Masslogger Fileless Variant — Spreads via .VBE, Hides in
Registry
1S3

June 18, 2025

SERITE

Masslogger Fileless
Variant: Spreads via

VBE, Hides in Registry

Read Blog

18 June 2025
Written by Prashil Moon

During our recent investigation at Seqrite Labs, we identified a sophisticated variant of
Masslogger credential stealer malware spreading through .VBE (VBScript Encoded) files.
Initially, the variant appeared to be a typical script-based threat, but upon deeper analysis it
turned out to be a multi-stage fileless malware that heavily relies on Windows Registry to
store and execute its malicious payload.

In this blog post, we analyzed the internal flow of VBScript code, the obfuscation mechanism
used, and how it manipulates system to remain fileless. Also, we have explained about the
Stagers and the capabilities of the final Masslogger payload.

Initial Infection Vector:

The infection begins with .VBE file, likely distributed via spam email or drive-by downloads.
.VBE file is a VBScript encoded with Microsoft’s built-in encoding scheme to detect casual
inspection. Once decoded, the script reveals multiple layers of obfuscation, modular routines
and true functionality.

1/19

https://www.seqrite.com/blog/masslogger-fileless-vbe-registry-malware/
https://www.seqrite.com/blog/author/prashil/

Analysis of Decoded .VBS — [VBScript] File:

Initially, .VBS file prepares and writes multiple registry values under a specific key used by

the malware. It sets up the execution environment for storing a fileless payload.

Registry Key and Value names are hard-coded and straightforward. However, few of the

critical value data are kept encoded and are decoded during file execution.

-Registry Setup for Commands and Stager Configuration:

Subroutine AKAAU() is used to prepare keys and values before they are written to the

registry. Value names and Value Data are stored as a separate array — “QORXG” and

“ZBZLV” respectively. Both arrays are written to registry by using “RegWrite”.

Tub ARAAL L)

=ETEm ()

Dim JICET, SBILT, QORKG, KESDW
Say JICET = Crsatabbjsst(]

o8xs = Lepay(“ia

I:h:: I- Acrayl _

EveTE, _ flesEbigyFisaxivl

BRrEel

i. FIAddEnTiotannll .ann

BEFTE [DOSLE)

WASLA,
BRFEE(
mIEET ()

}

Foy PESIN = & ¥

::.—.rr IEDCVE & EVOTN &

Haut

EIBAT)

N _ Afae

p-Froceass ~Nams conbhost -Foros

Uhsand (QERXS5)

| gorxs {kES=m) . smaLv (nEamm)] /FiEcvE -

Fig-1 : .VBS file prepares and writes multiple Windows Registries

Once system is infected, we can find these malicious registry entries in Registry Editor:

Farvcaites

selp

mputer\HKEY_CURRENT_USERVSOFTWARE, esBbigyFIZe)G

Cantrol Pared

Emarcnment

(i

Keyboard Layout

Magroal

Metavork

Perrptent Property

Pranters

w | SOFTWARE

T-Dip
AppDatalow
AutoHetkey
Classes

]

]

dionn

beogle
IDuPython
InternetDetector
Mhicrosoft

nasm

Rade,|s

Mame hpe Dats
=) { e i) REG_ST [value reot 1ot}
L[321 REG_5Z Sop- Proceds -Hame conhost -Force
ak|y REG_SZ AddinProcess il ene
b REG_SZ 1
#|mnctant REG_SZ powershell -WindowStyle Midden ~Command **[AppDomain]zCurmentDomein. Load
=t Path REG_SZ esBblgyFIZ G
by REG_SZ
—JH REG_SZ
albiy REG_SZ {[MappDomain{| l=CurrentDomain Losd{ [} b onwvert]] J=FromEacefd String{ ((|=jom |
Edit String =
Vighue pame
o
Yalue data
|WWM‘-‘MW%’:

[oc] conce

Fig-2: Malicious Registry entries, values and their probable Meaning

2/19

Here is the summary of Registry Entries written to the system at registry path
“‘HKCU\Software\”:

Value Value Data Summary
Name
cn Stop-Process -Name Forcefully kill conhost.exe process.

conhost -Force

i “‘AddInProcess32.exe” Target process for code injection.

in ‘0” Control flag, checking if PowerShell command already
run or not.
instant LPICU Obfuscated PowerShell commands. Deobfuscate and

loads Stager-1 in memory.

Path esBblgyFIZcXjUl Name of the registry key path. It is appended to
‘HKCU\Software\”.

r WAJLA .Net assembly, stored in reversed string format. Stager-
2.

S RKFYI(DGSLP) Hex Decoded String. .Net assembly stored in reversed,

Base64 format. Stager-1.

v HIKGO() Obfuscated Commands for PowerShell. Deobfuscate
and loads Stager-1 in memory. Specifically used as user
input simulation.

Table-1: Summary of added registry entries

Before writing these registries, malware calls a subroutine “ZGYHW()” that checks if the file
“C:\Windows\Microsoft. NE T\Framework\v4.0.30319\MSBuild.exe” is present at location.

Depending upon the presence, malware deploys different versions of Stagers. Specifically,
Stager-2 in this scenario:

Sub ZEYEN()
Doim ERAXH, AGEMM

Jar ERRXH = ::eatfcbfecz[I "}
AGEM - Hltj?.!x;a:i!nfir:::entﬁ::1ng:t SWNINDERR™) & ™\M

If ERANM. F1lefxists (ASEMM) Thexn
BEaLE = 1414141414141 81 414141414 1141414141414141 4141414
WAJLA = *

Elas
DEILEP = =iDd 114141414141 4141414181414 11414141 414141414
WAJLA =

Fig-3: Check for MSBuild.exe file presence

3/19

— Registry Setup for Final Payload Deployment:

After above registries are configured and written, there is a call to another subroutine

“XSSAY()”. This function is responsible for reading another larger string data (which is an

actual Masslogger payload, kept encoded). This data is then split into 25,000-character
chunks and writes them in another registry values in segmented form.

[Haub x33AY ()

MTCTT = ©
2 GOFLS = EEDDG
53 KVgET = 1

Dim MICTJ, UOFLS, UIEAY, XVOUJ
Dim OY¥QM, MXYMQ, AINIV

MXYMO = Len (MTCTI)
RINIV = Int((MXYMQ + UOFLS - 1) [/ UCFLS)

= For OYYOM = 0 To AINIV = 1

UZEAY = Mid(MTCTJ, COYYQM * UOFLS + 1, UOFL3)
MIDUF.RegWrite IECVE & BRVOYN & "'donn'\segment™ & NVOYJT, USERY
KVQET = KVGET + 1

L2 L Haxt

End Sub
I

Fig-4: Malware splitting another large string data to chunks and writing it to registries

Each chunk is written to the registry at these paths:

e HKEY_CURRENT_USER\SOFTWARE\esBblgyFlZcXjU\donn\segment1
o HKEY_CURRENT_USER\SOFTWARE\esBblgyFIZcXjUNdonn\segment2
o HKEY_CURRENT_USER\SOFTWARE\esBblgyFIZcXjUNdonn\segment*

]
Fie Edit View Fevortes Help
Compute Y. CURRENT USER SO\ 28 g Ll o
Centale |l Hame Trpe Custs
Comtrel Punal a5 Dfaisht) REG_SZ |-||u-¢ mtuq]
E'l‘.l;:“"’“”“ R e— REG_5Z
ard Bt A& gegment? REG_SZ D3000300030003000 300030003000 30003000 30003000 3000 30003000 320030003000 30003000 3000
Microsolt - k| ppgrana 3 REG_5Z T T B T T T T 3 T e T T S TR L L S B T S S TRE T T SR 2L TN
Plet 25| pegmentd REG_SZ S013E0TFD20S209000A05 1 1F2008 IETSICA 100FENS D04 MISFECSEC 2 C 33098 E02BO 1 E4205S 0D DM,
B eraPropertyfiag b pegment REG_SZ CO0000IOCSODSOC 2601 18031 10EFS156E 2401 150310700502 £2 74031 A00000SE L2 ANN010034 20700933527
Priiban Ak segmierkt REG_5Z E200E03 1 ADO0D03 352 520 1 EDOOCOFFFFEFCEE3601 1701 1703 V6071 707 1 D000 00000FO0EADIDO0ASEZ DO 14
w | SOFTWARE Ak gagment T REG_SZ CODFGA062 6000002 DFE0TONA T 182 TAOC DE00000TD I HE000001 D648 3 T0BOA0OONNIFAAE000A0AN0000AEE
s k] ppgrantd REG_52 D0 TR0 QOO0 11 000000 E0000E DA NDOONR BN0E0 31 AD0000 3 381 52 11 EDANROROAD0000 1
Ciatal
:F“Lun: Edit String x
» Classes Vst (ame
s
3 Google
IDPython T (i T
InterretDetecion —
Micset T

AR

Fig-5: New registries added as a chunks of string data

-Task scheduler:

4/19

Malware establishes persistence via a Windows scheduled task, ensuring that malware
keeps running in the system. Trigger for the task starts on the date of infection (20xx-xx—
xxT00:00:00) and repeats every 1 minute (PT1M). Task is scheduled to run ignoring the
battery-related restrictions.

[Haub Mryeaa ()
Dim TREXW, OOVGD, PRODH, EIWGM, ONSIN, BUBQY
Zet TRFAW = Createlbject(” dule. "} : TRFMNW.Connect
Bat OOVGD = TREXNNW.HNewTask ()

With OOVED
With .Triggers.Create(l)
.StartBoundazy = * " : .Repetition.Interval = JYUTE [f/Const QYUTE ="
End With
With .Settings
.DisallewdcartIfOnBatceries = Falase : .StoplfGeimginBatteries = False : .AllowHardTerminate = False
End With
JActions.Creats (0) .Path = UGOZL()
End With

Set PRODH = TRENW.GetFolder ("'~} : PRODH.RegisterTaskDefinition RVOYN, ©OVGD, 6,.,,3

Fig-6: Task Scheduling

Task uses the same name as a created registry key i.e. esBblgyFlZcXjUl and is triggered to
run a .VBS file. This .VBS acts as a persistent execution loop that checks for a created
registries indicating whether a payload should be executed.

-Task Scheduler Script — Capable of Simulating User Input:

As we can see in the image below:

It runs for around 10000 times, sleeping for 10 seconds between each cycle.
It reads registry value “” to get the name of process and confirm if it is running or not.
Then it checks for registry value “in” set to 1,
if yes, it silently executes malicious command stored in registry “instant”.
When value in “in” is not set to 1.
o It launches PowerShell in visible window mode and uses “.SendKeys” methods to

input values of “v” and “cn” registries followed by “{ENTER}".
o This technique is like simulating user inputs to PowerShell.

5/19

Option Explicit
Dim agr, zyk, bBav, gue, TEy, lk:l xad

Ser agr = Createlbject ("R TipE. 1"}
Iy = nq'.*xrn"df":1'@1ﬂt"'51"“i:: "1
bov = "in": quWe = Poorn o Uy lkj = "
xsd = 0
Hpe wnile xsd < 10000
- If Mot f£gt{agr.RegRead("HKEY CURRENT EF frware' |pat i®}) Then
If agr.RegRead("HEEY CURRE EF 14- £ " & bav) = "1" Then
agr.fun agr.RegRead ("HEEY URRENT USEF I I "ok oguwe), O
Elses
aqr.Run zyk & ; W Pow rl . ON cene", 2

Dim mabk: Set mab = xev()
£ Mot mnb Ia Hothing Then
With agr
JApphctivace mab.Procsssld

Sendeys negnetd[(EY RENT [5E £t pat " & tru)
Sendieys E
SendKeys le;neadt EY REENT EF 1 f I " & 1k3)
Send¥eys °
WSeript.Sleep 5000

End With

End If
End I
End If
WScript.Sleep 10000
X8d = xad & 1

Laap

ElFunerion fge(vui)
gt = (GerObject (“winr - Y. imar2™)
Exectuery (" 5E I & ROM W 2 I » RE Har = § yui & "'").Count > 0)
End Funccicr

Fig-7: esBblgyFIZcXjUL.VBS file with user input simulation

As we saw in summary table,
“cn” registry is used to forcefully stop the running instance of conhost.exe process.

“instant” and “v” registries are used as a PowerShell to de-obfuscate, prepare and load
Stager .Net assembly in memory, without touching the disk.

Check for System Protection Status:

Malware checks the protection status of the target system and possibly remain undetected
during execution. It does so by querying some important registries. Below are a few of the
registries where AV / Security products usually register their presence:

o “‘HKLM\SOFTWARE\Microsoft\Security Center\Provider\Av”,

o ‘HKLM\SOFTWARE\Microsoft\Security Center\Monitoring”,

o ‘HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Security and
Maintenance\Providers”,

o “‘HKLM\SOFTWARE\Microsoft\Windows Defender\Security Center\Providers”

These registries are defined in the script in encoded format. Malware tries to enumerate
through the subkeys of above keys and attempts to read “DisplayName” value. DisplayName
holds the name of the installed AV / Security tool. If multiple security products are found to be
installed on target system, malware halts its execution.

6/19

[=lrunction FOSSR()
Di= TCHPD, POILG, IHGEV, RIOBF, EFDYY, OCEEL, IINTE
Ser TCHPD = GetOBjiect(wi L\ zoat Fauls St

Di= ANBSU : RNESU = Asray{ _
FEFYIL" £
BEFYI|" T =
FEFYIA {L}ZB??-. .ﬁ:l:.]:lﬁ'l n
REFYI{"® - o
]
QCEEL = == }

For Each EMGHV In AFES]
IE TOWRD. ErusMey(LHROOOO00Z, IMOHY, PIORF) = O Thes
If TaRszay(POOBF) Then
For Each EFDAY In FJCEE
on Exrar Resass Next
ZINTZ = MIDOF, RegRead{"HNLM\ " & IMGHY & & EFDYY & ".0D1 M |
Bn EIEGE woad U
12 Las(IINTZI) » O Thas

If LendQCEFZ) > O Then QCEEI = QCEFI & whiglf
OCEKT = OCEER & IINTI

End If
Hext
Emd If
E=a If
Hews
[ruess = (zasesioczrz, vecsioy = o |

End T ane Cae

Fig-8: Check the presence of installed security tools

-Trigger for Stager:

The subroutine SQSKP() in .VBE file is a critical part of malware execution chain. It
dynamically constructs and runs a PowerShell command that performs in-memory execution
of a .NET stager retrieved from the Windows Registry.

55 [Haub 303RP()

0 H Dim LETCU

B2 | IFTCU = Replace (REFYI{REFYT (REFYT(REFYY (REFYT("3333333333333337333333333333333033333333333333363333333433
£3 ' MIDUF.RegWrite IECVE & RVOYN & "\in", =1"

£ | MIDUF.RegWrite IECVE & RVOYN & "\instant®, LEICU

£5 : MIDUF. fun LETCH, 0

€7 End Sub

Fig-9: Trigger for stager

Here, the decoded text is a de-obfuscated PowerShell commands, after replacing |path| with

RVOYN.

67

GA
E9

Hzubk SQSERI)
= Dim LPICUD

LPICU = "powershell

Y I I nr HAY- ECware (-R-451 IY L L A Hams: £ |

MIDUF.RegWrite IECVE & RVOYN & "‘in®, "1"
MIDUF.RegWrite IECVE & RVOYN & "‘instant", LPICU
MIDUF.Run LPICU, 0O

End Sub

keonst BVOYN = "asBbIgyFlZcHjUl"

Fig-10: Deobfuscated PowerShell command

7/19

As we can see in Fig-10 —

1. This PowerShell command is formed and assigned to variable “LPICU”.

2. The contents of variable are then written to registry value “\instant”, which is created
inside registry key
“Computer\HKEY_CURRENT_USER\SOFTWARE\esBblgyFIZcXjUl”.

3. Function runs the constructed PowerShell command silently, where “0” — hides
PowerShell window.

4. The PowerShell then reads registry key “HKCU\Software\esBblgyFIZcXjUI\s” — This
registry key contains the Stager-1, kept in revered Base64- encoded format.

Input +D:‘3'-

B AR A A AL LA AP P A P A A AL UL LA AU R AR AL A AL A PSP AP A B AL AR LR AL A

AASAASAAAT 4 THB LA hSCPEAgFv InbIR
321 7HhD T godisklidn 104 W2 el I gAC THBgP2V22 Likia2 Lme QAW 00T 1F Ty o PRAL TGAL INBgPvIS T Tl

- LM F 1 Tr fes Bybes 4= oF

Output # BOm:

Fig-11: Forming stager-1 by reversing and Base64 decoding

We have seen malware authors implementing this encoding combo in many of the recent
credential stealers, including VIPKeylogger, Remcos, AsyncRAT etc.

5. The PowerShell command reverse the string, joining them, decodes base64 strings
and load it as a .Net assembly using “[AppDomain]::CurrentDomain.Load ()” function in
memory. This approach allows malware to:

» Avoid writing actual malware files to disk (Evasive capability).
¢ Dynamically construct and load payload at runtime.

6. Invokes entry method “[v.v]::v(‘esBblgyFIZcXjUl')”, that refers to the registry path.

We took the dump of deobfuscated stager-1 payload for further analysis. Our observations
are as follows:

Analysis of Stager-1:

8/19

Stager-1 is a small executable kept encoded at registry “HKCU\Software\esBblgyFIZcXjUI\s”.

It is compiled in .Net and size is around ~14KB.

Analyzing its code, we found that the file is trying to read contents from another registry key
with name “r’ — [HKCU\Software\esBblgyFIZcXjUI\r].

Those contents are reversed and another .Net compiled binary is formed — the stager-2.

This binary is then loaded in memory using “Assembly.Load()”. Stager-1 tries to locate
method r() inside the class r inside the Stager-2 assembly. It is the entry point for the
execution of stager-2.

Fig-12: Stager-1 trying to load Stager-2 and locate Method “r” in it

Analysis of Stager-2:

After Stager-1 completes its setup, malware proceeds to its Stager-2 loader. This stage of
infection is focused on extracting actual Masslogger payload from registry and injecting it into
target process.

Stager-2 initially constructs potential file paths to launch process and performing code
injection.

It checks if a file (whose name is retrieved from the registry value “”) exists in any of these
paths.

In our case, we found the target file/process path is:

“%WINDIR%\Microsoft. NET\Framework\v4.0.30319\AddInProcess32.exe”

9/19

AHKEY_CURREMNT_ USER\ SOF T ARE 8 blay #LT AN
Congek 1 Mama L] [ana
Coatrel Pt o gl p it B 5T [valizg reok pat)

rvarcriment
sk on BEG AT Shop-Froces M conhost -oece

s =, BES 52 AddinProcessidene

Keylt=zard Lot

Microsclt 1

[=1 | lon -Command ““[AppDioman |- mentliomar L oad{] Conmvari|=FromBacefdiinegli-j

Frpistenti ooty Bag SR \ak yarme

Prirdem | [y e L Y R LR G LR R LR VR P e V]

SOFTWARE o’y BARAARANREAREASRANLRAREAANAANRANLAREARANRANERANERARANAEANE)
t.ow ok ok dele g L aed{ (K1 B erreert{] - FremBas e EStringl (1 [I-ein [(15 et-BomProparty -Path, HROLY

2 oo i
AppDutal o AddnProces i se

risteng) | ol X

Fig-13: Constructing file/process path for code injection.

Further, malware extracts actual Masslogger payload which was previously written (by
subroutine “XSSAY()”) in multiple registry subkeys under below registries, that we saw earlier

e HKEY_CURRENT_USER\SOFTWARE\esBblgyFlZcXjU\donn\segment1
e HKEY_CURRENT_USER\SOFTWARE\esBblgyFlZcXjUNdonn\segment2
o HKEY_CURRENT_USER\SOFTWARE\esBblgyFIZcXjUNdonn\segment*

The BBX() function of class ‘r’ is responsible for collecting all value entries, concatenate
them, reverses the combined string, and then decodes it from hexadecimal into raw bytes.
This technique allows malware authors to hide a full PE binary across multiple registry keys.
The decoded payload is then used for process hollowing. Process hollowing is performed
using function . XGP()

I's a clever way to keep everything stored in the registry and only use memory for execution.

Fig-14:Function performing payload deobfuscation and process hollowing

-France Specific Payload Delivery:

10/19

Geo-targeted payload delivery is now common in advanced malware to alter behavior based
on the victim’s location. Stager-2 of this infection checks if current system’s input language is
set to French “Fr” and whether locale contains “France”.

Fig-15: France specific payload delivery

If conditions are met, it tries to download specially crafted additional payload from hardcoded
URL — hxxps://144.91.92.251/MoDi.txt. At the time of analysis, the URL was not accessible.

-Terminating Traces and Exiting:

At the end of its execution, the malware forcibly terminates running instances of conhost.exe
and PowerShell.exe processes.

Fig-16: Process killing to hide traces

By killing these processes, malware likely aims to hide its activity traces. Finally, it exits
application using ProjectData.EndApp(), completing stager-2 lifecycle.

Analysis of Masslogger Final Payload:

After successful deobfuscation of final payload from registry, Masslogger is injected to into
target process — “AddInProcess32.exe”. We can see the marker of this malware in memory
dump of the injected process as below:

11/19

Fig-17: Marker of Masslogger in memory

We took a memory dump of this payload representing the final stage in malware chain. It is
responsible for executing the main credential — info stealing functionalities.

-Data Harvesting:

Just like many infostealer malware’s, this malware is also targeting multiple Web browsers
and few email clients for stealing sensitive information, like saved Username, Passwords,
autofill data, etc. Below are list of Web Browsers and few email clients Masslogger is trying
to target.

12/19

Fig-18: Targeted browsers and email client for credential Harvesting

Let’s see one of the modules in detail where malware is trying to harvest saved login
credentials from the Chrome browser.

13/19

Fig-19: Chrome browser specific module for credential harvesting

It locates the user’s login data by accessing its “Login Data” SQLite database. It extracts
website URLs along with corresponding usernames and passwords and collects them for
further use. If valid credentials are found, they are stored in a structured format like the
website, username, and password.

Apart from targeting browsers and email clients for info stealing, Masslogger also possesses
capabilities of:

» Keylogger activity.

Take and clear snapshot files.

Retrieve clipboard data.

Try monitoring user activity by calling GetForegroundWindow, GetWindowText etc.
Read system details, like IP address and Country.

Uploading multiple files to server.

-Data Exfilteration:

The SpeedOffPWEXxport() method in final payload enables data exfiltration by sending
collected credentials and system information to remote locations via multiple channels, like
FTP, SMTP or Telegram.

If FTP is enabled, the method uploads the stolen data as a .txt file to a remote FTP server
using hard-coded credentials.

14/19

Fig-20: Data exfilteration via FTP

For SMTP, it constructs an email containing the data in either the message body or as an
attached text file and sends it using the specified mail server.

Fig-21: Data exfilteration via SMTP

If Telegram exfiltration is enabled, it sends the data as a document using the Telegram Bot
API, including a caption with the victim’s username and IP.

15/19

Fig-22: Data exfilteration via Telegram

Conclusion:

The Masslogger fileless variant shows the evolving trend of info-stealing malware. Delivered
via a .VBE script, it abuses Windows Registry to store actual executable payload and loads
that payload directly in memory without touching the disk. It possesses capability to harvest
stored credentials from multiple browsers and email clients and using multiple channels [FTP,
SMTP, Telegram Bot] for data exfiltration.

This variant shows the shift of credential stealer malware towards fileless and operation in
multiple stages (Stager-1, Stager-2). This challenges traditional AV and signature-based
detection methods. To overcome this, security defenders must employ advanced detection
mechanisms like behavioral detection, monitor registry anomalies etc.

Indicators of Compromise (loC’s):

File MD5:

.VBE: 29DBD06402D208ESEBAE1FB7BA78AD7A
.VBS: F30F07EBD35B4C53B7DB1F936F72BE93
Stager-1: 2F1E771264FCOA782B8AB63EF3E74623
Stager-2: 37FOEB34C8086282752AF5E70F57D34C

MassLogger Payload: 1E11B72218448EF5F3FCA3C5312D70DB

16/19

URL:
hxxps://144.91.92.251/MoDi.txt
Seqrite Detection:
Script.trojan.49618.GC
Trojan.MSIL

Trojan.YakbeexMSIL.ZZ4

MITRE ATT&CK
Tactic Technique Technique Name Sub- Sub-Technique
ID technique Name
ID
Initial Access T1566 Phishing T1566.001 Spear phishing
Attachment
Execution T1059 Command and Scripting T1059.005 Visual Basic
Interpreter
Execution T1059 Command and Scripting T1059.001 PowerShell
Interpreter
Persistence T1053 Scheduled Task/Job T1053.005 Scheduled Task
Defense T1140 De-obfuscate/Decode - -
Evasion Files or Information
Defense T1112 Modify Registry - -
Evasion
Defense T1055 Process Injection T1055.012 Process Hollowing
Evasion
Defense T1562 Impair Defenses T1562.001 Disable or Modify
Evasion Tools
Defense T1059 Command and Scripting T1059.001 PowerShell
Evasion Interpreter
Discovery T1518 Software Discovery T1518.001 Security Software
Discovery
Discovery T1082 System Information - -
Discovery
Discovery T1012 Query Registry - -

17/19

Credential T1555 Credentials from T1555.003 Credentials from
Access Password Stores Web Browsers
Credential T1056 Input Capture T1056.001 Keylogging
Access
Collection T1113 Screen Capture - -
Collection T1115 Clipboard Data - -
Collection T1056 Input Capture T1056.001 Keylogging
Collection T1083 File and Directory - -
Discovery
Command T1071 Application Layer T1071.001 Web Protocols
and Control Protocol
Command T1071 Application Layer T1071.002 File Transfer
and Control Protocol Protocols
Command T1071 Application Layer T1071.003 Mail Protocols
and Control Protocol
Command T1105 Ingress Tool Transfer - -
and Control
Exfiltration T1041 Exfiltration Over C2 - -
Channel
Exfiltration T1567 Exfiltration Over Web T1567.002 Exfiltration to
Service Cloud Storage
Exfiltration T1567 Exfiltration Over Web T1567.001 EXxfiltration to Code

Service

Repository

Prashil is a Threat Research Engineer at Quick Heal Security Labs. He enthusiastically
keeps hunting for ongoing malware trends, runs analysis on malware families,...

Articles by Prashil Moon »

Resources

o White Papers

e Datasheets

18/19

https://www.seqrite.com/blog/author/prashil/
https://www.seqrite.com/blog/author/prashil/
https://www.seqrite.com/resources/cat/white-papers/
https://www.seqrite.com/resources/cat/datasheets/

o Threat Reports
¢ Manuals
e Case Studies

About Us
o About Segrite
o Leadership
o Awards & Certifications
e Newsroom

Archives
o By Date
o By Category

Email*

\
subcnbe

© 2025 Quick Heal Technologies Ltd.

Privacy Policies Cookie Policies

19/19

https://www.seqrite.com/blog/cookie-policy/
https://www.seqrite.com/blog/privacy-policy/
https://www.seqrite.com/resources/cat/threat-reports/
https://docs.seqrite.com/docs/
https://www.seqrite.com/resources/cat/case-studies/
https://www.seqrite.com/about/
https://www.seqrite.com/about/#sec-leadership
https://www.seqrite.com/about/#sec-awards
https://www.seqrite.com/resources/cat/press-release/
https://www.seqrite.com/blog/archives-by-date/
https://www.seqrite.com/blog/archives-by-category/

