryptor from

running simultaneously to prevent double encryption of files.

Interestingly enough, if -detached is not passed as an argument, the encryptor will attempt to relaunch and

set the flag.

4/37

Figure 4: Detach Console and Relaunch

After executing in detached mode, the handles for standard in, out, and error are set to NUL.

Figure 5: Set STDIN/STDOUT/STDERR to NUL

API Resolution

The encryptor then will continue setup by dynamically resolving APIs with a custom hashing algorithm.

5/37

Figure 6: Resolve APIs

The ResolveModule function calculates module hashes by first walking the PEB module list

(InLoadOrderModuleList), lowercasing the module name, stripping the path off the file name, hashing

the module name, and comparing it to the target hash.

If kernel32.dll, advapi32.dll, and shell32.dll successfully resolve, APIs will be resolved next.

The ResolveAPI function calculates API hashes by walking exported functions for the target module,

calculating the hash for each entry, comparing it to the target hash, and returning the function address when

6/37

a match is found.

This python snippet is a recreation of how the hash is generated from the API name.

#thanks hashdb

def hash(data):

 hash_value = 0x42

 for b in data:

 hash_value = ((hash_value * 33) + b) & 0xFFFFFFFF

 return hash_value

print("CreateMutexW = " + str(hash(b'CreateMutexW')))

Mutex Creation

Once APIs have been resolved, the encryptor creates a mutex using the resolved CreateMutexW function.

Figure 7: Create Mutex

Emptying Recycle Bin

Next, the recycle bin is cleared. This is the first of several steps to prevent recovery of encrypted files.

Figure 8: Clear Recycle Bin

Config Decryption

The embedded config in the .config section is now decrypted. This config data contains the ransom note,

victim unique ID, leak site URL, and the random value that will be used as the extension for encrypted files.

Other runtime configuration options if present would be stored in this data as well.

7/37

Figure 9: Decrypted Config

The following python script reimplements the decryption process, and can be used to extract the config

section.

#!/usr/bin/env python3

import sys

from pathlib import Path

from array import array

import pefile

class ConfigDecryptor:

 def __init__(self, pe_path: Path) -> None:

 if not pe_path.exists():

 raise FileNotFoundError(f"File not found: {pe_path}")

 self.pe = pefile.PE(str(pe_path))

 def extract_config_section(self) -> bytes:

 for sec in self.pe.sections:

 name = sec.Name.rstrip(b"\x00").decode(errors="ignore")

 if name == ".config":

 return sec.get_data()

8/37

 raise RuntimeError(".config section not found")

 def decrypt_data(self, data: bytes) -> bytes:

 data = data[:len(data) // 4 * 4]

 words = array('I')

 words.frombytes(data)

 xor_current = xor_prev = xor_seed = 0x52D8FC7D

 for idx in range(len(words)):

 words[idx] ^= xor_current

 rot = ((xor_seed << 13) | (xor_prev >> 19)) & 0xFFFFFFFF

 new_key = ((-1702134675 & 0xFFFFFFFF) * rot) & 0xFFFFFFFF

 xor_current = xor_prev = xor_seed = new_key ^ 0x5E4F3D2C

 return words.tobytes()

 def process(self) -> None:

 raw = self.extract_config_section()

 print(f"Found .config section: {len(raw)} bytes")

 decrypted = self.decrypt_data(raw)

 output_file = Path("output.bin")

 with output_file.open('wb') as f:

 f.write(decrypted)

 print(f"Decrypted configuration saved to: {output_file}")

def main():

 if len(sys.argv) < 2:

 print(f"Usage: {sys.argv[0]} <pe_file>")

 sys.exit(1)

 pe_file = Path(sys.argv[1])

 try:

 ConfigDecryptor(pe_file).process()

 except Exception as e:

 print(f"Error: {e}")

 sys.exit(1)

9/37

if __name__ == "__main__":

 main()

Crypto Context Setup

To successfully encrypt files, cryptographic context is acquired and a handle to a cryptographic service

provider is returned. The CRYPT_VERIFYCONTEXT flag is used during context setup, which is typically only

used by apps that leverage ephemeral keys, including apps that handle hashing, or encryption.

Figure 10: Crypto Context Setup

Custom File Icon Setup

The embedded icon that will be applied as the file icon for encrypted files is base64 decoded, and dropped

into the temp directory for all accessible users.

Figure 11: File Icon Setup

10/37

Figure 12: Base64 Icon Data

11/37

Figure 13: File Icon Decode

12/37

Figure 14: File Icon Written

Figure 15: File Icon Preview

Once the file icon is extracted and successfully dropped to disk, it is set as the associated file icon for

encrypted files with the appended custom file extension.

13/37

Figure 16: Setting File Icon Association

Print Ransom Note

Next, the encryptor will start the process of printing the ransom note to all networked printers accessible by

the host, by creating a PDF version of the ransom note, which is never utilized during the print jobs (funny).

Figure 17: Setup and Run Ransom Note Print Job

The PDF copy of the ransom note is named PrintMe22.pdf and is dropped in the current user’s temp

directory (still unused).

Figure 18: Location of PDF Ransom Note

14/37

Figure 19: Creation of PDF Ransom Note

Networked printers are now enumerated.

Figure 20: Networked Printer Discovery

For each printer identified, a handle is opened, a temporary file containing the content of the ransom note is

dropped in the current user temp directory, and a print job is created, sending the content of the ransom note

temp file to each printer.

15/37

Figure 21: Sending Note Print Job

Clear Windows Event Log

Immediately after sending the print jobs, the encryptor will attempt to clear the history of several Windows

event log sources. These being Application, Security, System, Setup, and ForwardedEvents

16/37

Figure 22: Clearing Event Logs

Delete Shadow Copies

After wiping Windows event logs, vssadmin is executed by the encryptor in a crude attempt to delete all

shadow copies, to hinder recovery efforts.

17/37

Figure 23: Deleting Shadow Copies

Token Elevation

The encryptor will then attempt to adjust the token privileges of its process.

Figure 24: Adjust Process Token

18/37

Figure 25: Set Token Privileges

Impersonate SYSTEM

With elevated token privileges set, the encryptor will attempt to elevate to NT AUTHORITY\SYSTEM

permissions by impersonating the token of the winlogon.exe process or the TrustedInstaller

service/process if the first attempt to impersonate winlogon fails.

19/37

Figure 26: Token Impersonation

Figure 27: Impersonate Winlogon

20/37

Figure 28: Impersonate TrustedInstaller

Impair Defenses

Now running as SYSTEM, the encryptor will attempt to stop and delete services related to Microsoft

Defender, event logging, network inspection, and system integrity.

21/37

Figure 29: Impairing Security Services

With security services stopped and deleted, any processes associated with those services or category of

services are also terminated. The process token is then reverted to the original token.

Figure 30: Terminating Security Processes

Enumerate Domain Devices

If a domain username and password are provided, the encryptor will attempt to access neighboring devices

using LDAP, and execute a copy of itself as a service, or using a scheduled task.

First, the list of devices in the domain is collected.

22/37

Figure 31-34: Query Domain Computers

A DNS query is performed on each device identified, and each IP successfully resolved is sent an ICMP

echo request to identify hosts that are alive.

23/37

Figure 35: Resolve Domain Host IP

Figure 36: Ping Host

Remote Execution

The encryptor binary is uploaded to the target host’s Temp folder through the admin$ share, and a service is

created to execute it.

24/37

Figure 37-41: Upload and Execute as Service

If service creation fails, a scheduled task is created to execute the uploaded encryptor binary.

25/37

Figure 42: Execute as Scheduled Task

Local Encryption Setup

Drives to be targeted for encryption are now identified.

Figure 43: Identify Target Drives

Two thread pools are created, one for local drive encryption, and one for remote drive encryption.

26/37

Figure 44: Thread Pool Creation

Local Encryption Start

Encryption for local drives is started.

Figure 45-46: Local Encryption Job Start

First, a list of every drive letter on the target host is collected (again), and for each drive, the type is

determined to prevent targeting of CD-ROM drives. Remaining applicable drives are checked once more to

determine if they are accessible based on file attributes, and drives that fail this check are skipped.

The files and folders on each valid drive are iterated through, queueing target files for encryption, while

skipping critical system files and directories, and dropping the ransom note in writable directories.

27/37

Each valid target file is renamed to include the ransomware custom extension, and based on its size it is

either fully encrypted or partially encrypted using a Curve25519 derived one-time stream-cipher key; the

encrypted data overwrites the original data in-place and a trailer containing the ephemeral public key and

integrity metadata is appended to the end of the file.

28/37

Figure 47-48: Queue Target Files and Drop Note

29/37

Figure 49: Local Encryption Job

Remote Encryption Start

30/37

With local drives finished, encryption for remote hosts is started. Remote encryption is done either by directly

accessing the target share, or mounting the share as a local drive.

Alive neighboring devices are identified by sending ICMP echo requests to each IP on network the target

device has access to. For devices that are alive, an connection attempt is made, and shares are

enumerated. Accessible shares that do not match a list of exclusions are queued for encryption.

Files on shares are encrypted in batches, and once the last batch finishes, share connections are killed, and

any shares mounted as local drives are unmounted.

Figure 50: Get Device Network and Domain Info

Figure 51: Check if Target Alive

31/37

Figure 52: Add Connection

Figure 53: Enumerate Shares

Set Desktop Wallpaper

32/37

The target host wallpaper is set, notifying the user of their demise, and the name of the ransom note.

Figure 54: Resolve More APIs

33/37

Figure 55: Set Wallpaper

Self Deletion

34/37

To cleanup, the encryptor will launch command prompt, have it ping 127.0.0.7, giving the encryptor

process just enough time to finish and close the handle to its mutex before the encryptor binary is deleted.

Figure 56: Ping and Self Delete

MITRE ATT&CK Mapping

Collection (TA0009)

T1005: Data from Local System

Defense Evasion (TA0005)

T1070: Indicator Removal

T1070.001: Clear Windows Event Logs

T1070.004: File Deletion

T1107: File Deletion

T1134: Access Token Manipulation

T1202: Indirect Command Execution

T1562: Impair Defenses

T1562.001: Disable or Modify Tools

Discovery (TA0007)

T1007: System Service Discovery

T1016: System Network Configuration Discovery

T1057: Process Discovery

T1063: Security Software Discovery

T1082: System Information Discovery

T1083: File and Directory Discovery

35/37

T1135: Network Share Discovery

T1518: Software Discovery

T1518.001: Security Software Discovery

Execution (TA0002)

T1053: Scheduled Task/Job

T1053.005: Scheduled Task

T1059: Command and Scripting Interpreter

T1106: Native API

T1129: Shared Modules

Impact (TA0040)

T1486: Data Encrypted for Impact

T1489: Service Stop

T1490: Inhibit System Recovery

Persistence (TA0003)

T1031: Modify Existing Service

T1053: Scheduled Task/Job

T1053.005: Scheduled Task

T1543: Create or Modify System Process

T1543.003: Windows Service

Privilege Escalation (TA0004)

T1053: Scheduled Task/Job

T1053.005: Scheduled Task

T1134: Access Token Manipulation

T1543: Create or Modify System Process

T1543.003: Windows Service

Related Samples

These are additional samples related to the Global Ransomware family:

SHA-256: 1f6640102f6472523830d69630def669dc3433bbb1c0e6183458bd792d420f8e

SHA-256: 232f86e26ced211630957baffcd36dd3bcd6a786f3d307127e1ea9a8b31c199f

SHA-256: 28f3de066878cb710fe5d44f7e11f65f25328beff953e00587ffeb5ac4b2faa8

SHA-256: a8c28bd6f0f1fe6a9b880400853fc86e46d87b69565ef15d8ab757979cd2cc73

SHA-256: c5f49c0f566a114b529138f8bd222865c9fa9fa95f96ec1ded50700764a1d4e7

SHA-256: c7b91de4b4b10c22f2e3bca1e2603160588fd8fd829fd46103cf536b6082e310

Acknowledgment

That’s all Folks!

If I made any mistakes please let me know!

36/37

https://www.virustotal.com/gui/file/1f6640102f6472523830d69630def669dc3433bbb1c0e6183458bd792d420f8e
https://www.virustotal.com/gui/file/232f86e26ced211630957baffcd36dd3bcd6a786f3d307127e1ea9a8b31c199f
https://www.virustotal.com/gui/file/28f3de066878cb710fe5d44f7e11f65f25328beff953e00587ffeb5ac4b2faa8
https://www.virustotal.com/gui/file/a8c28bd6f0f1fe6a9b880400853fc86e46d87b69565ef15d8ab757979cd2cc73
https://www.virustotal.com/gui/file/c5f49c0f566a114b529138f8bd222865c9fa9fa95f96ec1ded50700764a1d4e7
https://www.virustotal.com/gui/file/c7b91de4b4b10c22f2e3bca1e2603160588fd8fd829fd46103cf536b6082e310

Thanks to REMOVED for sharing the Global promo video with me!

Thanks to OALabs for HashDB!

37/37

https://www.openanalysis.net/
https://hashdb.openanalysis.net/

