
1/19

June 18, 2025

Masslogger Fileless Variant – Spreads via .VBE, Hides in
Registry

seqrite.com/blog/masslogger-fileless-vbe-registry-malware/

18
June
2025
Written by Prashil Moon

During our recent investigation at Seqrite Labs, we identified a sophisticated variant of
Masslogger credential stealer malware spreading through .VBE (VBScript Encoded) files.
Initially, the variant appeared to be a typical script-based threat, but upon deeper analysis it
turned out to be a multi-stage fileless malware that heavily relies on Windows Registry to
store and execute its malicious payload.

In this blog post, we analyzed the internal flow of VBScript code, the obfuscation mechanism
used, and how it manipulates system to remain fileless. Also, we have explained about the
Stagers and the capabilities of the final Masslogger payload.

Initial Infection Vector:

The infection begins with .VBE file, likely distributed via spam email or drive-by downloads.
.VBE file is a VBScript encoded with Microsoft’s built-in encoding scheme to detect casual
inspection. Once decoded, the script reveals multiple layers of obfuscation, modular routines
and true functionality.

https://www.seqrite.com/blog/masslogger-fileless-vbe-registry-malware/
https://www.seqrite.com/blog/author/prashil/

2/19

Analysis of Decoded .VBS – [VBScript] File:

Initially, .VBS file prepares and writes multiple registry values under a specific key used by
the malware. It sets up the execution environment for storing a fileless payload.

Registry Key and Value names are hard-coded and straightforward. However, few of the
critical value data are kept encoded and are decoded during file execution.

-Registry Setup for Commands and Stager Configuration:

Subroutine AKAAU() is used to prepare keys and values before they are written to the
registry. Value names and Value Data are stored as a separate array – “QORXG” and
“ZBZLV” respectively. Both arrays are written to registry by using “RegWrite”.

Fig-1 : .VBS file prepares and writes multiple Windows Registries

Once system is infected, we can find these malicious registry entries in Registry Editor:

Fig-2: Malicious Registry entries, values and their probable Meaning

3/19

Here is the summary of Registry Entries written to the system at registry path
“HKCU\Software\”:

Value
Name

Value Data Summary

cn Stop-Process -Name
conhost -Force

Forcefully kill conhost.exe process.

i “AddInProcess32.exe” Target process for code injection.

in “0” Control flag, checking if PowerShell command already
run or not.

instant LPICU Obfuscated PowerShell commands. Deobfuscate and
loads Stager-1 in memory.

Path esBbIgyFlZcXjUl Name of the registry key path. It is appended to
“HKCU\Software\”.

r WAJLA .Net assembly, stored in reversed string format. Stager-
2.

s RKFYI(DGSLP) Hex Decoded String. .Net assembly stored in reversed,
Base64 format. Stager-1.

v HIKGO() Obfuscated Commands for PowerShell. Deobfuscate
and loads Stager-1 in memory. Specifically used as user
input simulation.

Table-1: Summary of added registry entries

Before writing these registries, malware calls a subroutine “ZGYHW()” that checks if the file
“C:\Windows\Microsoft.NET\Framework\v4.0.30319\MSBuild.exe” is present at location.

Depending upon the presence, malware deploys different versions of Stagers. Specifically,
Stager-2 in this scenario:

Fig-3: Check for MSBuild.exe file presence

4/19

– Registry Setup for Final Payload Deployment:

After above registries are configured and written, there is a call to another subroutine
“XSSAY()”. This function is responsible for reading another larger string data (which is an
actual Masslogger payload, kept encoded). This data is then split into 25,000-character
chunks and writes them in another registry values in segmented form.

Fig-4: Malware splitting another large string data to chunks and writing it to registries

Each chunk is written to the registry at these paths:

HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl\donn\segment1
HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl\donn\segment2
HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl\donn\segment*

Fig-5: New registries added as a chunks of string data

-Task scheduler:

5/19

Malware establishes persistence via a Windows scheduled task, ensuring that malware
keeps running in the system. Trigger for the task starts on the date of infection (20xx-xx–
xxT00:00:00) and repeats every 1 minute (PT1M). Task is scheduled to run ignoring the
battery-related restrictions.

Fig-6: Task Scheduling

Task uses the same name as a created registry key i.e. esBbIgyFlZcXjUl and is triggered to
run a .VBS file. This .VBS acts as a persistent execution loop that checks for a created
registries indicating whether a payload should be executed.

-Task Scheduler Script – Capable of Simulating User Input:

As we can see in the image below:

It runs for around 10000 times, sleeping for 10 seconds between each cycle.
It reads registry value “i” to get the name of process and confirm if it is running or not.
Then it checks for registry value “in” set to 1,

if yes, it silently executes malicious command stored in registry “instant”.
When value in “in” is not set to 1.

It launches PowerShell in visible window mode and uses “.SendKeys” methods to
input values of “v” and “cn” registries followed by “{ENTER}”.
This technique is like simulating user inputs to PowerShell.

6/19

Fig-7: esBbIgyFlZcXjUl.VBS file with user input simulation

As we saw in summary table,

“cn” registry is used to forcefully stop the running instance of conhost.exe process.

“instant” and “v” registries are used as a PowerShell to de-obfuscate, prepare and load
Stager .Net assembly in memory, without touching the disk.

Check for System Protection Status:

Malware checks the protection status of the target system and possibly remain undetected
during execution. It does so by querying some important registries. Below are a few of the
registries where AV / Security products usually register their presence:

“HKLM\SOFTWARE\Microsoft\Security Center\Provider\Av”,
“HKLM\SOFTWARE\Microsoft\Security Center\Monitoring”,
“HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Security and
Maintenance\Providers”,
“HKLM\SOFTWARE\Microsoft\Windows Defender\Security Center\Providers”

These registries are defined in the script in encoded format. Malware tries to enumerate
through the subkeys of above keys and attempts to read “DisplayName” value. DisplayName
holds the name of the installed AV / Security tool. If multiple security products are found to be
installed on target system, malware halts its execution.

7/19

Fig-8: Check the presence of installed security tools

-Trigger for Stager:

The subroutine SQSKP() in .VBE file is a critical part of malware execution chain. It
dynamically constructs and runs a PowerShell command that performs in-memory execution
of a .NET stager retrieved from the Windows Registry.

Fig-9: Trigger for stager

Here, the decoded text is a de-obfuscated PowerShell commands, after replacing |path| with
RVOYN.

Fig-10: Deobfuscated PowerShell command

8/19

As we can see in Fig-10 –

1. This PowerShell command is formed and assigned to variable “LPICU”.
2. The contents of variable are then written to registry value “\instant”, which is created

inside registry key
“Computer\HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl”.

3. Function runs the constructed PowerShell command silently, where “0” – hides
PowerShell window.

4. The PowerShell then reads registry key “HKCU\Software\esBbIgyFlZcXjUl\s” – This
registry key contains the Stager-1, kept in revered Base64- encoded format.

Fig-11: Forming stager-1 by reversing and Base64 decoding

We have seen malware authors implementing this encoding combo in many of the recent
credential stealers, including VIPKeylogger, Remcos, AsyncRAT etc.

5. The PowerShell command reverse the string, joining them, decodes base64 strings
and load it as a .Net assembly using “[AppDomain]::CurrentDomain.Load ()” function in
memory. This approach allows malware to:

Avoid writing actual malware files to disk (Evasive capability).
Dynamically construct and load payload at runtime.

6. Invokes entry method “[v.v]::v(‘esBbIgyFlZcXjUl’)”, that refers to the registry path.

We took the dump of deobfuscated stager-1 payload for further analysis. Our observations
are as follows:

Analysis of Stager-1:

9/19

Stager-1 is a small executable kept encoded at registry “HKCU\Software\esBbIgyFlZcXjUl\s”.
It is compiled in .Net and size is around ~14KB.

Analyzing its code, we found that the file is trying to read contents from another registry key
with name “r” – [HKCU\Software\esBbIgyFlZcXjUl\r].

Those contents are reversed and another .Net compiled binary is formed – the stager-2.

This binary is then loaded in memory using “Assembly.Load()”. Stager-1 tries to locate
method r() inside the class r inside the Stager-2 assembly. It is the entry point for the
execution of stager-2.

Fig-12: Stager-1 trying to load Stager-2 and locate Method “r” in it

Analysis of Stager-2:

After Stager-1 completes its setup, malware proceeds to its Stager-2 loader. This stage of
infection is focused on extracting actual Masslogger payload from registry and injecting it into
target process.

Stager-2 initially constructs potential file paths to launch process and performing code
injection.

It checks if a file (whose name is retrieved from the registry value “i”) exists in any of these
paths.

In our case, we found the target file/process path is:

“%WINDIR%\Microsoft.NET\Framework\v4.0.30319\AddInProcess32.exe”

10/19

Fig-13: Constructing file/process path for code injection.

Further, malware extracts actual Masslogger payload which was previously written (by
subroutine “XSSAY()”) in multiple registry subkeys under below registries, that we saw earlier
“.

HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl\donn\segment1
HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl\donn\segment2
HKEY_CURRENT_USER\SOFTWARE\esBbIgyFlZcXjUl\donn\segment*

The BBX() function of class ‘r’ is responsible for collecting all value entries, concatenate
them, reverses the combined string, and then decodes it from hexadecimal into raw bytes.
This technique allows malware authors to hide a full PE binary across multiple registry keys.
The decoded payload is then used for process hollowing. Process hollowing is performed
using function .XGP()

It’s a clever way to keep everything stored in the registry and only use memory for execution.

Fig-14:Function performing payload deobfuscation and process hollowing

-France Specific Payload Delivery:

11/19

Geo-targeted payload delivery is now common in advanced malware to alter behavior based
on the victim’s location. Stager-2 of this infection checks if current system’s input language is
set to French “Fr” and whether locale contains “France”.

Fig-15: France specific payload delivery

If conditions are met, it tries to download specially crafted additional payload from hardcoded
URL – hxxps://144.91.92.251/MoDi.txt. At the time of analysis, the URL was not accessible.

-Terminating Traces and Exiting:

At the end of its execution, the malware forcibly terminates running instances of conhost.exe
and PowerShell.exe processes.

Fig-16: Process killing to hide traces

By killing these processes, malware likely aims to hide its activity traces. Finally, it exits
application using ProjectData.EndApp(), completing stager-2 lifecycle.

Analysis of Masslogger Final Payload:

After successful deobfuscation of final payload from registry, Masslogger is injected to into
target process – “AddInProcess32.exe”. We can see the marker of this malware in memory
dump of the injected process as below:

12/19

Fig-17: Marker of Masslogger in memory

We took a memory dump of this payload representing the final stage in malware chain. It is
responsible for executing the main credential – info stealing functionalities.

-Data Harvesting:

Just like many infostealer malware’s, this malware is also targeting multiple Web browsers
and few email clients for stealing sensitive information, like saved Username, Passwords,
autofill data, etc. Below are list of Web Browsers and few email clients Masslogger is trying
to target.

13/19

Fig-18: Targeted browsers and email client for credential Harvesting

Let’s see one of the modules in detail where malware is trying to harvest saved login
credentials from the Chrome browser.

14/19

Fig-19: Chrome browser specific module for credential harvesting

It locates the user’s login data by accessing its “Login Data” SQLite database. It extracts
website URLs along with corresponding usernames and passwords and collects them for
further use. If valid credentials are found, they are stored in a structured format like the
website, username, and password.

Apart from targeting browsers and email clients for info stealing, Masslogger also possesses
capabilities of:

Keylogger activity.
Take and clear snapshot files.
Retrieve clipboard data.
Try monitoring user activity by calling GetForegroundWindow, GetWindowText etc.
Read system details, like IP address and Country.
Uploading multiple files to server.

-Data Exfilteration:

The SpeedOffPWExport() method in final payload enables data exfiltration by sending
collected credentials and system information to remote locations via multiple channels, like
FTP, SMTP or Telegram.

If FTP is enabled, the method uploads the stolen data as a .txt file to a remote FTP server
using hard-coded credentials.

15/19

Fig-20: Data exfilteration via FTP

For SMTP, it constructs an email containing the data in either the message body or as an
attached text file and sends it using the specified mail server.

Fig-21: Data exfilteration via SMTP

If Telegram exfiltration is enabled, it sends the data as a document using the Telegram Bot
API, including a caption with the victim’s username and IP.

16/19

Fig-22: Data exfilteration via Telegram

Conclusion:

The Masslogger fileless variant shows the evolving trend of info-stealing malware. Delivered
via a .VBE script, it abuses Windows Registry to store actual executable payload and loads
that payload directly in memory without touching the disk. It possesses capability to harvest
stored credentials from multiple browsers and email clients and using multiple channels [FTP,
SMTP, Telegram Bot] for data exfiltration.

This variant shows the shift of credential stealer malware towards fileless and operation in
multiple stages (Stager-1, Stager-2). This challenges traditional AV and signature-based
detection methods. To overcome this, security defenders must employ advanced detection
mechanisms like behavioral detection, monitor registry anomalies etc.

Indicators of Compromise (IoC’s):

File MD5:

.VBE: 29DBD06402D208E5EBAE1FB7BA78AD7A

.VBS: F30F07EBD35B4C53B7DB1F936F72BE93

Stager-1: 2F1E771264FC0A782B8AB63EF3E74623

Stager-2: 37F0EB34C8086282752AF5E70F57D34C

MassLogger Payload: 1E11B72218448EF5F3FCA3C5312D70DB

17/19

URL:

hxxps://144.91.92.251/MoDi.txt

Seqrite Detection:

Script.trojan.49618.GC

Trojan.MSIL

Trojan.YakbeexMSIL.ZZ4

MITRE ATT&CK

Tactic Technique
ID

Technique Name Sub-
technique
ID

Sub-Technique
Name

Initial Access T1566 Phishing T1566.001 Spear phishing
Attachment

Execution T1059 Command and Scripting
Interpreter

T1059.005 Visual Basic

Execution T1059 Command and Scripting
Interpreter

T1059.001 PowerShell

Persistence T1053 Scheduled Task/Job T1053.005 Scheduled Task

Defense
Evasion

T1140 De-obfuscate/Decode
Files or Information

– –

Defense
Evasion

T1112 Modify Registry – –

Defense
Evasion

T1055 Process Injection T1055.012 Process Hollowing

Defense
Evasion

T1562 Impair Defenses T1562.001 Disable or Modify
Tools

Defense
Evasion

T1059 Command and Scripting
Interpreter

T1059.001 PowerShell

Discovery T1518 Software Discovery T1518.001 Security Software
Discovery

Discovery T1082 System Information
Discovery

– –

Discovery T1012 Query Registry – –

18/19

Credential
Access

T1555 Credentials from
Password Stores

T1555.003 Credentials from
Web Browsers

Credential
Access

T1056 Input Capture T1056.001 Keylogging

Collection T1113 Screen Capture – –

Collection T1115 Clipboard Data – –

Collection T1056 Input Capture T1056.001 Keylogging

Collection T1083 File and Directory
Discovery

– –

Command
and Control

T1071 Application Layer
Protocol

T1071.001 Web Protocols

Command
and Control

T1071 Application Layer
Protocol

T1071.002 File Transfer
Protocols

Command
and Control

T1071 Application Layer
Protocol

T1071.003 Mail Protocols

Command
and Control

T1105 Ingress Tool Transfer – –

Exfiltration T1041 Exfiltration Over C2
Channel

– –

Exfiltration T1567 Exfiltration Over Web
Service

T1567.002 Exfiltration to
Cloud Storage

Exfiltration T1567 Exfiltration Over Web
Service

T1567.001 Exfiltration to Code
Repository

Prashil is a Threat Research Engineer at Quick Heal Security Labs. He enthusiastically
keeps hunting for ongoing malware trends, runs analysis on malware families,...

Articles by Prashil Moon »
Resources

White Papers
Datasheets

https://www.seqrite.com/blog/author/prashil/
https://www.seqrite.com/blog/author/prashil/
https://www.seqrite.com/resources/cat/white-papers/
https://www.seqrite.com/resources/cat/datasheets/

19/19

Cookie PoliciesPrivacy Policies

Threat Reports
Manuals
Case Studies

About Us
About Seqrite
Leadership
Awards & Certifications
Newsroom

Archives
By Date
By Category

Email*

Subscribe

© 2025 Quick Heal Technologies Ltd.

https://www.seqrite.com/blog/cookie-policy/
https://www.seqrite.com/blog/privacy-policy/
https://www.seqrite.com/resources/cat/threat-reports/
https://docs.seqrite.com/docs/
https://www.seqrite.com/resources/cat/case-studies/
https://www.seqrite.com/about/
https://www.seqrite.com/about/#sec-leadership
https://www.seqrite.com/about/#sec-awards
https://www.seqrite.com/resources/cat/press-release/
https://www.seqrite.com/blog/archives-by-date/
https://www.seqrite.com/blog/archives-by-category/

