
1/16

Cobalt Strike Operators Leverage PowerShell Loaders
Across Chinese, Russian, and Global Infrastructure

hunt.io/blog/cobaltstrike-powershell-loader-chinese-russian-infrastructure

While analyzing open directories during a routine threat hunting session, we discovered a
suspicious PowerShell script (y1.ps1) hosted in an open directory on a server in China (IP:
123.207.215.76).

The script functions as a shellcode loader utilizing in-memory execution techniques to evade
disk-based detection. It resolves Windows API functions dynamically and decrypts
embedded shellcode, which acts as a downloader. First seen on June 1, 2025, the script
triggered a deeper investigation into post-exploitation infrastructure.

This PowerShell loader reflects an active post-exploitation setup leveraging stealth
techniques and Cobalt Strike infrastructure.

In this article, we break down how the shellcode operates, its evasion methods, and how we
traced its connection to known Cobalt Strike infrastructure.

Key Takeaways

The PowerShell script (y1.ps1) executes shellcode directly in memory using reflective
techniques.

It connects to a second-stage C2 server hosted on Baidu Cloud Function Compute.

The shellcode employs API hashing and sets forged User-Agent strings to evade
detection.

The final payload communicates with a known Cobalt Strike IP address in Russia.

https://hunt.io/blog/cobaltstrike-powershell-loader-chinese-russian-infrastructure
https://app.hunt.io/file-manager?host=http://123.207.215.76:80


2/16

SSL metadata and loader behavior confirm links to Cobalt Strike post-exploitation tools.

Introduction

The decrypted shellcode initiates a connection to a second-stage command-and-control
server hosted on Baidu Cloud Function Compute (y2n273y10j[.]cfc-
execute[.]bj.baidubce[.]com). It uses API hashing to obfuscate function names, sets a forged
User-Agent string, and employs reflective DLL injection to load the payload directly into
memory.

Analysis of the decoded payload configuration revealed a Cobalt Strike Beacon
communicating with the IP address 46.173.27.142, associated with Beget LLC (Russia).

SSL metadata indicates a certificate subject of "Major Cobalt Strike" and issuer
"cobaltstrike." These findings are consistent with known Cobalt Strike infrastructure and
usage patterns in post-exploitation and threat actor activity.

While most of the IOCs in this case are linked to Chinese and Russian servers, we also
identified a few hosted in the United States, Singapore, and Hong Kong. This suggests that
although the core staging environment relies heavily on infrastructure in China and Russia,
cloud platforms in other regions are occasionally used to support distribution.

Script Metadata

The y1.ps1 script was hosted in an open directory on a Chinese server with the following
attributes:

File Name: y1.ps1

File Size: 4 KB

Host IP: 123.207.215.76:80

Host Attribution: Shenzhen Tencent Computer Systems Company Ltd. (China)

Capture Time: 2025-06-01 12:06 UTC

Technical analysis

To further examine the file's behavior and context, we used our internal analysis tools.

The PowerShell script was discovered using the Attack Capture File Manager. The file was
flagged as malicious and made publicly accessible via an open directory.

https://app.hunt.io/domain-detail/y2n273y10j.cfc-execute.bj.baidubce.com
https://app.hunt.io/ip-detail/46.173.27.142
https://hunt.io/glossary/open-directories
https://app.hunt.io/file-manager?host=http://123.207.215.76:80
https://app.hunt.io/attackcapture/overview?days=30


3/16

Figure 1: Open directory hosting the PowerShell code
The PowerShell script is a shellcode loader designed to execute malicious code in memory,
a technique often used by malware to evade detection. It begins by enabling strict mode to
ensure clean execution, then defines two key functions: func_get_proc_address, which
retrieves memory addresses of Windows API functions (like VirtualAlloc) from DLLs using
reflection, and func_get_delegate_type, which dynamically creates a delegate to call
functions in memory.

The main execution block, triggered on 64-bit systems, decodes a Base64-encoded byte
array, decrypts it with an XOR operation, and allocates executable memory using
VirtualAlloc. The decrypted shellcode is copied into this memory and executed via a
delegate, bypassing disk-based detection.

https://app.hunt.io/file-manager?host=http://123.207.215.76:80


4/16

Figure 2: PowerShell shellcode loader

Hunting PowerShell Cobalt Strike shellcode

We used Code Search with the keyword "func_get_delegate_type", a function often
associated with reflective execution in PowerShell-based loaders, and filtered for files with
the ".ps" extension. This returned 129 results and helped uncover a set of suspicious scripts,
along with the hostnames serving them. Identifying this pattern was key in linking the loaders
to active Cobalt Strike infrastructure.

https://app.hunt.io/attackcapture/search?extension=.ps1&search_keyword=func_get_delegate_type&days=30
https://hunt.io/glossary/cobalt-strike


5/16

Figure 3: Results of searching the code query
One of the retrieved scripts stood out for deeper inspection, leading us to examine its
embedded shellcode.

Decrypting shellcode

We returned to the script and used CyberChef to decode the embedded shellcode. The
payload was Base64-encoded and XOR-decrypted using a key of 35.

https://app.hunt.io/attackcapture/search?extension=.ps1&search_keyword=func_get_delegate_type&days=30


6/16

Figure 4: Decrypting shellcode using CyberChef
This shellcode functions as a downloader designed to connect to a remote server hosted on
Baidu's Cloud Function Compute platform (y2n273y10j[.]cfc-execute[.]bj[.]baidubce[.]com).
Its main job is to fetch and run a second-stage payload.

Evasion Technique: API Hashing

Instead of including API function names directly in the code (which would be easy to spot in
a static analysis), the shellcode calculates a unique hash for each function it needs. It
compares these calculated hashes to pre-computed values hardcoded into the shellcode.
When it finds a match, it retrieves the corresponding function's address and calls it.

https://app.hunt.io/domain-detail/y2n273y10j.cfc-execute.bj.baidubce.com


7/16

Figure 5: API hashing technique used by shellcode
The hashing algorithm processes each character of the function name by converting it to
uppercase (making it case-insensitive), rotating the accumulated hash value 13 bits to the
right, and adding the character's value.

This continues until the end of the name, producing a unique hash that hides the original
function name.

The shellcode starts by setting up its execution environment. It walks through the Process
Environment Block (PEB) to locate loaded DLLs. Then, using its hashing routine, it identifies
key functions like LoadLibraryA and others that it needs for network communication.

Once it locates LoadLibraryA, it loads wininet.dll, a system library used for internet-related
functions. From there, it resolves APIs like InternetOpenA, laying the groundwork for
contacting its command and control (C2) server.



8/16

Figure 6: Resolve InternetOpenA and LoadLibraryA APIs

C2 Communication

The shellcode initiates an HTTPS connection (port 443) to its C2 server at y2n273y10j.cfc-
execute.bj.baidubce.com using InternetConnectA. During this stage, it sets a custom User-
Agent string that mimics legitimate browser traffic:

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; 
yie9)


Below is an assembly snippet showing the actual call to InternetConnectA, used by the
shellcode to initiate the HTTPS C2 connection.

Figure 7: HTTP connection via C2

https://hunt.io/glossary/command-and-control-server-c2


9/16

Receiving And Executing Payload

After the connection is established, the shellcode sends an HTTP request using
HttpOpenRequestA and HttpSendRequestA, with options set via InternetSetOptionA. It
includes a retry loop that tries up to 10 times if the connection fails.

Once successful, it uses VirtualAlloc to create a memory region with read, write, and execute
permissions. It then downloads the payload directly into this memory space using
InternetReadFile.

Figure 8: Allocated memory region and payload execution
Finally, the shellcode jumps to the start of the memory region and executes the downloaded
payload.

Following the execution analysis, we investigated whether the script or its payload was
associated with known Cobalt Strike infrastructure.

PowerShell Cobalt Strike Beacon

After analyzing the PowerShell scripts, we identified several encoded beacons associated
with CobaltStrike loaders. An example of one such beacon is shown in the following figure.

https://hunt.io/blog/rust-beacon-cobalt-strike-cat-south-korea


10/16

Figure 9: PowerShell script that decrypted the Cobalt Strike loader

Cobalt Strike Loader

After decoding the Cobalt Strike loader, we observed that it implements a reflective DLL
loading technique, which allows a DLL to be loaded directly from memory without relying on
the standard Windows loader.



11/16

Figure 10: Cobalt Strike loader

Cobalt Strike Beacon C2

During analysis of the payload configuration, we extracted the command-and-control (C2)
address 46.173.27.142.

This IP is associated with Beget LLC under ASN 198610, and geolocated to Russia (RU).
Historical data from our platform indicates the IP was both first and last seen on May 28,
2025, suggesting short-lived or time-sensitive activity.

The C2 node operated over port 50050, and SSL certificate metadata reveals the
Subject/Common Name as "Major Cobalt Strike", with the Issuer Organization listed as
"cobaltstrike", strongly indicating usage of a Cobalt Strike Beacon.

This infrastructure aligns with known Cobalt Strike deployment patterns used in post-
exploitation and red team operations, as well as by threat actors leveraging cracked versions
of the framework.

https://app.hunt.io/ip-detail/46.173.27.142
https://hunt.io/glossary/c2-nodes


12/16

Figure 11: SSL History related to 46.173.27.142
To understand the broader infrastructure footprint, we queried our certificate dataset for other
Cobalt Strike indicators.

Hunting Cobalt Strike C2 via SSL

The query "Certificates.IssuerOrganization:cobaltstrike" returns 801 IP addresses. These are
systems with SSL certs showing "cobaltstrike" as the issuer. Since Cobalt Strike gets abused
constantly by hackers, these IPs are likely command-and-control servers actively used to
manage attacker infrastructure.

https://app.hunt.io/advanced-search?query=Certificates.IssuerOrganization:cobaltstrike
https://app.hunt.io/advanced-search?query=Certificates.IssuerOrganization:cobaltstrike


13/16

Figure 12: Hunting query related to the Cobalt Strike tool
These findings reinforce the presence of an actively maintained, evasive post-exploitation
framework leveraging Cobalt Strike infrastructure.

Summary

We uncovered a simple but effective delivery method for Cobalt Strike using a PowerShell
loader hosted in an open directory. The loader executed entirely in memory, contacted a
cloud-based C2 server, and relied on evasion techniques like API hashing and reflective DLL
loading.

What made this stand out wasn't the techniques themselves, but how quietly they were
combined. By tracing code patterns and SSL certificate metadata, we linked the activity to
known Cobalt Strike infrastructure and exposed part of a broader setup likely used in post-
compromise operations.

While attribution remains unclear, the use of cracked Cobalt Strike beacons and ephemeral
infrastructure is consistent with techniques observed in financially motivated threat
campaigns.



14/16

Recommended Mitigation Strategies

To reduce the risk of similar attacks, start by tightening PowerShell usage. Set execution
policies to restrict unsigned scripts and enable logging to capture suspicious activity. Look
out for unusual commands, such as Add-Type or custom memory allocation.

Block known malicious IPs and domains, especially 46.173.27.142 and the Baidu
Cloud endpoint used in this case. Watch for strange outbound traffic, especially with
fake User-Agent strings that mimic browsers.

Use a good EDR solution that can catch in-memory attacks and reflective DLL loading.
Turn on Windows Defender's Exploit Guard and ASR rules to stop common post-
exploitation techniques.

Monitor for SSL certificates with names like "cobaltstrike"-they're often a giveaway.
Deploy all known IOCs (IPs, domains, certificates) across your security tools and hunt
through historical logs.

Limit internet access from sensitive machines, and train users not to run unknown
scripts or access unsecured web directories. Disable scripting tools like PowerShell if
they're not needed.

Cobalt Strike IOCs

PowerShell Scripts

cdd757e92092b9a72dec0a7529219dd790226b82c69925c90e5d832955351b52

23a04d2ae94998b26c42c327f9344b784eb00d0a42c0ade353275bdedff9824f

27f88c7005f33bfc67731cb732c7c72e0cea7f97db1f15bcf5880d3e7f7f85eb

6954005ab1b1d2deec940181674000e394f860fe4f626d6b0abf63453d5fff48

ed2b7d55781414cdb3e0f64de6d9fea9bf282ee49e12b112f9e0748d5266fd60

1f0f4415b738198cc82359212f3ead281b7eb38070163a7782584f77346e619f

eed87a02d126c3ac0ab90a66f4e4a58f24d6a0f4028a2643e83a3a8b075cb5ac

69b1261eac205aefb6a5237ff3d87ef515e838184c1616ec935a4f7f4aa04ac1

60652f62ec7772b611f3a62fd93d690e677b616e972a0444650f0a2ea597f77f

1d4f814d06a3893545f51f1158d6677b1b083a90ab57ba03c58f8d26c29e5a10



15/16

Cobalt Strike C2

y2n273y10j[.]cfc-execute[.]bj.baidubce[.]com

46.173.27.142

Cobalt Strike Open Directory Hosts

182.92.76.239 182.92.0.0/16 37963 (Hangzhou Alibaba Advertising Co.,Ltd.) CN

35.240.168.8 35.240.0.0/13 396982 (GOOGLE-CLOUD-PLATFORM) SG

167.71.215.63 167.71.0.0/16 14061 (DIGITALOCEAN-ASN) SG

82.157.78.234 82.156.0.0/15 45090 (Shenzhen Tencent Computer Systems
Company Limited)

CN

116.114.20.180 116.114.0.0/16 4837 (CHINA UNICOM China169 Backbone) CN

111.229.158.40 111.229.0.0/16 45090 (Shenzhen Tencent Computer Systems
Company Limited)

CN

123.207.215.76 123.206.0.0/15 45090 (Shenzhen Tencent Computer Systems
Company Limited)

CN

217.114.8.138 217.114.0.0/20 198610 (Beget LLC) RU

8.210.77.1 8.210.0.0/16 45102 (Alibaba US Technology Co., Ltd.) HK

124.71.137.28 124.71.128.0/18 55990 (Huawei Cloud Service data center) CN

137.184.103.54 137.184.0.0/16 14061 (DIGITALOCEAN-ASN) US

8.137.147.254 8.136.0.0/13 37963 (Hangzhou Alibaba Advertising Co.,Ltd.) CN

45.147.201.165 45.147.200.0/23 51659 (LLC Baxet) RU

43.202.62.102 43.200.0.0/13 16509 (AMAZON-02) KR

8.134.148.103 8.132.0.0/14 37963 (Hangzhou Alibaba Advertising Co.,Ltd.) CN

124.223.12.165 124.220.0.0/14 45090 (Shenzhen Tencent Computer Systems
Company Limited)

CN

146.190.72.88 146.190.0.0/17 14061 (DIGITALOCEAN-ASN) US

150.158.214.98 150.158.0.0/16 45090 (Shenzhen Tencent Computer Systems
Company Limited)

CN

121.37.66.33 121.36.0.0/15 55990 (Huawei Cloud Service data center) CN

https://app.hunt.io/domain-detail/y2n273y10j.cfc-execute.bj.baidubce.com
https://app.hunt.io/ip-detail/46.173.27.142


16/16

114.116.50.214 114.116.0.0/17 4808 (China Unicom Beijing Province Network) CN

175.178.33.154 175.178.0.0/16 45090 (Shenzhen Tencent Computer Systems
Company Limited)

CN

8.135.237.16 8.132.0.0/14 37963 (Hangzhou Alibaba Advertising Co.,Ltd.) CN


