
1/8

July 3, 2025

XWorm Part 1 - Unraveling a Steganography-Based Downloader
malwaretrace.net/posts/xworm-part-1/

Analyzing a multi-stage downloader that employs steganography to hide a .NET assembly.

Posted Jul 3, 2025 Updated Jul 24, 2025
By Jared G.
4 min read

Overview

Today, we’ll analyze a sample tagged as XWorm, sourced from Malware Bazaar, with a SHA-256 hash of
0fd706ebd884e6678f5d0c73c42d7ee05dcddd53963cf53542d5a8084ea82ad1. This sample will be referred to as the first stage.

According to a recent AnyRun report , XWorm is a remote access trojan (RAT) sold as a service, capable of exfiltrating files, stealing various
application credentials, and maintaining remote access. It also states that XWorm is commonly delivered in multi-stage attacks, starting with
phishing emails.

Technical Analysis

Stage 1

1

https://malwaretrace.net/posts/xworm-part-1/
https://malwaretrace.net/
https://malwaretrace.net/assets/img/posts/7-3-25/banner.png

2/8

The first stage is a JScript file employing junk code, junk delimiter strings, and string concatenation for obfuscation.

figure 1 - obfuscated stage 1 downloader

This can be trivially deobfuscated using a text editor like Sublime Text to replace the delimiter string defined on line 79 with an empty string,
followed by replacing the below regular expression with an empty string to clean up string concatenation.

";[\s\n]+[a-
z]+\s\+=\s"

https://malwaretrace.net/assets/img/posts/7-3-25/figure_1.png
https://www.sublimetext.com/

3/8

After further deobfuscation and variable renaming, the below downloader is identified, which reaches out to a URL, checks for a status code
of 200, then executes the HTTP response as code through use of an immediately invoked function expression (IIFE).

figure 2 - deobfuscated stage 1 downloader script

Stage 2

The next stage is further JScript employing obfuscation identical to stage 1. After repeating previous deobfuscation steps, we observe use of
PowerShell to execute another stage as seen in figure 3. This is responsible for executing the PowerShell script seen in figure 4.

figure 3 - stage 2 downloader script

2

https://malwaretrace.net/assets/img/posts/7-3-25/figure_2.png
https://malwaretrace.net/assets/img/posts/7-3-25/figure_3.png

4/8

figure 4 - PowerShell script invoked by stage 2 downloader script

After some code beautifying using CyberChef and variable renaming, I was able to better understand the execution flow. It begins by reaching
out to an image hosted on well-known digital library site “Internet Archive”, where the image is loaded into memory as a byte array.

figure 5 - PowerShell code responsible for loading image into memory

 figure 6 - universe themed image hosted on Internet

Archive

https://malwaretrace.net/assets/img/posts/7-3-25/figure_4.png
https://gchq.github.io/CyberChef/#recipe=Generic_Code_Beautify()
https://malwaretrace.net/assets/img/posts/7-3-25/figure_5.png
https://malwaretrace.net/assets/img/posts/7-3-25/figure_6.png

5/8

Once loaded into memory, the byte array is scanned for a hard-coded byte sequence that begins with 42 4D, the magic bytes for the bitmap
format . Once found, the index position of the byte sequence start is stored in variable $bitmap_begin.

 figure 7

- code responsible for locating bitmap embedded in image

Starting at $bitmap_begin, the remaining image bytes are stored in a memory buffer, which are then used to construct a .NET Bitmap object.
It then iterates through each pixel in the bitmap, reads in its RGB byte values, and adds them to a new byte list $byte_list.

figure 8 - code responsible for image manipulation

3

https://malwaretrace.net/assets/img/posts/7-3-25/figure_7.png
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.bitmap
https://malwaretrace.net/assets/img/posts/7-3-25/figure_8.png

6/8

It then loads an embedded .NET assembly within the newly created byte list, where method VAI() inside of ClassLibrary1.Home is invoked.

figure 9 - extraction and execution of .NET assembly embedded within bitmap

Dynamic PE Extration

Now having an understanding of its functionality, we can dump the assembly using a dynamic approach by replacing lines 55 and onwards
with the following and executing the script.

[System.IO.File]::WriteAllBytes("assembly.mal",
$dotnet_assembly);

Static PE Extraction

Alternatively, we can port functionality from the PowerShell script to Python, allowing us to perform static extraction of the .NET assembly
from the image using the Pillow library . The referenced blog on looping through pixel data with Python was helpful during development of
this script.

import sys

import os

from PIL import Image

take image as input

polyglot = sys.argv[1]

with open(polyglot, "rb") as f:

image_bytes = f.read()

convert image to byte array

image_byte_array = bytearray(image_bytes)

size = len(image_byte_array)

find bitmap start

bitmap_start =
image_byte_array.find(b"\x42\x4D\x72\x6E\x37\x00\x00\x00\x00\x00\x36\x00\x00\x00\x28\x00\x00\x00\x64\x00\x00\x00\x4D\x2F\x00\x00\x0
x00")

extract bitmap based on start location

extracted_bitmap = image_byte_array[slice(bitmap_start, size)]

temporarily write bitmap to disk

(the Image module only handles file paths)

with open("bitmap.tmp", "wb") as f:

f.write(extracted_bitmap)	 	

try:

img = Image.open("bitmap.tmp")

except FileNotFoundError:

print("Error: temporary bitmap file not found")

width, height = img.size # get dimensions

image = img.convert("RGB") # read image using RGB mode

byte_list = [] # define ouput byte list

extract each pixel's RGB byte values

for y in range(height):

for x in range(width):

	 r, g, b = image.getpixel((x, y))

	 byte_list.append(r)

	 byte_list.append(g)

	 byte_list.append(b)

bitmap cleanup

img.close()

image.close()

os.remove("bitmap.tmp")

extract assembly

assembly_len = int.from_bytes(byte_list[:4], byteorder="little")

extracted_assembly = bytes(byte_list[4:assembly_len])

write assembly to file

4 5

https://malwaretrace.net/assets/img/posts/7-3-25/figure_9.png
https://pillow.readthedocs.io/en/stable/

7/8

with open("extracted_assembly.mal", "wb") as f:

f.write(extracted_assembly)

8/8

Until next time, folks! See you in part two, where we will analyze the extracted .NET assembly. All hashes from the below IOC table will be
available for download on MalShare.

IOCs

Type IOC

Stage 1 Downloader SHA-256 0fd706ebd884e6678f5d0c73c42d7ee05dcddd53963cf53542d5a8084ea82ad1

Stage 1 Downloader User-Agent MyCustomAgent/1.0

Stage 2 URL hxxp[://]deadpoolstart[.]lovestoblog[.]com/arquivo_fb2497d842454850a250bf600d899709[.]txt

Stage 2 Downloader SHA-256 ad25fffedad9a82f6c55c70c62c391025e74c743a8698c08d45f716b154f86da

Image SHA-256 89959ad7b1ac18bbd1e850f05ab0b5fce164596bce0f1f8aafb70ebd1bbcf900

Image URL hxxps[://]archive[.]org/download/universe-1733359315202-8750/universe-1733359315202-8750[.]jpg

References and Resources

1. https://any.run/malware-trends/xworm/ ↩︎

2. https://developer.mozilla.org/en-US/docs/Glossary/IIFE ↩︎

3. https://en.wikipedia.org/wiki/List_of_file_signatures ↩︎

4. https://pillow.readthedocs.io/en/stable/ ↩︎

5. https://www.nemoquiz.com/python/loop-through-pixel-data/ ↩︎

https://malwaretrace.net/posts/xworm-part-2/
https://malshare.com/

